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ABSTRACT

Groups of modified Rankine vortices are used to
model the organised motion in the turbulent plane
self-preserving far-wake of a cylinder. Reynolds
stresses u’, v° and uv are reproduced quite well. A
quasi-three-dimensional version of the model implies
that large spanwise vortices and shear-aligned double
rollers are actually the same three-dimensional or-

ganised motion from two different viewpoints.

INTRODUCTION

Townsend's (1956) monograph was instrumental in
drawing widespread attention to the role of an organ-
ised motion, usually of large scale, in a turbulent
shear flow. One of the techniques that Townsend used
to evaluate the importance of this motion was to pro-
pose kinematic models, such as various kinds of
eddies or vortices, and compare measured flow proper-
ties such as correlation coefficients with the
model's predictions. The same basic idea is used
here, but extended by means of a digital computer
into a more versatile and more interactive process
in which improvements in the model can suggest new
aspects to study in experimental data, the result of
which can improve the model, and so om.

The flow considered here is the turbulent plane
self-preserving far-wake of a cylinder (see Figure 1
for a definition sketch). The Reynolds decomposition
is used, e.g. the instantaneous longitudinal velo-
city U = U + u, the mean and fluctuating components
respectively. The distributions of kinematic
Reynolds normal stresses (u’ and v°) and shear stress
(uv), are of particular interest. Assuming that data
are in the form of a digital time series, detections
are defined as the time instants t;, j = 1,...,n
when a certain feature related to the organised mo-
tion occurs. Conditional averages of some quantity

n

I u(t. tk)
=1 -
where k is time (in samples) relative to the detec-
tion instants. (Usually the subscript k is omitted).
This leads to the triple decomposition, e.g. U =

U + <u> + u,, where u, is that part of u not correl-
ated with the detected feature of the flow. From
this, <u?> = <uw>? + <ul>, <uv> = <ud<v> + <ugv>
and so on. Given a suitable detection set, <uv>y is
a strong function of k, although the average value
of <uv>, for an appropriate range of k (e.g. one
period of the organised motion) may be_equal to uv.
Analogous statements apply for u® and v°. One could
find, however, that the organised motion is "organ-
ising" the Reynolds stresses without actually creat-
ing them, e.g. <upvy> = <uv> and <u><v> = 0, al-
though measured values of <u><v> are often signifi-
cant (e.g. Antonia et al., 1987a). The question ad-
dressed here is : can the organised motion be model-
led such that it creates virtually all of the
Reynolds stresses?

(u, for example) are defined as <u> = &

Figure 1

Definition sketch

Data from experiments in the far-wake of a cyl-
inder at a Reynolds number Ry = 1200 and x/d = 420
are available for comparison with the results of
modelling. Figure 2 shows sectional streamlines
(Perry and Chong, 1987) calculated from a small part
of the digital data obtained using a rake of eight
X-probes, aligned parallel to the y-axis, measuring u
and v. Time has been converted to distance using
Ax = -U.At, where U, is the frame-of-reference velo-
city. In another experiment the probes were aligned
with the z-axis measuring u and w. At the instant
shown in Figure 2, there is a pattern of unstable
foci and saddles (see Perry and Chong, 1987) alter-
nating about the centreline, but at other instants
there is a nearly symmetrical pattern with a focus
opposite a focus across the centreline of the wake.
The apparent distances of foci and saddles from the
centreline can vary considerably. The regions separ-
ated in x by successive saddles, each containing a
large focus, can be identified with large spanwise
vortices, and it is clear that they fill most of the
wake. Another kind of dominant structure has been
proposed, however, containing a series of single or
double rollers with axes aligned roughly parallel to
the y-axis (Grant, 1958; Mumford, 1983). The model-
ling carried out in this paper is based on large
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Instantaneous sectional streamlines from experimental data in a frame of reference translating at

Ue = U, - 0.5U,.

spanwise vortices, yet the velocity patterns implied
in the (x,z) plane are consistent with double rollers.
The link between the two types of structure is <u><v>,
the contributions of the large spanwise vortices to
the Reynolds shear stress.

METHOD

Initially, large spanwise vortices in the (x,y)
plane are modelled. The two-dimensional Rankine line
vortex was chosen as the basic building block. It
has been used by Davies (1976) to model kinematically
the planar near-wake of a bluff body and by Oler and
Goldschmidt (1982) to model kinematically the self-
preserving region of the plane jet. The spreading
rate of the plane jet is large and was accounted for
by Oler and Goldschmidt (1982), while that of the
far-wake is small and is neglected here.

