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ABSTRACT

Study of oscillating propulsors requires a method that
accounts for the flexibility of these structures in addition
to their oscillatory motion. This paper describes a two-
dimensional constant potential panel method that was writ-
ten to calculate the forces developed by an oscillating foil.
Output from this program was compared with linear, two-
dimensional, small-amplitude theory for a harmonically os-
cillating rigid foil. Computations were made for a foil that
was flexible in the chordwise direction; the results were
compared with predictions for rigid foils.

INTRODUCTION

Huge amounts of work have been done on the appli-
cation of panel, or boundary element, methods to problems
in aerodynamics. The background theory to methods has,
for example, been covered in text books by Moran (1984)
and Katz and Plotkin (1991), and the latter include a brief
history of panel codes. The use of panel methods to pre-
dict forces on unsteady lifting bodies has been achieved by
applying the method in the time domain (e.g. Blair and
Williams, 1989; Maskew, 1991; Kinnas and Hsin, 1992).

Study of oscillating propulsors, such as the naturally-
occurring flukes of celaceans, the tail fins of some fast-
swimming fish and possible man-made propulsors, requires
a method that accounts for the flexibility of these struc-
tures in addition to their oscillatory motion. Large ampli-
tude flexibility of these hydrofoils occurs in both chordwise
and spanwise directions. Here a two-dimensional time do-
main panel method for a chordwise flexible foil is described
which was written as the first step towards developing a
time domain method for a three-dimensional flexible wing.

Katz and Weihs (1978), Kudo et al. (1984) and Yam-
aguchi (1992) studied the effect of passive chordwise flex-
ibility on hydrodynamic propulsion from two-dimensional
aerofoils; that is the deformations of the foil were a func-
tion of the hydrodynamic loading and the structural char-
acteristics of the foil. These studies showed that flexibility
increases propulsive efliciency, but reduces thrust. In ad-
dition, Kudo et al. (1984) and Yamaguchi (1992) showed
that for a given thrust, a flexible foil has a higher propulsive
efficiency than a rigid foil. For most naturally-occurring
oscillating propulsors, the structural propertics are not ho-
mogeneous or well documented (Felts, 1966; Purves, 1969).
Predicting deflections for a certain loading is speculative
and to avoid this the present work predicts propulsive per-
formance for a postulated chordwise flexibility. Eventually,
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following an extensive parametric study on the effects of
flexibility on performance, it may be possible to advanta-
geously design man-made propulsors with defined flexible
characteristics.

METHOD

The flow around the foil and its wake was consid-
ered to be inviscid, incompressible and irrotational. From
Green’s formula (e.g. Lighthill, 1986, equation 282), an
integral equation can be set up for the unknown potential
values, ¢, on the surface of the foil in terms of the bound-
ary condition on the foil, d¢/0n, where n is the normal
to the foil surface. For example, for two-dimensional flows
this has been described by Katz and Plotkin (1991, p.57).
Taking the velocity potential, ¢, to represent the perturba-
tion potential (i.e. that due to the disturbance of the flow
around the body), the total velocity, u, of the flow around
the foil in a uniform flow, ug, is U = U + V¢; and the
boundary condition on the surface of a moving foil (such
that the normal component of the fluid and body veloci-
tics are equal) isn - V¢ =n - (ug — uy,), where ug is the
velocity of the foil. The integral equation for the potential,
¢y, at a point in the flow is

6= [ m-Veeds — [ dn-va)ds

[ Ad(n-vé)ds (1)
where ¢ is the strength of the doublet distribution over the
surface, S; @, is the potential of a two-dimensional source
and Ag is the jump in potential over the wake (Moran,
1984). The boundary condition information is contained in
the strength of the source terms (see the section on Dirich-
let boundary condition (Katz and Plotkin, 1991, p. 240)).

The limit of this equation, as the point p approaches a
point on the foil surface, was solved by discretizing the foil
surface into panels following a cosine spacing over chord,
thus concentrating panels at the leading and trailing edges,
and assuming a constant value of the doublet potential and
source strength over cach panel. The discretization was
similar to that given by Moran (1984, p.270-271) except
that further terms were included for the source strength
terms and the wake and Kutta condition were treated in
a different manner. Influence coefficients for unit doublet
and source distributions over a panel are given by Moran
(1984) and Katz and Plotkin (1991).

