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ABSTRACT

Order of magnitude arguments are used to
identify and explain some of the special effects
associated with chemical dissociation in inviscid
hypervelocity aerodynamics. This leads to three
simplified, approximate,. concepts, in the form of
a constant temperature approximation,
thermodynamic decoupling of the temperature from
the flow, and pressure gradient reaction
quenching. These concepts are illustrated by
application to a range of classical problems in
hypervelocity aerodynamics, namely, prediction of
shock stand-off on a blunt body, the development
of shock detachment on a wedge, the variation of
shock stand-off on a delta wing, and the density
variation along a streamline downstream of a
curved shock.

1. INTRODUCTION

The real gas effects due to molecular
vibration and dissociation, as well as ionization,
are a feature of the flow fields associated with
hypervelocity flight. In early years, the blunt
body vehicle configurations which were used for
flight in this regime followed trajectories such
that the dominant real gas effects occurred with
the gas in an equilibrium condition, and it is not
surprising that the techniques developed for
calculating these flows tended to use equilibrium
thermodynamics models.

Another reason for using equilibrium real gas
thermodynamics is that it can be viewed as a
natural extension of the well known thermodynamics
of perfect gas flows. In a set of equations which
would describe a gas dynamic flow, the
thermodynamic ones may be seen to have the role of
providing a relationship between pressure and
density which makes the equations of momentum and
continuity yield a determinate solution. For both
perfect gas and equilibrium real gas flows, the
relationship involves only the local thermodynamic
state variables at any point in the flow, and
although it is far more complicated for an
equilibrium real gas than for a perfect gas, the
local dependence means that similar appreaches can
be used to study both types of flow. For example
the method of characteristics, which has proven
very useful in solving perfect gas problems, can
be applied directly to the solution of equilibrium
real gas flows, but is more difficult to apply to
non-equilibrium flows.

Therefore, it may seem unfortunate that
equilibrium does not prevail in all real gas flow
fields, but such indeed is the case - as, for
example, in the flow fields produced by the new
generation of hypervelocity vehicles, such as the
Space Shuttle or Aero-assisted Orbital Transfer
Vehicles. This can be seen by reference to
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Fig. 1, where the region on a veloclty altitude
diagram is shown in which non-equilibrium is
expected, downstream of a 409 shock or a normal
shock for a distance which is comparable with the
dimensions of a normal flight vehicle. The 40°
shock and the normal shock have been chosen as
representative of the shock preceding a major part
of the flow field for a re-entry glider and an
A.0.T.V. respectively. Above the upper boundary
for the 40° shock, reactions are so slow that no
significant effect takes place for a distance of
1 m or greater after a sample of air crosses the
shock, so the flow is effectively "frozen", and
behaves as a perfect gas. Below the lower
boundary, reactions are so fast that equilibrium
is achieved within 1 m after crossing the shock,
and the flow behaves as an equilibrium real gas.
It can be seen that the trajectory for a re-entry
glider is such that it is well removed from either
boundary, and flies in a truly non-equilibrium
regime. Similar arguments apply to the A.0.T.V.,
which experiences its major force and heat
transfer loads in the non-equilibrium regime.

Thus, it appears that yet another
complication has been introduced into these flow
fields, in that not only are the local state
variables related in a relatively complex manner,
but they also depend upon the time history of the
flow along the streamlines. In fact, the nature
of the time dependence offers the prospect of
making some simplifications to the models
describing the flow which, although they are
approximate do allow the main features of some
important flow situations to be determined. This
simplified and approximate approach is discussed
in this paper.

