
Notes for a Tutorial on

Abstract Interpretation of Logic Programs

Kim Marriott and Harald Søndergaard

October 1989



Overview

The present notes are concerned with semantics-based dataflow analysis of definite clause logic

programs. They have been produced for a tutorial given by the authors to the North American

Conference on Logic Programming in Cleveland, Ohio, 16 October 1989. The notes are a condensed

version of two forthcoming papers [33, 36]. Proofs omitted here appear in these papers.

In Section 1 we give a brief introduction and historical background to the subject. In Section 2

we introduce some preliminary notation. In Section 3 we give a general theory for dataflow analysis

which is basically that of abstract interpretation as introduced by P. and R. Cousot. We develop a

simple abstract interpretation based on the well-known TP semantics of definite clause programs.

In Section 4 we consider the abstract interpretation of definite clause logic programs and detail its

uses. We discuss the limitations of dataflow analyses which are based on either the TP or SLD

semantics of logic programs and develop a denotational semantics which may be used as a basis

for most existing dataflow analyses. In Section 5 a non-trivial dataflow analysis for groundness

propagation is developed from the denotational definitions given in Section 4.

1 Introduction

Dataflow analysis is an essential component of many programming tools. One use of dataflow

information is to identify errors in a program, as done by program “debuggers” and type checkers.

Another is in compilers and other program transformers, where the analysis may guide various

optimisations.

Abstract interpretation formalizes dataflow analysis by viewing it as approximate computation,

in which computation is performed with descriptions of data rather than the data themselves. The

idea of performing program analysis by approximate computation appeared very early in computer

science. Naur identified the idea and applied it in work on the Gier Algol compiler [42]. He coined

the term pseudo-evaluation for what would later be described as “a process which combines the

operators and operands of the source text in the manner in which an actual evaluation would have to

do it, but which operates on descriptions of the operands, not on their values” [20]. The same basic

idea is found in work by Reynolds [44] and by Sintzoff [47]. Sintzoff used it for proving a number

of well-formedness aspects of programs in an imperative language, and for verifying termination

properties.

By the mid seventies, efficient dataflow analysis had been studied rather extensively by re-

searchers such as Kam, Kildall, Tarjan, Ullman, and others (for references, see Hecht’s book [17]).

In an attempt to unify much of that work, a precise framework for discussing approximate compu-

1



tation (of imperative programs) was developed by Patrick and Radhia Cousot [7, 8]. The advantage

of such a unifying framework is that it serves as a basis for understanding various dataflow analyses

better, including their interrelation, and for discussing their correctness.

The overall idea of P. and R. Cousot was to define a “sticky” semantics which associates with

each program point the set of possible storage states that may obtain at run-time whenever execu-

tion reaches that point (P. and R. Cousot called this semantics a “static” semantics). A dataflow

analysis can then be construed as a finitely computable approximation to the sticky semantics. We

detail this general idea in Section 3.

The work of P. and R. Cousot has later been extended to declarative languages. Such exten-

sions are not straightforward. For example, there is no clear-cut notion of “program point” in

functional or logic programs. Also, dataflow analysis of programs written in a language like Prolog

differs somewhat from the analysis of programs written in more conventional languages because

the dataflow is bi-directional, owing to unification, and the control flow is more complex, owing to

backtracking.

Of the applications of abstract interpretation in functional programming we mention work by

Jones and by Jones and Muchnick on termination analysis for lambda expressions and, in a Lisp

setting, improved storage allocation schemes through reduced reference counting [21, 22]. The

main application, though, has been strictness analysis, which is concerned with the problem of

determining cases where applicative order may be safely used instead of normal order execution.

The study of strictness analysis was initiated by Mycroft [40] and the literature on the subject is

now quite extensive, see for example Nielson [43].

Abstract interpretation of logic programs was first mentioned by Mellish [37] where it was

suggested as a way to formalize mode analysis. This suggestion can be attributed to Alan Mycroft.

Søndergaard [48] gave an occur check analysis which was formalized as an abstract interpretation.

A general framework for the abstract interpretation of logic programs was first given by Mellish [38].

Debray further investigated abstract interpretation for mode analysis [12]. A general framework for

the abstract interpretation of logic programs based on a denotational definition of SLD was given by

Jones and Søndergaard [25], a framework based on AND-OR trees was given by Bruynooghe et al.

[6] and one based on OLDT resolution was given by Kanamori and Kawamura [26]. A framework

for the abstract interpretation of normal programs based on the three-valued logic of Kleene [27]

was given by Marriott and Søndergaard [31, 32]. A unified treatment of various frameworks is given

by Marriott and Søndergaard [35].

For a general introduction to abstract interpretation and an extensive list of references, we refer

to the book edited by Abramsky and Hankin [1].

2



2 General Preliminaries

In this section we recapitulate some basic notions and facts from domain theory and explain some

notation that will be used throughout. For a detailed introduction the reader is referred to a

textbook, for example Schmidt’s [46] or Birkhoff’s book on lattice theory [4].