The solution for the potential of the flow at each time
step is vnique for a given wake and depends only on the




instantaneous velocity boundary condition on the foil sur-
face(e.g. Batchelor, 1967, p. 104 and 112). All memory
effects are included in the foil wake which contains the shed
vorticity from the foil, but at a given time step this is fixed.
The calculation proceeded in a series of time steps and the
wake was made up of segments, or panels, that represented
conditions over each time step. The strength of the shed
vorticity was determined from a Kutta condition applied at
the trailing edge. The wake panels were left in the fluid flow
where they were formed. No attempt was made to allow
the wake to move with the local induced flow; though for
low reduced frequencies this restriction was not expected
to lead to large errors. The first wake panel was assumed
to leave the trailing edge along the bisector of the trail-
ing edge angle. The value of the potential on each wake
panel was taken to be the mean of the values of A¢ ob-
tained at consecutive time steps either side of the wake
panel under consideration, except that a linear variation
of potential was applied on the wake panel immediately
behind the trailing edge. This is similar to the method
applied by Kinnas and Hsin (1992) and was applicable for
the same reason: the linear variation of potential on the
first wake panel made the calculation relatively insensitive
to the time step size.

Moran (1984), following Morino and Kuo (1974), used
a Kutta condition with the constant potential panel method
defining the circulation around the aerofoil as T' = Ag =
¢n — @1 where ¢ and ¢; are the doublet potential values
on the upper and lower panels immediately adjacent to the
trailing edge, respectively. While this worked for steady
flows at small angles of attack, differences in the pressure
coefficient were obtained at the upper and lower surfaces at
the trailing edge if the foil either had large camber and/or
was operating at large angles of attack. In unsteady flow,
there were always large differences in the pressure coeffi-
cient af the trailing edge with this Kutta condition.

In unsteady flow the pressure is a function of the ve-
locity squared and the rate of change of potential (Bernou-
1li’s equation in unsteady irrotational flow (e.g. Lighthill,
1986, equation 178)). Kinnas and Hsin (1992) used an it-
erative Kutta condition, starting with the condition that
I' = ¢ — ¢; at the given time step and using a Newton-
Raphson scheme to ensure pressure equality at the trailing
edge. The implementation of this method here showed slow
convergence and a method based on a lincarised pressure
coefficient was used instead. A ‘dummy’ doublet potential
value ¢n41 was introduced at the upper surface at the trail-
ing edge. The linearised pressure coefficient was included
as an N + 1th equation and solved with the sytem of lincar
equations for the potential values (there were N panels on
the foil surface arranged in a manner similar to that used
by Moran (1984, p.269)). The pressure coeflicient in un-
steady flow is C, = 1 — (%)2 - %%?
fluid velocity and V is the velocity of the free stream. This
was linearised as

(d)?.p . ¢1p 2(1100 . t')l

where ¢ is the local
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where the ¢’s are the values of the potential on the pan-
els; the d’s are the distances between control points for the
panel indicated by the subscript and the panel with the
next higher index value; t is the unit tangential vector at
the panel control point; the subscript p denotes the value
from the previous time step and At is the time step. A
1st order differentiation was used for the term d¢/dt. The
actual difference in pressure coefficient between the upper
and lower surfaces at the trailing edge was calculated af-
ter each step. In most situations this value was small at
the first iteration, but if it was larger than a pre-set value
(0.005 was used routinely), the calculated values of poten-
tial, ¢, were used as the ‘previous’ values and a second
solution was obtained. Unless the pitching amplitude, and
hence pitching velocity, was large, this process converged
rapidly within a couple of iterations.

