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ABSTRACT

Analytical formulae are given for optimum sail lift
coefficients for a close-hauled upright sailboat and the
maximised net driving force. The analysis also shows
that the rudder should have as great a span as is
possible and share a high fraction of the total
appendage side force.

INTRODUCTION

Modelling the performance of yachts and sailing
dinghies in straight-line sailing is a complex science
which is still not fully developed. Velocity Prediction
Programs (VPPs) as currently used (e.g. Schlageter &
Teeters, 1993) are a development of the MIT model
(Kerwin, 1978) and use detailed information on hull
forces derived from tank testing and CFD analysis, but
use rather arbitrarily derived information on the sail
force coefficients (e.g. Milgram, et al 1993).
Interaction between hull and sail design is not directly
catered for. The VPPs are also complex
mathematically and it is not possible to obtain direct
insights into design optimisation. Here, a simple
model is presented for the net driving force on an
upright sailboat in straight-line sailing and it is used to
optimize performance and design parameters.

NET DRIVING FORCE

Figure 1 shows the forces on an upright sailboat for
close-hauled sailing in a straight line. The heading of
the boat lies between the apparent wind direction and
the actual trajectory of the yacht. This is due to
leeway. Forces have been resolved into Iift
components L, which are normal to the oncoming fluid
stream (not to the lifling surface) and drag components
D, which are parallel to the stream. All of the lift on
the hull has been ascribed to the keel (subscript K) and
rudder (subscript R), but a separate hull drag

component (subscript H) is defined. The sail subscript
§) is represented as a single untwisted airfoil but the
analysis also applies to multiple sail rigs. The angle 8
is between the apparent wind of speed U, and the boat
trajectory. The boat speed through the water is V.
The net driving force F in the trajectory direction is
given by

F =LginB - Deosp - Dy - Dy (M

where D' and D, are the lift-induced components of
the drag of the underwater appendages. This net
driving force is available to overcome the zero-lift
component of the drag of the hull and appendages and
to accelerate the boat. We are interested in
maximising F for any given U,, V, and 8 by correctly
choosing the lift coefficient of the sails and appendage
design parameters. The side forces are assumed to be
in balance so that

Leosp + DgsinB =L, + L, (2)

Lift and drag coefficients, C,; and Cy; are defined in
the usual manner with respect to reference plan-form
areas, S;, and drag for the lifting surfaces is assumed
to have parabolic dependence on lift so that

Cy =Chy +CLlmA"),j =K Rars O

where

+ d; (4)

Here the A, are the aspect ratios of the foils defined so
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FIG 1. Forces on the foils of a sailboat.

as to give the rise in induced drag with lift coefficient
and d; is a coefficient that accounts for the rise in
profile drag with lift coefficient. For the keel and
rudder d; can be obtained from two-dimensional section
data, but it makes a small contribution and we take A"
= Ag and Ay” = A, For sails, best practice is for the
lift coefficient to be changed by altering the camber or
draft of the sail and adjusting the incidence to maintain
ideal flow onto the sail at the leading edge. Highly
cambered sails at their optimum incidence show much
higher profile drag than sails with lower camber
(Milgram, 1971, 1978), with d; being found to be of
order 0.04, which is not negligible.

Using (3) in (2) results in

Cix = ;(AKIA:‘)ICLSCOSB + Cpgsinp (5)
+ ClssinBi(mA,)] /(1 + by)

LIZ 2

o= L% oy s, 6,7)
BYEs"

Y = ClCris s =(SjAj.)U2 (8,9)

where with the ;" being the effective span of the foil,
the asterisk being dropped for the rudder and keel.

