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ABSTRACT

The entrainment into buoyant jets and plumes in a weak
crossflow was investigated. The entrainment velocities
were measured with a particle image velocimetry (PIV)
technique. The experiments showed that in the irrotational
region the entrainment velocities can be superimposed.
This implied that, given the entrainment velocity for a
plume in a still medium, the entrainment velocity in a
moving medium can be calculated by adding the crossflow
velocity to the entrainment velocity in a still medium. The
implications of this lead to an additional term in the
integral momentum equations and to a more detailed
picture of the entrainment into the buoyant jet in a
crossflow.

INTRODUCTION

At any radius the entrainment velocity into a buoyant jet
in a stationary ambient is proportional to the maximum
plume velocity. The equation of continuity implies that the
entrainment velocity varies inversely with the radius. It is
traditional to use the entrainment velocity at a radius of b
(where u/U,, = 1/e) and this velocity is al,, (= Uy,
where o is the traditional entrainment coefficient. If it is
assumed that, when the plume is advected, its advected
excess velocity distribution (u,,) and the turbulence and the
pressure distribution are unchanged by the advection, then
the entrainment velocity relative to the crossflow velocity
(U,,) will be proportional to the maximum plume velocity
(U,,) measured relative to the crossflow velocity (Figure
1). Provided the entrainment velocity is greater that the
crossflow velocity, then, in stationary coordinates on the
axis of the plume and parallel to the crossflow, the
entrainment velocity on the upstream side is Uyt

U,sinc; and on the downstream side is U,- U,sinc;, as
shown in Figure 2.

Experiments examining the entrainment velocities into
buoyant jets used a particle image velocimetry (PIV)
technique, in which the ambient fluid was seeded with
particles and a sheet of laser light illuminated a section
through the flow. Pairs of images, separated by a small
time interval, were analyzed using the PIV analysis of
Stevens and Coates (1994). This used a pattern matching
technique to find the displacement of sub-images, in the
time interval between the images. The results were
presented as a velocity vector map of the image. Figure 3
shows entrainment velocities of a horizontal buoyant jet
with a densimetric Froude number of 10 in a stationary
ambient. Figure 4a shows the same horizontal buoyant jet
in an ambient flow of 2.13 mmy/s. This is compared to
Figure 4b, in which the ambient flow of 2.13 mmv/s was
added numerically to the entrainment velocities of the
stationary ambient case. While there are some differences,
particularly close to the port where the buoyant flow feels
the wake from the port, the assumption, that the
entrainment velocity in a flow is the normal enfrainment
velocity with the advected velocity superimposed, is within
the experimental errors and it is worth exploring this
advected buoyant jet assumption.

ENTRAINMENT WITH A VERY SMALL
CROSSFLOW

Considering a stationary control volume perpendicular to
the excess velocity, the assumed Gaussian velocity
distribution and the self-similarity of the flow imply, as
shown in Figure 5, a radial velocity distribution of
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The equation of continuity is
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Hence provided R/b is large such that all of the
entrainment is included

R
df(qu+U_cosar)21trdr72nbaUegds =0 3
0

It is notable that the term involving the entrainment does
not involve U,,. The maximum crossflow for which this
equation applies can be determined by calculating the
maximum radial velocity in a zero ambient velocity (Figure
5) and setting this equal to the crossflow velocity. The
maximum crossflow velocity is then given by
U,sinoy/ollU,, equal to 0.638. The normal two
dimensional stream function, vy, for this entrainment flow

(Ltou,) is
s
¥ = -aU,bf(l-exp-(:fd¢ + U_rsine,sing  (4)
0

It should be noted that there is three dimensional flow
near the axis because, as the entraining fluid enters the
buoyant flow, it gets carried up vertically by the motion of
the buoyant flow. Due to this three dimensional aspect,
the inflow decreases as the axis is approached and hence
the value of \J decreases along the two dimensional
streamline.  For this maximum crossflow velocity the
entrainment into the buoyant flow is bounded by
equalling zero and hence
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When r/b tends to infinity and ¢ tends to T, this yields
y/b equal to 4.92 and thus the complete entrainment comes
from a width of approximately 10b. The plot of the lines
enclosing the complete entrainment for the maximum
crossflow velocity is shown in Figure 6 and it is worth
noting that the entrainment function implies a cusp on the
centreline. This may be the start of the obvious changing
pattern always observed in a jet or buoyant flow in a
crossflow. Also in Figure 6 is the case with a crossflow

velocity of 0.5 of the maximum (0.319). In this case the
line enclosing the complete entrainment is the same as a
sink in a uniform flow and the cusp is no longer there.

THE CASE WHEN THE CROSSFLOW IS GREATER
THAN THE MAXIMUM ENTRAINMENT VELOCITY

The position of zero radial velocity (i.e. the limit of the
entrainment) is on the two dimensional streamline and this
point can be determined by equating the entrainment
velocity to the resolved part of the crossflow velocity along
the radius. This yields

1-exp —(-:)2

)
The maximum value of (1 - exp -(/b)»)/(r/b) is 0.638.
Thus the minimum value of ¢ is ¢, given by

(6)