The equation for the tangential velocity Uy is
Ug =T {1 - exp[—l.ZG(r/Ru)Z]}/(Zﬂr), where ' is the
circulation, r the radial position, and R, the cutoff
radius (where Uy is maximum). The unit of length is
the mean velocity half-width L, and velocities are
scaled so that U; = 1. A computer program places a
number of vortices at specified (x.,y.) locationms
within (or adjacent to) a two-dimensional computa-
tional grid, superimposes and U and V components of
Ug for each vortex at each grid point, and then cal-
culates U, V, u®, v° and uv as a function of y. For

P L
example, uf = Lfp)- T (Ui—U)2 where the computa-
I

tional field is p points long (typically 12 points
per vortex). The rows of vortices are always extend-
ed beyond the computational field so that the data
are equivalent to continuous flow. For the results
presented here, the longitudinal spacing A is always
equal to the experimental value of 3.0, [T| is 5.0
(arbitrary) and R, is 1.0_for all vortices. The
mean transverse velocity V is ignored as it is always
many orders smaller than U.

RESULTS

The first model was a series of vortices, with
circulation of alternate sign, placed alternately
across the centreline at |Yc| = 0.8 (Figure 3a).
U(y) was correct but the Reynolds stresses were
quite wrong, especially uv which was virtually zero
everywhere. The second model was similar except
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Figure 3 Positions of vortex centres for (a) the
first model, and (b) the second model. Vortices
outside the computation domain are not shown.

that the vortices were placed opposite each other
(Figure 3b), but again the stresses were incorrect.

In Bisset et al. (1989), regions of experimental
data with either alternating or opposing arrangements
of detections were analysed separately, showing dif-
ferences in the way they contribute to mean Reynolds
stresses, A similar idea was adopted for the third
and subsequent models. The third model was simply
the sum of the previous two, in the sense that mean
velocity and Reynolds stress profiles were linear
combinations of the profiles from the two arrangements
of vortices, e.g.

Tz = g u?

= _RY uZ
L alternate + (1-8) u

opposite

Values of B in the range 0.6 to 0.7 are indicated by
the experimental results (Bisset et al., 1989). With
B = 0.67, the third model Eggdicts the v° profile
quite accurately, but the u® profile is poor and uv
is still zero.

Velocity fluctuations u and v measured in the
potential flow just outside a turbulent wake by
Antonia et al. (1987b) were found to be 90° out of
phase. The same result is obtained from the Rankine
vortex models, which is the reason why uv is zero.
Within a turbulent shear flow, however, the phase
relationship is generally nearer to 0° or 180° (e.g.
Antonia et al., 1986), and this aspect was addressed
by the fourth model. A phase lag ¢ was introduced
into the computation of U, i.e. U = -Up sin(8-¢),
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Figure 4 Positions of vortex centres for the fiftn
model. (a) alternating pattern; (b) opposing pat-
tern. Vortices outside the computation domain are
not shown.

Figure 5

Profiles of mean velocity and Reynolds
stresses from the fifth model (——), compared with
experimental results (- -).
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Sectional streamlines calculated from half of the vortices shown in Figure 4 with a frame of refer-
(a) alternating pattern;

16 16 12 10

(b) opposing pattern. The model uses, in

effect, two parts of (a) to one part of (b).

while V = Ug cos 6 as before, where 6 = tan_l[(Y—Yc)/
(x=x.)] for = given point (x,y). The sign of ¢ de-
pends on the sign of I', and for r > R, the value of

¢ is proportional to (Ru/r)2 so that the phase lag
occurs only in the "turbulent" zones. The phase lag
is applied to U rather than V because it is found in
the experimental data that detections in v signals
from adjacent probes generally occur at the same

time while detections in u signals occur consistently
at different times. The fourth model also allows for
an additional vortex convection velocity (Ugc,Vee) to
be applied to the inner regions of the vortices
(where r < R;), and reduced in proportion to (RD/r)2
elsewhere, but (Uyc,Vee) is not as important as ¢.

It was found that with ¢_= 35° and (Uge,Vee) = (0.19,
0.0) the profiles of U, v° and uv were reproduced
very well, but u® values were still very low. Sec-
tional streamlines computed for this model (similar
to Figure 6) show the correct pattern of foci and
saddles (cf. Figure 2), unlike streamlines from the
first three models wnich showed patterns of centres
and saddles.