Noting that equilibrium is achieved by
backward (i.e. recombinatioq) reaction rates
rising to values such that they match the forward
rates, it follows that the wide separation between
the flight trajectory and the equilibrium boundary
on Fig. 1 indicates the dominance of forward
reactions in the vehicle flow field. Thus,
discussion considers only flows in which the
backward reaction are neglected.

the

Further, only the flow downstream of a strong
shock is discussed, since the flow field about the
configurations of interest generally will be
preceded by a strong shock. This is not a serious
limitation, since a strong shock will usually be
needed in order to give rise to real gas effects,
and it may even include cases such as could occur
on a slender acceleration vehicle at low angle of
incidence, where non-reacting flow over the main
part of the vehicle may be followed by local areas
of reacting flow, as at the leading edge of a fin.

Finally vibration and ionization effects are
neglected. For speeds up to Earth orbital



velocities, this is a good approximation, since
the energy involved in dissoclation usually
considerably outweighs the other two. In
addition, the dissociation process is represented
by the Lighthill-Freeman model (Freeman, 1958) of
an ideal dissociating gas. This provides a good
guantitative representation of the non-equilibrium
behaviour of oxygen or nitrogen alone and,
although the formation of nitric oxide renders it
less accurate as a model for air, it does provide
a good qualitative representation in that case as
well.
2 ANALYSIS

For an ideal dissociating gas, the equation
for the rate at which the gas dissociates in
passing along a streamline after crossing a shock
is written as

do/ds Cql!T™ pll-a) exp(-T1) (1)

where, as noted above, the recombination term has
been neglected.

Putting

£ (2)

JB pq”l ds

(o]

this becomes

da/dE CT™ (1-e) exp(-T71) (3)

The variable £ is referred to here as the
binary reaction variable. It can be seen as a
measure of the cumulative number of collisions
experienced by an average molecule as it passes
along a streamline. As the number increases, the
probability that the molecule is dissociated also
increases, subject to the factors on the right
hand side of Eqn. (1) which modify the efficiency
with which collisions produce dissociation.

The exponential term is dominant amongst the
factors which influence collision efficiency. It
arises from the fact that only those molecules at
the high energy end of the molecular Maxwellian
velocity distribution have enough energy to
experience dissociation when they collide with
other molecules. Not only does this ensure that
only a small fraction of the collisions occurring
in the gas are dissociating ones but, because it
also means that the energy of most of the
molecules is insufficient for a dissociating
collision, it fellows that T << 1, and that the
exponential term is very sensitive to temperature
variation. This causes this factor to have a
dominant effect on the rate of dissociation.

The enthalpy per unit mass of an ideal
dissociating gas and the equation of state are

written, respectively, as

h = D{(4 + )T + «) (4)
and

p = DpT(1 + «) (5)
Thus, since the stagnation enthalpy, h + 0.5 g2,

is constant and the momentum

equation is

along streamlines,

dp/d§ -pq dq/df

it follows that, along streamlines

(4 + o)dT/d€ = -(1 + T)dasdE + (pD)-! dps/dE. (6)

Now, at normal flight densities, T is of the
order of 0.05, which implies that the exponential
term in Eqn. (3) is very sensitive to small
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variations in T. For example, a 5% change in T
changes that term by a factor of e (i.e. 2.718).
Such sensitivity in the rate at which thermal
energy is converted into dissociation energy can
be expected to significantly influence the flow
field.

These influences can be explored through
order of magnitude arguments, which are based on
the assumption that temperatures can be reduced
without limit. It must be admitted that the
corresponding physical model becomes an
increasingly extreme one as the temperatures are
reduced, with a flow field of very large
dimensions, in order to allow £ to be large enough
for dissociation to occur, and a very low density,
in order to ensure that recombination does not
occur. Such a medel may not be strictly
realizable, but may be expected to provide a good

approximation to flight flow fields.