U_sine, cos¢p = aUcE
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A ¢ of zero occurs at r/b equal to 1.121 and, when
ol /(U,sinay) is equal to 1.567. When the value of
ol /(U,sine) is less than 1.567, there is a minimum
value of ¢. For example, if olJ/(U,sincy) has a value
of, then ¢, is 50°. This gives a minimum value or y,/b of
0.86 (1.121 sin50°). From this point the trace of the zero
two dimensional stream function (W = 0) is

y=0-= -aUEEb}(I—cxp—(%)z)ddy
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+ U_sine, _[ dy

b4l
When /b tends to infinity, ¢ tends to 7 and this yields
L ©)
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For the case where ol,/(U,sina) is 1, the value of
y/b is 3.11. Thus the zero streamline goes from an x/b
of infinity and y/b of 3.11 to x;/b of 0.72 and y,/b of 0.86.
This is plotted in Figure 6 and shows the flux of volume
at x = oo and suggests that this is

== 27
d .
== (U_,sma,w: 2nrdrdd
% { ! ! (10)
= Z(aU_sina,(y,_—y,) + U_sino:ry,)
= 2(aU,gb(n -¢) + U,_sinuty,)

Noting that the superposition of velocities implies that the
U,sing, term in the double integral is zero and, defining
the u,, term in the double integral as q, leads to
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When cosd, is 1, oll,/(U,sinct,) is greater that 1.567
and ¢, is 0 and the dimensionless entrainment flux
@¢/(2U,b) is the normal entrainment assumption. When
olU/(U,sine) is small, then cosd; tends to 0 and ¢,
tends to 2. Thus the dimensionless entrainment
assumption is ¢/(2U,b) equals 1.1. There are two
implications with this assumption. Firstly, the
superposition of velocities in equation 10 allows the
normal continuity to be used rather than the empirical
spread function used by Wood (1993) and others.
Secondly, the assumption, that in a crossflow the
entrainment flux q equals the projected area defined by
2U,b which was introduced by Frick in 1984 by assuming
a wake behind the flow and has been used extensively
(Frick 1984, Lee and Cheung 1990 etc.), is close to the
entrainment when (U,sino,)/ol,, is large. Fric and
Roshko (1994) showed that the flow around the transverse
jet does not separate but closes in around the jet leaving
little or no open wake, as implied by the vorticity equation.
However, the assumption is close to being correct in spite
of there being no discernable wake.

THE EFFECT OF THE ASYMMETRIC
ENTRAINMENT ON THE MOMENTUM EQUATIONS
The continuity equation can be written as

R
df(ul=g + U_cosar)Zmdr
Y (12)

2n n

. ( .!]‘ uRdp + U_sine, ! cosd)Rdd))ds =0

and the horizontal momentum equation is
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The continuity equation multiplied by U, is subtracted
from the horizontal momentum equation

% f (v, +U.cosa,) u,,cosw, 2nrde
¢ (14)
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When R is sufficiently large that the gaussian distribution
of velocity and buoyancy tend to zero then

d
ds
= 2(xU, b(n-¢)+ 1.1U_,bsinm,sin¢1)

(U507 (15)
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Where cos¢y was given by eq. 7 and
dz _ _Uysie, (19)

ds  U_cosa + ch

dx _ U, +U, cose, (20)
ds  U,coso + ch
The assumption that the buoyant flow is advected implies

that, moving with the crossflow velocity, the entrainment
is the same as the stationary case. It should be noted that,
for a stationary ambient whether the flow is momentum or
buoyancy driven, the rate of spread is, within the limits of
experimental measurement, constant (0.11). However, the
entrainment constant o depends on the type of flow. With
a vertical buoyant jet in a stationary ambient, the value of
o (Jirka 1979, Wood 1993) can be written

b da,,,Uf.h’)]

2,2 ds
21,UZb 1)

= l‘.l_ [0_11 + £b1¢]

2n 21, (lmU:gbzsinar)’”

For a pure jet, it can be shown that o equals 0.11 I/(2m)
and for a pure plume o equals (5 1,/67) db/ds. The second
term in the ot equation deals with the buoyancy forces and
thus it was reasonable to include sing, in the buoyancy
term.

There are sufficient equations to solve for b, U, o, x
and z as a function of s. The equations have been checked
for the limiting cases with a crossflow tending to zero of
a pure plume and a pure jet.

I (
o = —3]011+
2n
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FIGURES

FIGURE 1: ASSUMED GAUSSIAN DISTRIBUTION OF
EXCESS VELOCITY IN AN ADVECTED BUOYANT JET
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FIGURE 2: THE CONTROL VOLUME USED IN THE
ANALYSIS OF AN ADVECTED BUOYANT JET
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FIGURE 3: THE ENTRAINMENT VELOCITIES OF A

HORIZONTAL BUOYANT JET (FR=10) IN A STATIONARY

AMBIENT
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FIGURE 4A: ENTRAINMENT VELOCITIES OF A

HORIZONTAL BUOYANT JET (FR=10) IN A CROSSFLOW
OF 2.13 mm/s
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FIGURE 4B: ENTRAINMENT VELOCITIES OF A

HORIZONTAL BUOYANT JET (FR=10) WITH A
NUMERICALLY ADDED CROSSFLOW OF 2.13 mm/s
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FIGURE &: THE ENTRAINMENT VELOCITY

DISTRIBUTION
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FIGURE 6: THE ENTRAINMENT BOUNDS FOR
U_sino/aU,, of 0.319, 0.638 and 1. 0.319 AND 0.638
ARE THE NORMAL JET ENTRAINMENT ASSUMPTION
AND1I1STHE ADVECTED BUOYANT JET ENTRAINMENT
ASSUMPTION