Using (5) and (3) in (1) results in

F = Fl(%mpUlss®) = - (Cos cosB
+ FT(CLsin®B) +sinp(1 -2.7TC cosB)z (1)
- (cosB + FTcos?B +2.5TC[ sin’B)z?
- 2.#TsinfcosBz® - 2 FTsin’Bz’?

where

. s 5
z = C(mAs);  Cps = Cpsl(mds) (112
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FIG 2. Normalized net driving force as a function of
normalized sail lift fgefﬁcient, Eqn (10) for
B = 18 deg AND Cys = 0.005:
— FT =0.2
---- FT =01

Also

r= 1 e,

e * Ay Bk

Equation (10) gives a quartic, equation for the
normalized net driving force, F, in terms of the
normalized sail lift cgcfﬁcicnt z. Figure 2 shows this
for B = 18 deg and C’%; = 0.005 and values of 9T =
0.1 and 0.2. Typically & is of the order of 0.2 and T
is a little less than unity. It is seen that there is a well-
defined maximum to F giving an optimum value for
the sail lift coefficient, Cp5. It is apparent that Eqn
(10) can be used to give a theoretical value for this
optimum lift coefficient. It is also apparent that
reducing T can improve the net driving force,
T depends on the appendage design and relative side
force loading of the keel and rudder. Maximizing F
for a given value of & and B should yield greater
performance for the sailboat in both acceleration and
equilibrium speed.

Optimum _Sail Lift Coefficient

Taking the derivative of F with respect to z and
sefting it to zero yields a cubic equation in z which on
solving for, _z gives the optimum lift coefficient to
maximize F. This is done with U,, V, and s held
constant so that 5 is constant. It is assumed also that
the variation of the sail lift coefficient is done so that
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FIG 3. Maximum useable lift coefficients as a
function of apparent wind angle:

Eqn (15);

------ Milgram et al (1993);

s+ e« Masuyama et al (1993);

—— » — Cat rig with requirement that leach

of sail does not "hook" to windward (see

text).

y = C.p/C, is not altered. We shall find the optimum
for y later.

For 8 < 25 deg the term in z* can be neglected in
Eqn (10) making the optimizing equation for z a
quadratic. The radical expression in the solution of
this quadratic can be expanded as a series and to
sufficient accuracy we obtain expressions for the
optimum lift coefficient

wAgtanf II

c = _ 3FTanBsinB {(15)
LA g +ﬂcosﬁ)(

2(1 +.#TcosP)?

and the corresponding maximum in the driving force

_ wan:sS‘zsinBtanB
max = T8(1 + FTcosp) (16)
e I 1 - __:EEZ:ffoféifffffg__.l - j:léz:c)sig
[ (1 + Tcosp)? |

where the DS is the zero-lift drag force of the sails.
These formula predict with precision the optimum
points shown in Fig 2.

A survey of two-dimensional (2-D) airfoil data
(Milgram, 1971, 1978) for thin cambered foils at their
ideal angle of incidence (taken where L/D is a
maximum) indicates that the effect of camber on
section drag coefficient contributes about 0.04 to
1/xAg in Eqn (3). An effective aspect ratio of about 4
for induced drag contributes a further 0.08 giving a
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FIG 4. Definition of sail angles for a cat-rigged
boat.

total of about 0.12, a value which is consistent with
the sailing dynamometer data of Milgram et al (1993).
The overall effective aspect ratio is then about 2.7.
Using this and taking #T in Eqn (4) as 0.2 yields the
optimum lift coefficients shown in Fig 3. They are
plotted against apparent wind angle, v, which is 3 less
leeway angle; the latter has been estimated as (/8.
Also shown are the data reported by Milgram et al
(1993) and values deduced from the force coefficients
used by Masuyama et al (1993). It is concluded that
much larger lift coefficients may be possible.

