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ABSTRACT
Recent studics ol the topological structure of direct
numerical simulations of inhomogeneous turbulence
indicate that, in regions of high kinelic energy dissipation
rate, the geometry of the local velocity gradient licld has a
universal character. Namely

(i) Two ol the principal rates ol strain are

positive, one is negative

(ii) The vorticity veetor has a tendeney to be
aligned with the smaller positive principal rate
of strain with the probability of perfeet
alignment approaching one as the data is
conditioned on higher and higher rates of
dissipation.
The magnitude ol the strain tends to be
comparable to the magnitude of the vorticity.
These observations are in agreement with a large number of
studies carricd out in homogencous turbulence.  In the
present paper an attempt o explain this geomelry using a
restricted Euler model will be discussed.  There is some
reason o helieve that when fully developed equilibrium
Mows are studicd the intermediate principal rate ol strain
may be negative and this leads o a new, viscous model
which is designed 1o be consistent with the scaling
propertics o One-Parameter Turbulent Shear Flows.

(iii)

INTRODUCTION

In the simulations velocity gradients are determined al
every point in the Tow and used to construct the invariants
ol the velocity gradient ensor, the rate-of=strain ensor and
the rate-ol-rotation tensor, The [irst invariant is zero Tor
incompressible Mow and tends o be close o zero Tor the
compressible cases studied and so the basic geomelry of the
local Mow is determined by the second and third invariants.
Crossplots are used 1o produce a concise description ol the
low in the space of tensor invariants. These plots reveal
signilicant fcatures which would be dilficult or impossible
to lind using standard visual display techniques. A key
aspeet of the method is the association which can be made
hetween leatures ol the invariant crossplots and local low
patterns in physical space. The paper by Chong, Perry and
Cantwell (1990) is essentially a road map for relating tensor
invariants o local IMow paterns in compressible and
incompressible flows. It should be noted that the method
can be applied to the gradient wensor of any smooth vector

field which may be of interest including the vorticity lield,
pressure gradient field and concentration gradient ficld.

To date we have studied the velocity gradient tensor
in six numerically simulated [ree shear [Tows (Chen et al.
1990, Sondergaard ct al. 1991) including the compressible
and incompressible mixing layer, plane wake and
homogencous shear Tow, The geometry noted above is
consistent with a varicty ol studies carricd out in
homogencous turbulence beginning with Ashurst et al.
1987,

Interest in the fine scale structure of turbulence arises
[rom the key role played by viscous dissipation in the
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transport ol kinctic cnergy. If we decompose an
incompressible wrbulent flow flow into a mean and
{Tuctuating part
ui =14y o p=p+p )

and substitute into the momentum equation and take the
average, the result is
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In [ree shear Mows away (rom walls the Reynolds stresses
arc much larger than the viscous stresses associated with
the mean velocity gradient.
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and in modeling, the viscous term is usually dropped.

However if we lorm the transport equation for the turbulent

kinetic energy the result is an equation ol the form

i(——“‘ = J+(,)—C'i+l'l~£.:(}
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where Ck is a [Tux vector involving various products of
velocity and pressure Muctuations.  In free shear ows
away [rom walls it is observed that the dissipation of
wrbulent kinetic energy scales with production.
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denotes a fuctuation in the rate-of=strain tensor. Nole that
it is only assumed that dissipation and production scale
with cach other; exact equality only oceurs only in the case
ol homogencous shear [Tow.

CLASSICAL SCALING LAWS

The conclusion [rom the above discussion is that while
viscosity plays relatively litde role in the transport of mean
momentum, it plays a very important role in the transport of
kinetic energy. Morcover fluctuations in the rate-ol-strain
are large compared to the mean,  We can sce this as
follows. Let Uy and 8 be integral velocity and length scales
hased on the overall flow, In free tirbulence velocity
fluctuations tend to be some Iraction of Uy independent of
the viscosity (¢l equation 3) and so

M=Uy /8 7
and Irom (5)
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The implication of this result is that dissipation ol kinetic
energy takes place in regions with characteristic length
scale much smaller than & and that the associated velocity
gradients in these regions are very large compared 1o the



mean. This leads to the concept of turbulent microscales
and the classical scaling relationships are as follows:
8 /2 8 314 Ug 1/4
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where A is a Taylor microscale, 1 is a Kolmogorov length
scale, v is a Kolmogorov velocity scale and the assumption

v

is made that — =1. Note that the gradients associated

v . -~
with either the Taylor or the Kolmogorov microscale are ol
the same order. This is to be expected since these scales
are essentially deflined by (8).