Values of the lift coefficient were calculated as C} =
L/ (3pcV?), where L is the lift; p is the density of the fluid
and c is the foil chord length. In the time-domain program
for oscillatory motion, the thrust force (negative drag) and
work done to maintain the motion were averaged, T and W
respectively, over the last cycle of the motion for which the
calculation was done, by taking the mean for all time steps
within the cycle. The work done at each time step was
calculated from W = —Lh + M &, where h and & were the
heave and pitch velocity respectively; and the signs were
dependent on the sign convention (positive lift, vertically
upwards, was in the same direction as positive heave ve-
locity, whereas positive moment, clockwise, was in the op-
posite direction to positive pitch velocity). The results of
thrust are presented in the form of a thrust coefficient sim-
ilar to that used by Lighthill (1970): C\ = T/ (}pcw?h?)
and efficiency was calculated as 7 = VT/W; w was the
oscillation frequency and h was the heave amplitude.

RESULTS AND DISCUSSION

A variety of checks were made on the use of the time-
domain program. For example, good agreement was found
for constant heaving and pitching motions in comparison
with classical solutions for thin wings. A calculation of
the variation in lift coefficient with time for a NACA 0012
foil of 1 m chord undergoing a sinusoidal oscillation with a
heave amplitude of 1 m; a reduced frequency, o = we/(2V),
of 0.2; and a feathering parameter § = 0.4 (0 = Va/(wh)
where « is the pitch amplitude) gave a steady state lift
coefficient amplitude within 2.5% of the thin wing small
amplitude solution. The foil was pitching about its trailing
edge with pitch leading heave by 7 /2 rad.

Figure 1 shows the variation of lift coefficient with
time for a sudden change in angle of attack of 4 deg. oc-
curring at time 0 sec. The calculation was for NACA 0012
and 0006 airfoils with 40 panels, of 1 m chord, in a uniform
stream of 1 m/sec and a time step of 0.1 sec. Also shown is
the approximation to Wagner’s solution for the lift coeffi-
cient (Jones, 1940) for this sudden acceleration; Wagner’s
actual solution for the lift coefficient is infinite at ¢t = 0
and drops to exactly half of the steady state lift at ¢ = 0+
(e.g. Katz and Plotkin, 1991, p.439). The calculations are
sensitive to the value of the potential on the wake panels,
especially the first panel behind the trailing edge. If the
mean value of the wake potential between time steps is
used on the first wake panel behind the trailing edge, then
the lift coefficient is underpredicted over the first couple
of seconds. If the mean value of the potential is used on



all panels except the first panel behind the trailing edge,
and on this panel the value of the potential at the present
time step is used, then the results are sensitive to the time
step size in the calculation. The results for a time step
size of 0.1 sec are shown as o’s on the plot; results found
with a larger time step would be above these points and
results found with a smaller time step would tend towards
the more exact solution. The results presented over the
full time sequence include a linear variation of potential
over the first wake panel behind the trailing edge (time
step of 0.1 sec), from the value at the present time step at
the trailing edge to the value at the previous time step at
the junction with the next wake panel. With this linear
variation of potential, the results are relatively insensitive
to the time step size.

Calculations were done for oscillating rigid foils and
results obtained of thrust coefficient and propulsive effi-
ciency. These are plotted in figures 2 and 3 for feathering
parameters of 0.0, 0.4 and 0.8. The results are for a NACA
0012 foil, with 40 panels, oscillating with the pitch axis at
the trailing edge, phase of pitch leading heave by 7/2 and
aratio h/c = 1; thrust coeflicient and efficiency were found
from the third cycle of the motion. The trends in the re-
sults are similar to thin wing, small amplitude theory (e.g.
Lighthill, 1970), though results of both thrust coefficient
and efficiency are less than the thin wing theory results.
Also shown are the results for a NACA 0006 foil at a feath-
ering parameter of 0.4 and these show a trend towards the
thin wing theory results for this thinner section.

Calculations done for variations in the ratio h/¢, for a
rigid NACA 0012 section at a reduced frequency of 0.2 and
a feathering parameter of 0.4, showed a gradually increas-
ing thrust coefficient with reducing h/c ratio (by about
4.9% over a drop in h/c from 2.0 to 0.1); whereas the effi-
ciency had a minimum in the range between h/c from 0.5
to 1.0 of just over 0.72. Variation of thrust coefficient and
efficiency with number of panels was explored for the same
condition and a value of Afc = 1. Thrust coefficient and
efficiency increased with increase in number of panels; the
rate of increase reduced as panel number was increased.
Between panel numbers of 40 and 80, thrust coeflicient in-
creased by 1.4% and efficiency by 0.03%, whereas between
20 and 40 panels the values were 3.0% and 0.4%, respec-
tively. All these results were obtained for a time step of
0.5 sec and a run time of 49 sec.

