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ABSTRACT

The near field jet mixing layer is modeled in a manner
similar to that applied by Aubry et al (1988) to the near
wall region of the turbulent boundary layer. In this work
the instantaneous velocity field is expanded in terms of the
empirical eigenfunctions obtained by Glauser and George
(1987). These eigenfunctions were extracted from the mea-
sured cross-spectral tensor by application of the proper or-
thogonal decomposition theorem (POD) suggested by Lum-
ley (1967). Galerkin projection is then applied to the Navier
Stokes equations in conjunction with this representation, re-
sulting in low-dimensional sets of ordinary differential equa-
tions. The methods of dynamical systems theory are then
used to analyze these equations. This work consists of an at-
tempt to utilize the dynamical systems model to further our
understanding of the transfer of turbulent energy between
various azimuthal modes and streamwise wavenumbers and
relate this to the turbulence production phenomena in the
jet mixing layer. With this model the sequence by which
the various modes contribute in time can be examined.

INTRODUCTION

In recent years, two separate developments have altered
the basic statistical framework of turbulence. There is an
abundance of experimental evidence implying the existence
of coherent structures and, on the theoretical side, recent
applications of dynamical systems theory to turbulence sug-
gest that such flows reside on relatively low dimensional
manifolds or attractors(v. Aubry et al (1988) and references
therein).

Aubry et al (1988) appear to be among the first to link
low dimensional chaotic dynamics to a turbulent open flow
system. They used the POD to provide basis functions to
obtain low dimensional sets of ordinary differential equa-
tions from the Navier-Stokes equations. Used in conjunc-
tion with Galerkin projection, the POD yields an optimal
set of basis functions in the sense that the resulting trun-
cated system of ordinary differential equations captures the
maximum amount of kinetic energy among all possible trun-
cations in the same order. Sirovich and Rodriguez (1987)
have shown, for the Ginzburg-Landau system, that these
basis functions are fairly robust and can be used over a wide
range of the bifurcation parameter. The basis functions that
Aubry et al (1988) used were those obtained experimentally,
by Herzog (1986). The equations that they derived, which'
exhibit intermittent behavior, where then analyzed using
dynamical systems theory. The results to date show consis-
tency between the behavior of these equations and events
seen in experimental work.

The axisymmetric jet is a good candidate for a similar
approach because the series converges quickly. This was
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demonstrated by Glauser et al (1987), where the instan-
taneous signals were almpst completely reconstructed with
only 3 terms from the expansion. In this work the instanta-
neous velocity field of the axisymmetric jet mixing layer is
expanded in terms of the empirical eigenfunctions obtained
by Glauser and George (1987). These eigenfunctions were
extracted from the measured cross spectral tensor by appli-
cation of the POD. In the streamwise directions the flow is
approximately homogeneous, so as a first step, the Fourier
modes were used. In the azimuthal direction the flow is pe-
riodic, hence the use of the Fourier modes in this direction
as well. In the radial direction the flow is strongly inhomo-
geneous so that the eigenfunctions obtained from applying
the POD were utilized. Galerkin projection is then used
in conjunction with the POD to obtain a truncated system
of ordinary differential equations. The modes neglected in
the truncation are accounted for by a Heisenberg model.
This work appears to be the first attempt at utilizing low
dimensional dynamics in conjunction with Galerkin projec-
tion and the POD to examine the temporal dynamics of
coherent structures in a high Reynolds number axisymmet-
ric jet free shear layer.

1. PROPER ORTHOGONAL DECOMPOSITION

In 1967 Lumley suggested that the coherent structure
should be that structure which has the largest mean square
projection on the velocity field. This process involves maxi-
mizing the mean square energy via the calculus of variations
and leads to the following integral eigenvalue problem.

(1.1)

The symmetric kernel of this Fredholm integral equation is
the two—point correlation tenser R;; defined by

Ai(®) = [ By(@,8)5( )

Rij(£,%) = w(@)uy;(@), (1.2)
where & is the candidate structure and & and &' represent
different spatial points in the inhemogeneous directions and
different times if the flow is non-stationary.