The apparent distances of large structures from

the centreline vary considerably (cf. Figure 2), and
the conventional auto-correlation coefficient for u
remains positive up to large x (Grant, 1958). The
fifth model accounts for these two aspects by system-
atically varying y. over groups of six vortices per
side, with 0.2 < |ye| < 1.5 (average 0.8). The vari-
ation is antisymmetrical for the group of- alternating
vortices (Figure 4a) and symmetrical for the opposing
group (Figure 4b). The resulting velocity and stress
profiles, for parameter values of ¢ = 45°, B = 0.6
and Uge = 0.06, are compared with measurements (An-
tonia et al., 1987a) in Figure 5, and agreement is
very good, esg%piallszor v® and uv. Note that the
profiles for u® and v° from the alternating and op-
posing groups taken separately are quite different,
and it is only their combinations that are close to
the experimental results. The corresponding section-
al streamlines for part of the data are shown in Fig-
ure 6. It can be inferred from these results that a
long wavelength variation in u, of a scale larger
than the largest vortex-like structures, is respons-
ible for both the long positive tail in the measured
auto-correlation coefficient and a considerable pro-
portion of the measured u®. However, there may be
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Figure 7 Sectional streamlines in the (x,z) plane

at y = 1.0 calculated from the quasi-three-dimension-
al model via the continuity equation. Vortex centres
in the three (x,y) planes are indicated by (e).

other ways besides a systematic variation in y. of
modelling the long wavelength variation in u.

Although the mean flow is two-dimensional, the
magnitude of the divergence 3U/3x + 3V/dy is often
significant in the experimental data. The divergence
for the first three models was everywhere zero, but
significant values were found for the fourth and
fifth models with ¢ = 0. Since 3U/3x + 3V/dy =
-3W/dz for incompressible flow, the fourth and fifth
models are, therefore, three—dimensional in the sense
that they imply the existence of non-zero spanwise
velocity W. Grant (1958) and others have found that
the correlation between u measurements separated in
the z direction is significantly negative at Az =
1.6L, which means that the axes of large spanwise
structures are limited in length and/or generally at
a considerable angle to the z-axis. By assuming that
structure axes are often limited in length, it was
possible to construct a simple quasi-three-dimension-
al model based on the fourth model described above.
Three (x,y) planes containing modified Rankine vor-
tices were placed at three different z values. One
plane was aligned so that one vortex was located at
(%c,¥c22:) = (0,0.8,0) while the other planes were
displaced half a structure wavelength in x and *1.6L
in z, i.e. a vortex was centred at (Xg,¥e,2Z¢) =
(1.5,0.8,1.6). Velocity components U and V were
calculated throughout the three planes, and then cal-
culated at other z values by linear interpolation be-
tween the planes. (The implied physical picture is a
pattern of interlocking spindle shapes rotating about
axes of length 3.2L parallel to the z-axis). It was
assumed that the (x,y,0) plane was a plane of symm-
etry, i.e. W = 0 in this plane, and then W was cal-
culated elsewhere by numerical integration of W =
~-(3U/3x + 3V/3dy)dz.

Sectional streamlines calculated from U and W
in the plane (x,1.0,z) are shown in Figure 7 in a
frame-of-reference moving with the mean velocity of
that plane. Very similar results were obtained over
a large range of y-values provided that the local U
was used for the frame-of-reference velocity. The
pattern in Figure 7 conforms remarkably well to the
concept of counter-rotating double rollers with axes
nearly normal to the centreplane of the wake proposed
by Grant (1958) and Mumford (1983). The relationship
between the (x,z) plane of Figure 7 and the three
(x,y) planes from which it was generated is shown in
Figure 8. Three-dimensional streamlines resulting
from this data would be quite complex. Note that the
double roller pattern does not appear when the U
phase delay ¢ is zero, i.e. the model implies that
spanwise vortices and double rollers are interlinked
through the Reynolds shear stress associated with the
large scale organised motion.

Figure 8 Sketch of the inter-relationship between
sectional streamlines in the (x,y) and (x,z) planes
for the quasi-three-dimensional model. Only the
upper half of the wake is shown.

Conditional averages from experimental data in
both (x,y) and (x,z) planes show certain remarkable
similarities to the present results and will be dis-
cussed in another paper at this conference (Bisset
and Antonia, 1989).

CONCLUSIONS

Many aspects of the turbulent plane self-preserv-
ing far-wake of a cylinder, including the profiles of
mean velocity and Reynolds stresses, can be reproduc-—
ed by a model based on small groups of modified Ran-
kine vortices. Several features of the model, based
on observations from experiments, are essential,
namely : (a) incorporation of both alternating and
opposing arrangements of vortices; (b) a phase delay
in the U component induced by each vortex; and
(c¢) variation in the distance of vortex centres from
the centreplane. A quasi-three-dimensional version
of the model implies that two experimentally observed
types of organised motion (large spanwise vortices,
and single or double rollers) are actually the same
underlying structure seen from two different view-
points. Reynolds shear stress induced by the organ-
ised motion is the linking factor.
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