Calculations were done for a flexible NACA 0012 sec-
tion at a feathering parameter of 0.4, pitching around an
axis at the trailing edge, with pitch leading heave by = /2
and for a value of the ratio h/c = 1; 40 panels were used
over the foil. The flexibility was prescribed, and consisted
of a flexible rear part of the foil from the mid-chord to the
trailing edge. The deflected shape was assumed to be cubic
and was taken as a function of the maximum deflection at
the trailing edge, §, as a fraction of the chord length, e
i.e. §/c. The equation of the deflected chord line of the
foil was y = 88(z — 0.5)%sin(wt), where z was the distance
from the leading edge. From this the deflected node posi-
tions, as well as the velocities of the control points, could
be found and included in the formulation of the instanta-
neous body shape and boundary velocities. Figure 4 shows
the deflected and non-deflected foil shapes at a reduced fre-
quency of 0.2, after 3 sec from the start of the motion on
the downstroke and after 42 sec on the upstroke. Figures 5
and 6 show the variation of thrust coefficient and efficiency

lift coefficient

0.5 T T T

0.1

4 6

time, secs
Figure 1. Variation of lift coefficient following a change in
angle of attack of 4° at time=0. The chain dotted line is
for section NACA 0012; the dotted line is for NACA 0006;
the solid line is the approximation to Wagner's solution;
the o’s are for NACA 0012 with a uniform potential on
the first wake panel and a time step of 0.1 sec; and the
horizontal line is the steady thin wing lift coefficient at 4°.
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Figure 2. thrust coefficient and figure 3. propulsive ef-
liciency for an oscillating rigid wing. The chain dotted,
solid and dotted lines are the thin wing small amplitude
solution for feathering parameters of 0.8, 0.4 and 0.0, re-
spectively; the o, + and * are the time domain solutions
for a NACA 0012 section at the same feathering parame-
ters, respectively. The x are the time domain solution for
a NACA 0006 section at a feathering parameter of 0.4.




with reduced frequency for maximum deflections at the
trailing edge, §/c, of 0.000, 0.025, 0.050 and 0.100. For
a given deflection, at a given value of reduced frequency,
the thrust coefficient is reduced below the rigid foil value.

0.4 T T T

Figure 4. The rigid (chain dotted) and flexible section
shapes after 3 sec on the downstroke (upper) and 42 sec on
the upstroke for a NACA 0012 foil at a reduced frequency
of 0.2, feathering parameter of 0.4 and §/¢ = 0.1.
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rigure 5. thrust coeflicient and figure 6. propulsive ef-
ficiency for a flexible NACA 0012 section at a feathering
parameter of 0.4. The lines are the thin wing rigid foil so-
lution; the +, %, 0 and x are the time domain solutions
for a rigid foil and for deflection amplitudes at the trailing
edge, §/c, of 0.025, 0.050 and 0.100, respectively.
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Also, for a given deflection, as the reduced frequency is
reduced, the thrust drops to zero. In practice, for passive
flexibilities, this would not actually occur as the deflection
would reduce as the lift reduced, but it occurs here because
the flexibility is not calculated as a function of loading on
the foil. Figure 6 shows how in the same conditions, the
propulsive efficiency is increased over the rigid foil result.

The paper describes a time-domain panel method that
was used to calculate the propulsive thrust and efficiency
of two-dimensional oscillating rigid and flexible foils. Re-
sults from this method show reduced values of propulsive
thrust and efficiency for a thick wing over a similar thin
wing; and reduced values of thrust, but higher efficiencies,
for a flexible foil in comparison with a rigid foil.

The method used was an inviscid theory and a more
complete solution should include modifications for viscous
flows that would: reduce the value of leading edge suction
as a result of separation, especially at high instantaneous
angles of attack; modify lift at the high angles of attack
that occur at high reduced frequencies; and increase the
value of work done to maintain the foil motion as a result

of viscous shear stresses on the foil surface.
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