From the Hilbert-Schmidt theory it can be shown that
the solution of a Fredholm integral equation of the first kind
for a symmetric kernel is a discrete set, hence equation (1.1)
can be written as

Ng1(@) = [ Ri(#,5)83(5)a 13)

The eigenfunctions of the Fredholm equation are orthogonal
over the interval and




[ $:@)97(2)d5 = bum (14)

for normalized eigenfunctions. The eigenvalues of the Fred-
holm equation with a real symmetric kernel are all real and
uncorrelated

TG = \"Bp (1.5)

and the fluctuating random field 4; can be reconstructed
from the eigenfunctions in the following way

w(E) = 3o g1 2). (L6)
The random coefficients are calculated from
a" = [(@)dy(@)d(#) (L.7)

where the ¢} are the eigenfunctions obtained from equation
(1.3): The turbulent kinetic energy is the sum over n of the
eigenvalues A", and each structure makes an independent
contribution to the kinetic energy and Reynolds stress.

If the random field is homogeneous or periodic in one
or more directions or stationary in time, the eigenfunctions
become Fourier modes, so that the POD reduces to the har-
monic orthogonal decomposition in these directions. In the
jet studied the flow is periodic in the azimuthal direction and
almost homogeneous in the streamwise direction. We will
not transform over time in this case because we are keeping
time in the random coefficients. Under these conditions the
spectral tensor may be defined by

Sij(r,r,m, ky) = j Rii(r, ', 0, z)e~h1=+m0) 4o gy (1.8)
so that equation (1.3) becomes

A“(m, kl)é?(ra m, kl)
= jf‘} S.-_,-(r, F", m, k} )(b?(f’, m, kl)d'l"r. (1.9)

In the above expressions r and 7' represent different spa-
tial locations in the radial direction ( the inhomogeneous
direction), = and @ are the separations in the streamwise
and azimuthal directions respectively, k; is the streamwise
wavenumber and m is the azimuthal mode number. This
equation is then solved numerically using the measured val-

ues of S;;(r, 7', m, k; ) obtained by Glauser and George (1987).

It should be noted that in this case the eigenvalues and
eigenfunctions are now a function of azimuthal mode num-

ber m and streamwise wavenumber k.
2. THE MOMENTUM EQUATION

The Navier-Stokes equations for an incompressible flow
in cylindrical coordinates, after application of Reynold’s de-
composition and substitution of a relationship between the
divergence of Reynold’s stress and the mean pressure and
velocity , can be written as:
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M = “raf + Jaa + ”zazv i = r,0,z, § is the Kronecker
delta, p is the fluctuating pressure , i, iy and i, are the
fluctuating velocities in the radial, azimuthal and stream-
wise direction respectively, and T, is the mean streamwise
velocity. The overbar denotes an average, which in this case
is defined as a spatial average over the homogeneous and
periodic directions (v. Aubry et. al. (1988)). In the above
equation it is assumed that p and p are constant and that
the body forces are zero.

One change is made to the above equation before we
perform a Fourier Transform and the Galerkin projection
on it. This involves deriving a relationship between the
mean streamwise velocity and the fluctuating velocity and
pressure from the Navier-Stokes equations. This change is
needed because the actual measured mean velocity profile
will be incorrect for the severely truncated system of equa-
tions to be studied. This relationship, which expresses the
mean velocity U, in terms of the Reynolds stress #,%, can
be shown to be (v. Zheng (1990))

S 1 —_—
T, == / TR (2.2)
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where, as a first step, we have neglected the terms which
come from the pressure (i.e.. an isobaric jet). Equation

(2.2) is then used to eliminate U, from equation (2.1). In
the axisymmetric jet this gives some feedback to the sys-
tem of equations as the fluctuation changes. It should be
noted that this feedback increases as the Reynolds stress
gets stronger. This is similar to the relationship derived by
Aubry et al. (1988) for the turbulent boundary layer.

3. GALERKIN PROJECTION AND ENERGY
TRANSFER MODEL

The Galerkin method is well known and has been used
extensively to study turbulence and the instability of vari-
ous fluid flows (v. Lin et al (1987) and references therein).
The essential idea of the method is to expand the depen-
dent variables in terms of a finite series of independent ba-
sis functions. The basis functions form a complete basis for
the relevant class of functions and they satisfy the relevant
boundary conditions. In this work we use a Galerkin pro-
jection in conjunction with the POD (to supply the basis
functions) which minimizes the error due to the truncation
and yields a set of ordinary differential equations for the
coefficients (v. equation 1.7).