As a first step in using this low temperature
approximation, it is worthwhile examining the
relative order of magnitude of the two terms in
the right hand side of Egn. (6), in the context of
the representative flow shown in Fig. 2.
Considering the second term first, as the
streamline which is shown in the figure passes
around the body, it experiences a change in
pressure which is of the order of the pressure
itself. Thus, using Eqn. (5), the second term can
be seen to be of the order of T/£,, where £, is the
value of the binary reaction variable which'is
obtained for a distance along the streamline equal
to a typical body length, &. Then, if Ty is the
temperature at which the second term is of the
same order as the first, Eqn. (3) yields

CT™ (1 - «) exp(-Tg!) ~ Tb/&e
or, neglecting o compared with unity, and
(n + 1)fn Ty compared with To L

exp(-Tg~t) ~ (ﬁs e e (7)

Since £, and C are not sensitive to
temperature, 'Eqn. (7) expresses the fact that the
two terms on the right hand side of Eqn. (6) are
of the same order only when T = Tg. When T < Tg,
the second term in Eqn. (6) dominates, and the gas
behaves as a perfect gas. When T > Ty, the first
term dominates, and Eqn. (6) then describes a
relaxing dissociating gas which, because the
pressure gradient is unimportant, is effectively
decoupled from the flow field. The latter of
these two cases will be discussed first, in the
form of a constant pressure flow.

3 CONSTANT PRESSURE FLOW

If the pressure gradient term in Egn. (6) is
neglected, and it is combined with Egn. (3), it
becomes

dT/d€ = -CT™ (1+T)(1-a)(4+a)"! exp(-T1). (8)
For T sufficiently small
negligible compared with unity,
integrated to yield

and regarding a« as
this can be

exp(T™1) -exp(Ty1) AC(E = &) . (9)
where subscript "0" indicates a reference
condition on the streamline. For Fig. 2, Eqn.
applies upstream of the point where T = Ty, and
therefore the reference condition, conveniently,
may be taken at the shock. The first term on the
left hand side of Eqn. (9) then becomes much
larger than the second at a distance from the
shock which is sufficient for the temperature to
fall by only a small amount, and Egn. (9) can be

written

(8)



exp(T-1) = 4AC £ (10)

There are two important features of
Eqn. (10). The first is that the small values of
T ensure that large increases in £ are necessary
to effect small decreases in T. Repeating the
example used for Eqn. (3), if T = 0.05, then §
must increase by a factor e in order to decrease T
by 5%. Thus, over any decade of & there is only a
small variation of T, and it is a good
approximation to regard T as constant. This
implies that the temperature is approximately
constant over most of any constant pressure
flowfield, as illustrated in Fig. 3(a).

Fig. 3(a) also illustrates a corollary of
this constant temperature approximation - namely,
that nearly all of the temperature decay from To
occurs close to the shock and, for purposes of
approximate analysis, may be incorporated into the
shock.

The second feature of Eqn. (10) is that T is
independent of conditions at the shock and is, in
fact, dependent only on £, which is approximately
independent of the streamline enthalpy. Thus
unlike a perfect gas flow, in which the
temperature is coupled directly with the
streamline enthalpy, the temperature in a
dissociating gas flow is decoupled from the
thermodynamics.

The reason for this can be seen by reference
to Fig. 3(a). When the streamline enthalpy is
raised from one level to a higher one, the
temperature at the shock is increased but, by
virtue of the exponential term in Eqn. (8), the
reaction rate is greatly enhanced. This ensures
that the temperature falls very rapidly along the
streamline and therefore that it quickly returns
to values associated with the lower enthalpy
within a short distance from the shock.
Essentially, the reaction processes initially take
place at a much higher rate than the flow
processes, but the strong exponential term ensures
that the reaction rate is driven down until it
matches the flow processes.

The constant temperature approximation and
thermodynamic decoupling each offers a means of
making simple approximate calculations of non-
equilibrium real gas flows. Some examples of such
calculations follow.

4. CONSTANT TEMPERATURE APPROXIMATION

(a) Shock Stand-off on a Sphere

The pressure in the shock layer on a sphere
varies as cos?B, and therefore the flow
sufficiently close to the stagnation point may be
regarded as a constant pressure one. The constant
temperature approximation then implies that the
density may be taken to be approximately constant
within the shock layer, and the shock stand-off
distance calculated by using the relation for
constant density flow presented in ref.3, i.e.