R

and $o, at least as lar as dimensional analysis is concerned,
motions at both length scales make a comparable
contribution to the dissipation of kinetic encrgy. The lact
that instantancous velocity gradient fluctuations are so
much Targer than the mean is the justilication lor carrying
over 1o the description of the instantancous dissipation the
above scaling arguements which are based on quantitics
delined only in terms ol an average.

ONE-PARAMETER TURBULENT SHEAR FLOWS

Virtually all simple wrbulent [ree shear Mows  have
two leatures in common. They are ol a simple unbounded
geometry and, away [rom the region where the (Tow is
created, the evolution of length and velocitiy scales is
governed by a single integral invariant ol the motion. The
primary clfeet ol viscosily is to set the size of microscale
motions which dissipate kinetic encrgy as discussed above.
Except through possible initial conditions elleets viscosity
has little or no direet effect on the integral scales Uy and 8.
With viscosity ignored, the overall Tow depends only on
the invariant. Simple conligurations ol this type will be
referred o as One-Parameter Turbulent Shear Flows.  For
all such fTows including jets, wakes, mixing layers, vortex
rings, vortex pairs, plumes cte the evolution ol integral
scales in time is given by

8=M|."IIILR U()lefmlk—l (1

where M is the invariant of the motion with units
[M]=L"T-" and k = n/m. Equation (1) describes the
variation of Uy and 8 in time as scen hy a Lagrangian

observer who conveets with some geometrical feature of

: I
the large scale motion. In general 7 <k=Il. Sce Cantwell

JOR D for further discussion and enumeration of Mow cases.
For our purposcs the significant result using (10) and (11)
is the following estimate of the behavior ol large scale and
microscale velocity gradients as seen by a Lagrangian

observer.
Up Lo (o) (2] (M™\ksz g
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In [ree turbulence the veloeity gradients associaled with the
large scale and microscale motions always decrease with
time when relerred w a Lagrangian obscerver.

RESTRICTED EULER MODEL
The velocity gradient tensor satislics a nonlincar
evolution equation ol the form
LIAH (3”
= AikAki —(AppApn == “ii
de 3
where Ajj =duj/ dxj and the wensor Hij contains terms

(13)

involving the action ol cross derivatives ol the pressure
licld and viscous dilTusion ol the velocity gradient,
- 3 S =7
d=p J p B d7Aj
= [V
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Hjj = - (14
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The homogenceous case (Hjj= 0) can be solved in closea
form Tor Ay and a number of the geometrical Teatures of
line scale motions observed in direet numerical simulations
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are reproduced by the solution (Cantwell 1992). The
asymptotic form of the solution is
3 ;
Ay =Kj(r(0)"” (15)

where (1) is a known function which becomes infinite in a
finite time and Ky satisfics the algebraic equation
1/3 2/3s  _
+K“+2 KILKH—2 8”—-() (16)
The matrix Kjj can be decomposed into a symmetric and an
antisymmetric part Kj; = §j; + Wy; and upon examination it
is found that solutions of (16) have the lollowing propertics

(ia) Two ol the principal rates ol strain are posilive, one is
negative

(ila) The vorlicity vector is aligned exactly with the
smaller positive principal rate ol strain

(iila) The second invariants of the strain and rotation tensor
satisly

1
Q=--ApAL =Qs+Qw =
3

2
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For initial conditions which lead o large enstrophy
SikSk; = Wik Wik. It is rather remarkable that such a
simple model lor the evolution ol the velocity gradient
tensor, one which takes out the possibility for adjacent Muid
clements to alfect one another through the pressure and
viscous stress lield, would have such a close
correspondence Lo dircel numerical simulations of the ull
Navier-Stokes Equations.  Furthermore, in the model,
difTusion is ignored and velocity gradients increase with
Llime cventually becoming singular. Whercas our previous
discussion ol One-Parameter Turbulent Shear Flows
indicates that microscale velocity gradients should decrease
with time when viscosity is taken into account. The
question which comes immediately to mind is: How well
developed are the simulations and what should we expect
lor the geometry of the velocity gradient tensor in fully
developed [Tow, ie, Mow Tor which the proportionality (5)
and the scaling relationships (11) hold ?