The Galerkin projection is performed on the Fourier
Transform (in the azimuthal and streamwise directions) of
the Navier Stokes equations so that is is useful to define the
following equations:

(2, 0,r,t) = 3 j © etmithimd g (k m e 4)dky, (3.1)
m -0
and
(ks m, 1) = [ /°° e#milh=tmdg (5 0 ¢ 1)dzd. (3.2)

We expand #@;(ki,m,7,1) in terms of the coefficients and
cigenfunctions in the following manner(v. equation (1.6)),

’”lsm r,t) = Zakl,m t)¢'a,k;.m( ) (33)
We then substitute these equations into the Fourier Trans-
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form of the Navier-Stokes equations and perform the
Galerkin projection. This is written as

! < !
(¢, 3) = [ Nit,r)gl(r)r =0 (3.4)
where Ni(t,r) represents the Fourier Transform of the Navier

Stokes equations.

Finally, after performing the above and utilizing the or-
thogonality condition (v. equation (1.4)) we obtain a set
of ordinary differential equations for the coefficients which
follow:
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where i = r, 8,z and § is the Kronecker delta. In our ordi-
nary differential equation

dr} (3.5)

i
%:B!+Cq+Dc

there are four parts. The term on the left hand side is the
time derivative of the coefficient a. The first term on the

A (3.6)

right hand side (RHS) is a linear term that come from dif-
fusion term of the Navier-Stokes equations. The second
term on the RHS is a quadratic nonlinear term that is a
consequence of the fluctuation—fluctuation interactions and
exhibits the energy transfer between the different eigenfunc-
tions(from the POD) and the Fourier modes. The last term
on the RHS is a cubic term that is a direct result of the
mean velocity—fluctuation interaction. A, B, C and D are
all matrices and A is an an identity matrix because of the
orthogonality of the eigenfunctions. It should be noted that
the pressure term in equation (3.5) will vanish if the inte-
gration covers the whole domain. In the jet shear layer we
cover most of the domain in our integration (unlike Aubry
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et al. (1988) who studied the near wall region and not the
whole domain of the turbulent boundary layer), hence we
will neglect this pressure term.

When we truncate at some cutoff point we need to ac-
count for the energy transfer between the included and ne-
glected modes. The effect of the neglected modes will be
accounted for by utilizing a Heisenberg model(v. Aubry et
al. (1988)). The assumption is that the neglected modes
withdraw energy from the modes that our kept, as if a cer-
tain turbulence viscosity were present.

The equation for vz, our turbulence viscosity, can be
shown to be (v. Zheng (1990))

e O-'Ekl ,m,n Aﬁ, Jm

= RZk; mn Ark"] .mF (3-7)

where
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1
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and « is a dimensionless parameter. We now substitute vr
into our ordinary differential equations. The equations then
have the form

!
Ai;— = B(1+vr/v)l + Cq+ De.

(3.8)
The effect of the energy transfer model is to introduce the
parameter o which becomes the bifurcation parameter in
our system of ODE’s. The larger « the more energy that
the neglected modes take from our system so that the system
should be stable. As a decreases less energy is extracted so
that we expect our system to become unstable.