&/a = 0.78_p /p,. (11)

Determination of T requires selection of an
appropriate value of €. Since the sonic point at
the shock occurs near 8 = 309 the arc length
corresponding to B = 15°2 is a suitable value of s,
whilst the velocity can be taken as the value
immediately downstream of the normal shock.

Calculations using this method are compared
in Fig. 4 with results of computational
simulations for dissociating nitrogen. The
computations were performed by Hornung (1979), and
are seen to produce stand-off values which

generally are within 10% of the computed values.

(b) Shock Detachment on a Wedge

As the vertex angle of a two dimensional
wedge is increased, a point is reached at which
the .shock detaches and, with further increase in
wedge angle, moves upstream of the vertex of the
wedge. This effect is sensitive to the shock layer
to free stream density ratio, and therefore is
subject to real gas effects. Since the Newtonian
pressure is constant on each of the faces of the
wedge, it approximates to a constant pressure
flow, and the constant temperature approximation
will again apply.

In Fig. 5, calculations of shock detachment
for nitrogen are compared with experimental
results obtained by Hornung and Smith (1979). The
shock detachment was obtained by using
experimental results for argon, obtained at a Mach
number of 16, which also are shown on Fig. 5.
These results were used to predict nitrogen shock
detachment by employing the three dimensional
blunt body transformations of Stalker (1986) i.e.
by putting

(Vp./pm -1 cot §),

(Vpe7P, -1 cot &)y,
and

(Vorg =T o),

= (B7g T M)y

where A and N signify the argon and nitrogen flows
respectively.

As seen on the figure, the resulting
prediction of shock detachment is close to the
experimental values, except near detachment.
There the small scale of the detachment region is
expected to change the effective value of £.
Predictions of detachment for a perfect gas, with
ratio of specific heats of 1.4, and for an
equilibrium real gas also are shown. The
non-equilibrium detachment is well removed from
either of these two extremes.

5. THERMODYNAMIC DECOUPLING

Equation (10) has been used to argue that,
because £ is only weakly dependent on the
streamline enthalpy, T is independent of the flow
thermodynamics. This implies that the temperature
is approximately independent of the shock angle
and flight speed.

As a test of this conclusion, some
experimental measurements of shock stand-off at
the midplane of delta wings in air are presented
in Fig. 6. Whilst the reactions involving nitric
oxide make the chemistry of air somewhat more
complicated that that of an ideal dissociating
gas, the net dissociation rates at the temperature
of interest in sub-orbital flight yield effects
which are not dissimilar to the dissociation of
pure oxygen, and so thermodynamic decoupling of
the temperature also is expected for air.

Fig. 6(a) shows the effect of varying shock
angle by varying the angle of incidence of the
wing at a fixed stagnation enthalpy (Stalker,
1982). It is seen that when the measured shock
stand-off at B = 50° is used as a reference
condition, the constant temperature assumption can
be used to make a satisfactory prediction of shock
stand-off variation for a perfect gas, where the
shock layer density, rather than the temperature,
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is constant, and this is seen to produce a
distinctly different result.

Fig. 6(b) shows the effect of varying the
flight speed, by varying the flow stagnation
enthalpy. The constant temperature curve employed
the same reference condition as in Fig. 6(a), and
is consistent with the experiments at 20 MJ.kg™!
and 30 MJ.kg"l. At higher enthalpies,
corresponding to super-orbital flight speeds, the
gas in the shock layer approaches complete
dissociation, and temperatures may be expected to
exceed the reference value. This is evident in
the experimental shock stand-off at 38 MJ.kg™!
where constant temperature calculations indicate
that 90% of the air molecules are dissociated.
Constant temperature calculations also indicate
complete dissociation at 45 MJ.kg™!, and it can be
seen that a calculation based on the assumption of
complete dissociation tended towards the
experiments at the highest stagnation enthalpy
tested.

