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ABSTRACT

This paper reports a convergent numerical
algorithm for the Upper-Convected Maxwell
(UCM) fluid between two eccentric cylinders at
various eccentricity ratios (€); the outer cylinder
is stationary, and the inner one rotating. The
problem is solved by an unstructured control
volume method (UCV), which is designed for a
general viscoelastic flow problem with an arbi-
trary computational domain. A self-consistent
false diffusion technique and a domain iteration
scheme are used in combination to solve the
problem. The computations of the UCM fluid
using the numerical algorithm are carried out to
a higher value of the Deborah number (De) at
each eccentricity tested than hitherto possible
with previous numerical simulations. The
solutions are compared with previous numerical
results, confirming the effectiveness of the
UCV method as a general technique for solving
viscoelastic flow problems.

GOVERNING EQUATIONS

We consider a general two-dimensional and
isothermal flow of the UCM fluid, where the gov-
erning equations are the mass and momentum
conservation,

V-u=0, -Vp+V- -7 +15VZu=0, (1)

and the constitutive equations,

E=%+u-V"Jl',-—VuT-'.v-i—‘J",--Vu

To= "?o(v“ = vuT)’

where 7; and 79 are non-Newtonian and New-
tonian contributions to the total extra stress
T = T1 + T2, respectively, u = {u,v,w} is the
velocity field, 7o is a constant viscosity, and A
is the relaxation time. The constitutive equa-
tion is the familiar Upper Convective Maxwell
(UCM) model. There is no good physical reason
for choosing this particular constitutive equation,
but it has been recognised that any scheme that
can deal effectively with this (numerically) diffi-
cult constitutive equation must necessarily be ro-
bust and should do well with other less demand-
ing constitutive equations. The UCM constitu-
tive equation is written here in an operator split-
ting form, first introduced by Perera and Walters
(1977). This form is used in the present control
volume scheme since it explicitly introduces a vis-
cous stress into the momentum equation.

The problem to be considered here is the annu-
lar flow between two eccentric cylinders of radii
R; (inner cylinder) and R, (outer cylinder), off-
set by a centre-to-centre distance of e. Distances
will be made dimensionless with respect to R;.
We define the dimensionless gap

B = (RO“ Ri)/R'i’
and the eccentricity ratio
e=e/ (R, — Ri).

In the iteration process, the same pseudo-
diffusion terms are added to both sides of the con-
stitutive Eq. (2), the effects of which vanish as the
algorithm converges to a steady state solution;
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continuity 1 p|0 |O

momentum [u |[p [ m | -Vp+V- -7
constitutive | 71 [ A | 0 | =AD7o/Dt — 71+

)\(VUT “T1+T1- Vu)

Table 1: Definitions of variables.

they are however treated differently: terms on
the right hand side are considered to be sources,
and terms on the left hand side participate in
the finite volume discretisation process. All of
the governing equations can now be written as a
general transport equation in the form

V- (Au® — I'V®) = Spd + S, (3)

or

V-J =29, (4)

where J is the “flux” of the variable ®, and
S is the source term, which can be arbitrarily
split up in the manner shown in Eq. (3). The
definition of different variables can be found in
Table 1 (with no false diffusion terms in the
constitutive equations).

NUMERICAL METHOD

The SIMPLER. algorithm Patankar (1980) is
by far the most popular finite volume method
to solve conservation equations of the form (3),
especially for Newtonian flows at moderate to
high Reynolds numbers. The method and its
modifications are becoming attractive in numer-
ical viscoelastic flows. We here adopt the SIM-
PLER algorithm, but apply it to an unstructured
non-staggered mesh. This is a key development
that has apparently not been successfully done
before. In the unstructured mesh, there are no
obvious lines to march the solution along; how-
ever, the basic structure of the line-by-line algo-
rithm is kept by introducing an automatic sweep-
ing line generating algorithm, which searches and
creates lines of nodes from the entry to the exit
boundaries. If this is not possible, then the line
is terminated in the domain. The information
thus generated is stored in a sweeping line ar-
ray. Similar to a re-ordering of the nodes in
the FEM to minimize the bandwidth of the sys-
tem matrix, this array stores all the information
needed for the line-by-line tridiagonal-matrix al-
gorithm (TDMA), which only requires computer
storage and computer time of O(N), where N
is the number of unknowns. The line-by-line
method is faster than a point by point solver
(provided that the problem converges), partly
because the boundary condition information is
transmitted quickly to the interior of the domain.
After a discretisation of the flow domain into non-
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Figure 1: Radial velocity for the UCM fluid with
e = 0.1, p = 0.1 (SFEM, solid lines), together
with the UCV results (squares) at De = 95. The
calculations were done on a mesh with 10 radial
elements.

overlapping polygon control volumes that sur-
round the nodes in the flow domain, a connec-
tivity array is constructed to identify each grid
point and its neighbours, denoted by P and the
subscript nb, respectively.

The final discretisation equation for the vari-
able @

ap®p = Z Anp®Pnp + b, (5)

where

b= S.AV,
ap = Z anp — SpAV,

in which the summation is to be taken over all
the neighbouring nodes.

In a similar manner, the discretisation equa-
tion for pressure is obtained by using the
discretised continuity equation in the discretised
momentum equation with a different set of
coefficients ap, a,, and b. These discretised
equations are solved sequentially, using the
TDMA solver along the sweeping lines.