4. TRUNCATIONS AND DISCUSSION

At the present time various fruncations are being ex-
plored. A basic guide in the selection of which terms to
keep is to retain a minimum number of terms but yet keep
as much energy in the system as is necessary to retain the
essential dynamics of the flow phenomena (v. Aubry et
al (1988)). Figure 1 is a plot of the dominant eigenvalue
obtained from the application of the POD, plotted versus
streamwise wavenumber and azimuthal mode number. This
plot indicates that there is an exchange of energy between
streamwise wavenumbers and azimuthal mode numbers, and
in particular, that there is a maximum energy path (re-
member that the eigenvalues are energy integrated across
the jet shear layer) between the two peaks. - The peak in
the wavenumber direction corresponds to the Strouhal fre-
quency of the jet. The peak in the azimuthal mode number
direction is approximately at mode 6. Several azimuthal
modes around the peak are kept as well as several around the
peak in the streamwise wavenumber direction in order to re-
tain the essential dynamics. For the initial model presently
being studied, only the dominant eigenfunction will be used
in the inhomogeneous direction. This corresponds to setting
l=n=p=g=r=1Iin equation (3.5). This is justified
because the dominant eigenvalue is significantly larger than
the next smallest eigenvalue and in fact, typically contains
50 percent or more of the energy. All of the higher modes ex-
hibit this same dominance of the first eigenvalue (v. Glauser
and George (1987)). The specific streamwise wavenumbers
and azimuthal modes used in the initial study are shown in
figure 2. For k; = 0, six azimuthal mode numbers dre used
and for m = 0 six values of k; = 0 are utilized. In addition
to these, 6 other combinations are also used as can be seen
from figure 2. These were selected to try and capture the
maximum energy path shown in figure 1. This particular
truncation results in a set of 18 complex or 36 real, ordi-
nary differential equations. The actual equations can be



found in Zheng (1990) and are not included here do lack of
space.

As was discussed earlier, figure 1 indicates that there
is an exchange of energy between streamwise wavenumbers
and azimuthal mode numbers, and in particular, there is
a maximum energy path between the two peaks. This is
consistent with the mechanism for turbulence production
suggested by Glauser and George (1987) and it is antici-
pated that the dynamical systems model will show this as
well. This proposed mechanism is based on extensive az-
imuthal correlations taken in the near field jet shear layer
at /D = 3 and their subsequent breakdown into azimuthal
modes. The proposed mechanism consists of 4 stages which
are shown in figure 3. Briefly, vortex ring-like concentrations
arise from an instability of the base flow, the induced veloc-
ities from vortices which have already formed providing the
perturbation for those which follow. These pairs of rings
then behave like the textbook examples or inviscid rings,
the rear vortex ring overtaking the vortex ring ahead of it,
the rearward vortex being reduced in radius and the forward
being expanded by their mutual interaction. The rearward
ring is stabilized by the reduction in its vorticity (by com-
pression) thus the predominance of the 0th mode (seen from
the correlations, v. Glauser and George (1987)) on the high
speed side (core region). The forward ring has its vortic-
ity increased by stretching as it expands in radius. This
narrowing of its core while the radius is expanding causes
the leading vortex to become unstable (as in the Widnall-
Sullivan mechanism (v. Widnall and Sullivan (1973) and
Yamada and Matsui(1978)), thus the predominance of the
4-6 modes (seen from the azimuthal correlations of Glauser
and George (1987)) from the center of the shear layer out-
wards. The continued effect of the rearward vortex on the
forward one, and the now highly distorted ring interaction
with itself, accelerates the instability until its vorticity is
now entirely in small scale motions, in effect an energy cas-
cade from modes 4-6 all the way to dissipative scales. This
incoherent turbulence is swept from the outside where it has
been carried, back to the center of the mixing layer as the
still-intact rearward vortex passes. It is this collecting of the
debris, both small-scale vorticity and fluid material, which
has been recognized as "pairing.” The entire process is re-
peated as a new rearward vortex overtakes and destabilizes
the one ahead of it.

CONCLUSIONS

The dynamical equations have been derived for the ran-
dom coefficients in the axisymmetric jet shear layer. These
equations exhibit, as expected the same type of non-
linearities (quadratic and cubic) as those of Aubry et al.
(1988). It is anticipated that the dynamical systems model
will show that there is a transfer of energy between the peak
and surrounding streamwise wavenumbers and azimuthal
modes 4,5 and 6. If this is seen to be the case it would
indicate that the mechanism for turbulence production sug-
gested by Glauser and George (1987) may be a basic mech-
anism for turbulence production in this flow.
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Figure 1 Dominant eigenvalue A!(k;,m) plotted as a func-

f:!i)on of streamwise wavenumber &; and azimuthal mode num-
er m.
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Figure 2 Modes retained in the dynamical systems model.
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Figure 3 The proposed 4 stages of turbulence production.