6. FLOW WITH PRESSURE GRADIENT

Returning to Fig. 2., and recalling the
discussion of Section 2, the effect of a falling
pressure along a streamline was to cause
dissociation to cease at a temperature, Tg, which
is given by Eqn. (7). Further cooling ensures
that the dissociation reaction is even further
checked. That is, the reaction is "quenched"
Downsteam of the point where this occurs, the gas
behaves as a perfect gas.

This process is represented graphically in
Fig. 3(b), where it is seen that the effect of
dissociation (i.e. "de/dx contribution") dominates
the cooling rate close to the shock but, when the
pressure gradient becomes significant, the effect
of dissociation is eliminated within a very short
distance. That is, the quenching is "sudden".

Now, for the part of the streamline which is
upstream of the quenched region, the gas behaves
as if it were in a constant pressure flow and,
taking £, once gain as the value of §
corresponding to a typical body length, ¢, it
follows that the temperature, T, , over most of
the flow for the constant pressure case is given
by Eqn. (10), i.e.

exp(T£'1] = 4C €£

when this is compared with Eqn. (7), it is seen
that

exp(Tﬂ'll ~ 4 exp(Tg7t)
which can only be true if

Tg= Ty &' Ty T »

ie To®T, (12)

Thus, the reaction quench temperature is
approximately the same as that obtained by
allowing the gas to relax in a constant pressure
flow over a body of the same size, at the same
density and velocity.

A further result follows from the comparison
between flows with and without pressure gradient.
In the case of the zero pressure gradient flow, it
has already been remarked that almost all of the
temperature change along the streamline takes
place close to the shock. Since the flow with
pressure gradient behaves like a constant pressure
flow upstream of the quenched region, nearly all
of the temperature change must occur near the
shock in that case also, and a close approximation
to the quench temperature must be achieved near

the shock.

Hornung (1976) has performed a more rigorous
analysis of the quenching effect, and finds that

Tg=0{l + ¢ Inc +0c ln (1 +4Tp) + 0(c?)} (13)
where
o1 = 1n {(1 - «)T™ p CR tang (3 u_ cosg)1)

In both Eqn. (7) and Eqn. (13), it is clear
that the dominant term is the large constant C
and, for a strong bow shock without order of
magnitude variations in the shock radius of
curvature, T, is approximately constant. Thus,
the constant density ratio strong shock generated
in a perfect gas is replaced by a constant
temperature ratio one in a non-equilibrium gas.

Hornung (1976) has presented experimental
measurements which support the concept of a
constant temperature shock. However, a second
aspect of interest is that the quenched gas is
expected to expand as a perfect gas as it passes
along streamlines, and this will affect conditions
downstream. This is illustrated in Fig. 7, where
the results of numerical calculations supplied by
Macrossan are presented. These were made by the
equilibrium flux method, which has been outlined
and validated by comparison with experimental
results by Macrossan and Stalker (1987). The
calculations showed that the dissociation fraction
remained approximately constant along any
streamline downstream of the shock wave. Contours
of pressure are shown on Fig. 7(a), as well as a
pressure profile across the shock layer at the
trailing edge of the wedge surface, and they
indicate that pressure ratios are approaching the
asymptotic value of 50 for that wedge.

Shock layer profiles of flow parameters at
the trailing edge are shown in Fig. 7(b). In

order to indicate the extent of the departure from
equilibrium, pseudo-equilibrium values of « and T
have been obtained by allowing a gas sample to
relax to equilibrium without altering its internal
energy or density. When these are compared with
the calculated profiles, it can be seen that the
gas is considerably removed from equilibrium
particularly on the streamlines close to the
surface, which have passed through the strongest
part of the bow shock. The downstream effect of
quenching on fluid dynamic variables is shown in
the profiles of density where it is seen that the
quenched density profile, which is obtained by
using Egqn. (13) to yield the shock temperature and
then expanding as a perfect gas along streamlines
downstream of the shock, agrees satisfactorily
with the numerical results. For comparison,
pseudo-equilibrium and perfect gas profiles of
density for the same shock shape and trailing edge
pressure profile are also shown, and are seen to
differ substantially from the numerical results.
For interest, velocity profiles also are
displayed, and they show the increase in vorticity
towards the surface which is associated with the
dissociation.