AL the present lime most investigators doing direct
numerical simulations tend to emphasize pushing the
Reynolds number up as high as possible. This increases the
CPU time required per time step and therefore places a
practical limit on the overall time of the simulation.  An
important consequence ol this is that most simulations are
terminated while the Tow is still in a strongly unstable state
Far from cquilibrium.  This is true of virtually all of the
simulations of ree shear Mows which we have studied w
date. The problem is evidenced by the Tact that the largest
gradients in the Tow continue Lo increase in lime right up o
the end of the simulation,

(n

A MODEL FOR ONE-PARAMETER FLOWS

It extremely dilficult (o predict how the velocity
gradicnt tensor should evolve in a general Tow and this is
duc to the Tact that it is virtually impossible 0 make any
general stalements about the terms which appear in Hi;
givenin (14). This is particularly true of the pressure licld
which is the solution ol a Poisson cquation and thus
depends on the entire Mow. We should expect that viscous
diffusion would limit the growth ol Aj; but other than this
very little can be said without considering specilic cases
and cven then the problem ol identilying general, local
properties ol the pressure remains a formidible obstacle.

The whole gquestion of whether singularitics can develop in

rotational solutions ol the Euler and/or Navier-Stokes
cquations is an old and still very controversial issue,

To try to get some insight into the behavior of Hy; and
o see what we might expect for the local velocity gradient
tensor geometry in fully developed Mows we shall turn o
the class of One-Parameter Flows discussed above and
consider the corresponding set of similarity solutions
(Cantwell 1986) ol the form
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The time derivative of the velocity gradient tensor is
d—t'=l—2(—/\ij+(un—k§n)a (19)

and the corresponding transporl equation in similarity
variahles is

BA,] 811 _
_Aij ""(Un - kén)"’_“}‘AikAkj = (ApnAam)— = 1_lij
ag, 3
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S i O . N O L R
1| 0gag; 958, 3 ) Rg 08k

2 P — .
and Rg = U8/ v=M>"2*"1/y is the Reynolds number
based on integral length and velocity scales. We want Lo
know how the velocity gradient tensor evolves when we
lollow a [Muid clement in space. In practice this would be
donc by first computing the trajectory of the fluid clement
in question. Let this trajectory be given parametrically by
F=((0 ), f30) . The tansformation of [low
variables Lo noninertial coordinates is

1

Ky=xg+l 0 U= wisu+lG o

- “ (22)
pP=p-xuly o A=Ay 0 HYy=Hy
and in terms of similarity coordinates
e T .
E-’i_ai-"Mlt'mLk - Ui_Ui+Ml!mLk—l’
(23)

- To o g, s s
P=P-Cnmmiz + A=Ay ¢ =Tl

The coelficient ol the convective term in (20) translforms as

, . i —kf;
Ui—kgiz[_}i-*kogi-Fm—_‘]— (24)
NI,

Il we take the origin ol the primed coordinate system Lo be
attached to the (luid clement of interest and at the origin

then U'y=0, &;=0 and (19) can he written

dA'; s =l |OA
—.—I":ir X |\||” “;: By
T SR N FVUCS P2

We now make the assumption that the bracketed term in
(25) decercases with time and that at large time

25)

(26)

This is equivalent to an assumption that the particle tends o
be entrained into the critical points ol the large scale
motion where U';—kE';=U; —k&; =0. For llows with
k=1/2 (ic. the round jet) this is exactly true and no
assumption is required.  For [lows with k21/2 the
arguement is cssentially heuristic. With this assumption
equation (20) becomes.
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where the primes have been dropped in recognition of the
fact that all terms in (27) are invariant under changes of the
frame of reference. This should be compared with
Equation (16) where the most significant difference 1s a
change in sign of the lirst term which arises from the fact
that in this model the velocity gradients are assumed Lo
decrease with time consistent with our expectation ol fully
developed flow. I, in the same spirit that we ecarlier
assumed Hi=0, we now assume TTy=0 in (27) one finds that
Ajj has the following characleristics

(ib) Two ol the principal rates ol strain are negative, one
is positive

(iib) The vorticity vector is aligned cxactly with the
smaller negative principal rate of strain

(iiib) With IT;j=0 we can use (27) to form equations for the
double and triple products of A . Taking traces leads to