NUMERICAL RESULTS

In the flow of the UCM fluid between eccen-
tric rotating cylinders, all the distances are made
dimensionless with respect to R;, velocities with
wR;, and stresses with nmpw. The definition of the
Deborah number, which is a measure of the level
of elasticity in the flow, is defined by

De = \w

The normalised dimensionless radial distance
R, is defined as

R—R;

Rp = —-
Ra_Ri

(I +ecos®)
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Figure 2: Azimuthal stress 73 for the UCM fAuid
with € = 0.1, . = 0.1 (SFEM, solid lines), to-
gether with the UCV results (squares) at De =
95. The calculations were done on a mesh with
10 radial elements.

UCM De=0.85¢=0.8 n=3

Figure 3: Streamlines for the UCM fluid with
De = 0.85, ¢ = 0.8, and g = 3. The calculations
were done on a mesh with 33 radial elements.

where R is the radial distance and # is the az-
imuthal angle; R, is to be used for plotting only.
The algorithm is first benchmarked against the
Newtonian solution in the eccentric geometry,
and the UCM solution in the concentric geom-
etry (circular Couette flow). In both cases, a
convergence to the exact solution with mesh re-
finement is demonstrated, with the convergence
rate estimated at O(h?) for velocities, O(h') for
extra stresses where h is a measure of the mesh
size. Obviously, our UCV code has reached the
standard error bounds for linear FEM. For the
UCM case in the circular Couette geometry, con-
vergence is obtained up to a Deborah number of
100.

We consider next the flow of the UCM fluid at
an eccentricity ratio of € = 0.1, and dimensionless
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gap i = 0.1, for which reliable numerical data is
available by the spectral/finite element and the
perturbation method. Figures 1 and 2 show the
radial velocity 1, and the azimuthal stress Tgg up
to De = 95 along the line § = —7 /2.

Our numerical data agree well with the spec-
tral/finite element results except for the stress
boundary layer found by Beris et al.(1987). Our
scheme failed to predict such a boundary layer (a
sharp drop of the stress at the inner cylinder, and
a sharp increase of the stress at outer cylinder
across a boundary layer thickness of less than 1%
of the radial gap) for this geometry. Much more
refinement along the radial direction is needed to
capture such a boundary layer. The boundary
stresses are calculated by integrating a set of or-
dinary differential equations along the boundary,
where the only kinematic term that needs updat-
ing is dug/dr. The calculations were done by a
trapezoidal scheme, and although only 10 con-
trol volumes are used in the radial direction, we
believe that the boundary stresses are calculated
accurately from the given kinematics. In Figures
1 and 2 SFEM results were calculated on a mesh
which has 200 radial elements Beris et al (1987).
The current scheme requires the same order of
refinement in both the azimuthal and the radial
directions to ensure a reasonable aspect ratio of
the control volumes. To achieve the same or-
der of refinement as in the SFEM would require
considerably more computing time and memory
storage. We have doubled the number of radial
elements and obtained visually identical results.
A search for stress boundary layers is made by a
combination of the UCV method and numerically
integration of the stresses along the boundaries.
The calculated results show that the boundary
stresses are quite accurate indeed. The details
have been reported in another paper.

Furthermore, the algorithm is most robust: we
continue to obtain convergence up to a Deborah
number of O(102); whereas the spectral method
ceased to converge at De = O(95), and the finite
element calculation at De = O(8), for the same
flow configuration.

Numerical calculation was also done on a large
dimensionless gap p = 3 for which no previous
numerical results are available. On this geome-
try the re-circulation region is enhanced by the
large 1. The calculations were done on a mesh
with 33 elements along the radial direction, and
converged solutions were obtained at De of or-
der 2, with the final size of the diffusivity of
0.01% of De. (The highest Deborah number for
which convergent solutions were obtained with
the SFEM at this eccentricity, but with g = 0.1,
was De = 0.85 (Beris et al (1987)).

Iigure 3 displays the streamlines at De = 0.85.
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Figure 4: Radial velocity for the UCM fluid with
€= 0.8, p = 3, and De = 0.85. The calculations
were done on a mesh with 33 radial elements.
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Figure 5: Azimuthal stress 7gp for the UCM fluid
with e = 0.8, p = 3, and De = 0.85. The calcu-
lations were done on a mesh with 33 radial ele-
ments.

The primary feature of the flow is a recirculation
region, which is seen to dominate most of the flow
domain.

The azimuthal velocity wg and the normal
stress Tgg are plotted against normalised radial
distances R, along the line # = —w/2 in Figures
4-5. We note that the extra stress 7yg varies
rapidly with De, even for small changes in De.
The region of high stress is confined to a region
near to the inner cylinder as shown in Fig 5. In
this region the stress gradients are higher than
the corresponding values in the re-circulation
region.

FINAL REMARKS

The results of the unstructured finite volume
calculations presented here are rather encourag-
ing for computations of complex flow with arbi-

trary geometry. The unstructured nature of the
algorithm alows us to handle more complex ge-
ometry than presented here, in much the same
way as the FEM. Yet the numerical oscillations
observed in FEM solution at high Deborah are
absent from the current UCV calculation, and
in fact converged solutions are obtained at much
higher Deborah numbers than have been success-
fully reached by FEM calculations.

Our results also compare favourably with those
obtained with the SFEM, which is specifically de-
signed for the eccentric cylinder problem (and
therefore lacks the flexibility required for gen-
eral flow problems), in terms of the quality of
the solution and the limiting Deborah number
reached. To resolve the issue of the stress bound-
ary layer at low eccentricity ratio, a much more
refined mesh needs to be used, and this has been
investigated in another paper.
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