T CONCLUSION

A simplified gas model has been used to
discuss aerodynamic effects associated with the
flight of some simple vehicle configurations at
velocities which are high enough to produce strong
dissociation effects. The gas model involves a
Lighthill-Freeman ideal dissociating gas, with the
recombination effect removed. The small magnitude
of the reduced temperature, T, has been exploited
to emphasize the dominant role of the exponential
term in the expression for the forward reaction
rate. This has made it possible to develop
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approximate concepts which identify the dominant
non-equilibrium effects for these simple
configurations.

One important feature has emerged which
applies to nearly constant pressure flows, such as
blunt bodies or nearly flat heat shields at
incidence. Whereas such configurations would
exhibit an essentially constant density shock
layer in a perfect gas, with the density as a
fixed multiple of the upstream density, the shock
layer in dissociating gas is a constant
temperature one. The temperature bf the shock
layer is determined by the value of the binary
reaction variable, £. This approximation is seen
to be effective in predicting the shock stand-off
on a sphere.

It follows from this constant temperature
approximation that all blunt body flows are
essentially constant density ones, whether they be
perfect gas, non-equilibrium, or equilibrium
flows. This is illustrated by using perfect gas
results with argon to predict the non-equilibrium
shock detachment distance on a wedge in
dissociating nitrogen.

The dependence of the shock layer temperature
on the binary reaction variable, £, implies that
it is decoupled from the streamline enthalpy.
This, in turn, means that the temperature in the
shock layer is independent of flight speed and
incidence. This concept is seen to allow
satisfactory prediction of the variation of shock
stand-off with incidence on a delta wing in air.
It is also consistent with the observed variation
of shock stand-off with stagnation enthalpy, and
thus flight speed, provided that the air in the
shock layer does not approach complete
dissociation.

The constant temperature feature also applies
to the flow immediately downstream of a curved bow
shock, producing an effective post-shock
temperature which is independent of the local
angle which the shock makes with the mainstream.
The constant density ratio shock wave of a
perfect gas flow thereby is replaced by a constant
temperature ratio one. Downstream of the shock
wave, the reactions in the gas are quenched, and
perfect gas behaviour results. This model of the
flow is confirmed by numerical simulation of the
flow over a blunt wedge.

These simple flows demonstrate that
dissociation of the flight medium can
substantially modify the flow field about a
vehicle. When these modifications are viewed in
the light of the role of the exponential term in
the dissociation rate equation, they are seen to
lead to an interesting new set of principles to be
applied to dissociating flows. There are many
problems yet to be resolved which involved
dissociating flow over flight vehicles - for
example, leeward body flows, or detailed flows
within the shock layer. It is not unreascnable to
hope that these principles may be of service in
approaching such problems.
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NOTATION

sphere radius

reaction constant (Egn. 1))
dissociation energy per unit mass
enthalpy per unit mass
pre-exponential temperature index
pressure

oo o-oaw

q velocity along streamline

s distance from shock along streamlines

T reduced temperature - 647! x actual
temperature

Tq reduced quench temperature

u mainstream velocity

w wedge face length

o degree of dissociation

B angle between surface normal and mainstream

3 wedge semi-vertex angle

A shock stand-off distance

8y characteristic temperature for dissociation

£ binary scaling variable (Eqn. (2))

P density

Pa characteristic dissociation density
Ps density at distance s

Subscripts

© upstream
[¢] at the shock
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