3
Qa _ERA =0 ; %Qf +RA =0 (28)
I I
where QA = _EAikAki and R.'\ =_;AikAijji

are the sccond and third invariants ol Ajj . Solving (28)
(QA.RA)=(0,0) or (Qp.Rp)=(-3.-2).Both roots lic
on the boundary
1/3
: D :
%R,\%Q,\-‘ =0 or Qu =—(%RA2) (29)

which separates real and complex solutions (Chong ct al
1990) Thus the second invariants of the strain and rotation
tensor satisly

l
Qp =—5AikAki = Qag +Qay =

i ] (30)
_ES-’\ikS’\ki _EWAikWAki =(0.-5)
As in the restricted Euler model, lor initial conditions

which lead 1o large enstrophy Sie Sy = Wi Wik
This last result is consistent with the Poisson cquation

i 2— d t 0 1
for the mean pressure Vp=S3) S —Whig Wik In the
Mows considered the mean pressure tends Lo be lairly

uniform and one should expect that Sy 8y = Wi W
The result (ib) and its comparison with (i) and (ia) is
consistent with the analysis of Betchov (1956) who showed

- . RIONOY :
that in isotropic turbulence T" = —(ahc) where ;o is
L

the enstrophy and (abe) is the mean ol the product of
principal rates ol strain a, b and ¢. The wendency lor the
intermediate positive strain (o be positive or negalive
depends on whether the enstrophy s increasing or
decrcasing with time.

The model for One-Parameter [lows has led o an
algebraic equation (27) relating Ay and TT5; . This provides
an opportunity to learn something lairly general about TTj;
albeit within the confines ol the assumed time dependence
ol A given by (26). The procedure involves [irst squaring
and then cubing both sides of (27). The Cayley-Hamilton
theorem is used Lo reduce higher order products of Aj; and
then the trace of T12 and T13 is formed. The result is

L
Qn=QA—3RA*:{‘QA‘ (3D

and

Rpy=—Ry + Gl = 204 % =033~ R 42 (30)
n=—RA+RARA =3RA7 755 0A A- C



Now a rather amazing thing happens. When we square (32)
and cube (31), add the two together and factor the result we
find

2
%RHZ"'QH:*:(%RAZ']'QA:{)(I-FQA—RA)Z (33)

With reference to (29) and noting that the second factor on
the right hand side of (33) is squared we conclude that the
eigenvalues of Ay and IT; have the same characler, ie, if
the eigenvalues of Ajj are complex then the eigenvalues of
[T must be complex. Similarly if the eigenvalues of Aj
are real then the ecigenvalues of I1;;  must bhe real.
Examining Equation (14) we see that, in the model,
complex cigenvalues ol of Ajj cannot occur unless the
viscous dilTusion of Ajj is included in TTj; .

In the solution ol the restricted Euler model discussed
carlier the velocity gradient tensor hecomes singular in a
finite time and the invariants asymptote to

Q= —(27R2 / 4)”3 . R>0; there is no localized region
ol attraction in invariant space. In contrast the One-
Paramcler Flow model just described docs seem Lo defline
an attractor in Qp, R space. This is shown in Figure |
which depicts contours ol the right hand side of (33). The
zeros ol (33) are also indicated on the Figure, While in
principle Qa4 and Ry can range over the whole space

extremely large values of {27/4)Rn2 +Qn3mu required
Lo move much away rom from the very steep-sided well
depicted in Figure 1. For a luid particle in trapped in this
well the strain-rates and vorticity tend to hehave as
indicated in items (ib) and (iib).

The attractor (33) is strongly aligned with the
trajectory 14+Q-R=0 and it is ol interest to note that this
relationship between the invariants comes up in the context
ol two-dimensional Tows undergoing uniform out-ol-planc
straining. The velocity gradient tensor lor such a Tow is of
the form (Jimenez 1992)

A Ap 0
A]] = A2] Az'z () (%4)
0 0 b

where b==%1 is the normalized rate ol strain in the z-
dircetion. A posilive sign indicates out-ol-plane stretching
(cl. the steady Burgers' vortex) and a negative sign
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indicates out-of-plane compression for which no steady
state exists. It can be easily shown that the invariants of
(34) satisly

1+Q+sgn(b) R=0 (35)

CONCLUDING REMARKS

A new model for the evolution of the velocity
gradient tensor has been developed which is designed to be
consistent with the time evolution following a fluid particle
suggested by the scaling characleristics of One-Parameter
Shear Flows. The model contains a fairly localized region
of attraction in the space of tensor invariants. The time
scale is chosen to be consistent with that of the integral
scale motion and a direct connection to the fine scale
structure has yet to be made for flows with k=1/2.
Nevertheless the results indicate that the geometry of the
fine scale structure can depend on whether the local
velocity gradienl Lensor is increasing or decreasing with
time, an issuc which is closely related to the nature of the
forces and boundary conditions which create the flow. The
results also suggest the need Lo carry out direet numerical
simulations of [ree shear lows Tor long times sulTicient o
reach a fully developed state.
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