For thin 2-D cambered foils the data show that ideal
angle of attack is at about 0.4¢ radians, where e is the
camber or draft of the sail as a fraction of the chord;
the lift coefficient for this ideal angle is about 12e.
The angles, 6, and 8,, that the leading and trailing
edges of the sail make to the chord line are 4e radians

for a circular arc profile, but depend on the section
shape. Angles of attack for 3-D foils with the same
lift coefficient are increased over those for 2-D by
C, /A radians, where Agis the effective aspect ratio
for induced drag (Abbott & von Doenhoff, 1959). The
geometrical relationships for cat-rigged boats (ic
having a single sail) are shown in Fig 4. It is seen that
the angle that the trailing edge makes to the centre-line
of the boat, 4§, is given by

6 =0, -7, =6, e - 7,

0.4 1 (17)
=l 28 et -
2 (12 “"Ai)u Y4

where « is the angle of attack and Yc the angle
between the chord line and the boat centreline. If 8, is
taken as 3e = .25C, the old-timers requirement that §
= 0 ('the leach should not "hook" to windward’)
yields Cs < 2.8y, for A; = 4. This is shown on Fig
4. It is seen that it is similar to the limits on C
reported for sloop rigs with genoa jib and main sail
(Milgram et al 1993 and Masuyama et al, 1993).
Camber values much larger than normally used are
needed to achieve the optimum lift coefficients of Eqn
(15). This large camber decreases the boom angle
needed to give ideal incidence, but it does give values
of § > 0. Measurements taken from photographs of
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1995 America’s Cup yachts show § = 10 deg in light
winds.

For sloop-rigged yachts there is some difficulty in
achieving high C,¢ at small values of 8. In light winds
efforts are made to maximise the lift coefficient. It is
to be noted that the lift vector is normal to the wind
and does not depend fundamentally on the orientation
of the hull to the wind, only on the orientation of the
sails. If lift coefficients of order 1.5 are achievable at
ya of 25 deg they should also be achievable at v, of 18
deg, by rotating the boat relative to the wind, but not
the sails. The boom comes up toward the weather
gunwhale and the headstay needs to sag to leeward so
that luffing is avoided with the high draft in the sails.
Having the foot of the headstay adjustable to leeward
by means of a traveller or other arrangement may be
worthwhile

OPTIMIZATION OF APPENDAGES

For constant appendage geomelry, the function T
may be treated as a function of y, the lift coefficient
ratio (see Eqns 7, 11, 13 and 14). This function has a
minimum at

Y = Yo = (CLifCis)yp =bla = A4y (18)

The minimum value of T is obtained as
T =(1 +b%a)™ = (I +sais)”  (19)

It will not always be possible to operate at this
oplimum because of questions of the balance in yaw of
the sailboat due to the rudder and keel forces involved.

Some adjustment of this balance can be made by
shifting the mast or otherwise changing the center of
effort of the sails.

In optimising the geometry of the rudder and keel it
seems important to consider this in the light of taking
s¢ as being fixed by other considerations. It is noted
that 5, appears in the definition of & which is defined
in Eqn (6). Often it will be maximised on its own
account. Here we take it as fixed. We focus on the
fraction of the total appendage lift force developed by
the rudder, A, as this is important in the overall design
of the sailboat. We note

A= Lp/(Ly »Lg) =byl(l1 +by) (20)

For conventional sailboats A is 0.3 or lower. Some
1992 America's Cup yachts had twin steerable keels
and for them A would be near 0.5. It turns out that y
can now be eliminated from Eqn (13) so that T
becomes a function of A and the rudder span:

T =(1 - A + Psgls @1

This shows that the optimum design for the rudder is
to have its effective span as large as is possible and for
it to share a high fraction of the appendage lift. Most
of the 1995 America’s Cup yachts were exploring such
designs.

CONCLUSIONS

Analysis of the net driving force yields algebraic
formulae for the optimum mail lift coefficient for
upwind sailing and for the maximised net driving
force. It is found that sail coefficients currently in use
are lower than optimum and cfforts to sct the sails at
close-hauled wind angles with more camber should
prove worthwhile in light winds. The analysis also
shows that rudders should be as long in span as
possible and should carry a large share of the side
force. The analysis is restricted to the case of no heel.
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