Let I denote the identity relation on a set X. A preordering on X is a binary relation R

that is reflexive (I ⊆ R) and transitive (R ·R ⊆ R). A partial ordering is a preordering that is

antisymmetric (R ∩R−1 ⊆ I). A set equipped with a partial ordering is a poset. Let (X,≤) be a

poset. A (possibly empty) subset Y of X is a chain iff for all y,y′ ∈ Y,y ≤ y′ ∨ y′ ≤ y. We let

⊙X denote the poset X extended with an element ⊥ which is least, that is ⊥ ≤ x for all x ∈ ⊙X.

Let (X,≤) be a poset. An element x ∈ X is an upper bound for Y iff y ≤ x for all y ∈ Y.

Dually we may define a lower bound for Y. An upper bound x for Y is the least upper bound for

Y iff, for every upper bound x′ for Y, x ≤ x′, and when it exists, we denote it by
⊔
Y. Dually we

may define the greatest lower bound ⊓Y for Y.

A poset for which all subsets possess least upper bounds and greatest lower bounds is a complete

lattice. In particular, equipped with the subset ordering, the powerset of X, denoted by PX, is a

complete lattice. Let X be a complete lattice. We denote
⊔

= ⊓X by ⊥X and ⊓ =
⊔
X by ⊤X.

In dataflow analysis we are often interested in complete lattices which are “ascending chain finite.”

The complete lattice X is ascending chain finite (or Noetherian) iff every non-empty subset Y ⊆ X

has an element that is maximal in Y, or equivalently, for every non-empty chain Y ⊆ X,
⊔
Y ∈ Y.

We write
⊔

(Q x)F x for
⊔
{F x | Q x}, where Y is a complete lattice, F : X → Y, and Q is

some predicate on X. In particular, we use
⋃

(Q x)F x for
⋃
{F x |Q x}, where F : X→ PY and

x ∈ X for some X and Y.

Functions are generally used in their Curried form. Our notation for function application uses

parentheses sparingly. Only when it would seem to help the eye, shall we make use of redundant

parentheses. As usual, function space formation X → Y associates to the right, and function

application to the left.

Let F : X → Y be a function. Then F is injective iff F x = F x′ ⇒ x = x′ for all x,x′ ∈ X,

and F is bijective iff there is a function F′ : Z → X such that F ◦ F′ and F′ ◦ F are identity

functions. We define F’s distributed version to be the function (∆F) : PX → PY, defined by

∆F Z = {F z | z ∈ Z}.

For any set X let X∗ denote the set of finite sequences of elements of X. The empty sequence

is denoted by nil and we use the operator “:” for sequence construction. The sequentialized version

of a function F : X → Y → Y is given by application of Σ : (X → Y → Y) → X∗ → Y → Y,

defined by

3



Σ F nil z = z

Σ F (x : y) z = Σ F y (F x z).

Let (X,≤) and (Z,�) be posets and let F : X → Z be a function. The function F : X → Z is

monotonic iff x ≤ x′ ⇒ F x � F x′ for all x,x′ ∈ X. In what follows, monotonicity of functions is

essential, so much so that it is understood throughout these notes that X→ Y denotes the space

of monotonic functions.

A fixpoint for a function F : X→ X is an element x ∈ X such that x = F x. If X is a complete

lattice, then the set of fixpoints for (the monotonic) F : X → X is itself a complete lattice. The

least element of this lattice is the least fixpoint for F, denoted by lfp F. Furthermore, defining

F ↑ α = F (F ↑ (α− 1)) if α is a successor ordinal

F ↑ α =
⊔
{F ↑ α′ | α′ < α} if /alpha is a limit ordinal,

there is some ordinal α such that F ↑ α = lfp F. The sequence F ↑ 0,F ↑ 1, . . . , lfp F is the Kleene

sequence for F.

Let X be a complete lattice. A predicate Q is inclusive on X iff for all (possibly empty) chains

Y ⊆ X,Q (
⊔
Y) holds whenever Q y holds for every y ∈ Y. Inclusive predicates are admissible

in fixpoint induction. Assume that F : X → X is monotonic and (Q x) ⇒ Q (F x) for all x ∈ X.

If Q is inclusive then Q (lfp F) holds.

In these notes we will only be concerned with definite programs [28]. A definite program, or

program, is a finite set of clauses. A clause is of the form H← B where H, the head, is an atom

and B, the body, is a finite sequence of atoms. We let Var denote the (countably infinite) set

of variables, Term the set of terms, Pred the set of predicate symbols, Atom the set of atoms,

Clause the set of clauses, and Prog the set of (definite) programs.

3 Abstract Interpretation

Abstract interpretation formalizes the idea of approximate computation in which computation is

performed with descriptions of data rather than the data itself. Approximate computation is well-

known from everyday use. Examples are the casting out of nines to check numerical computations

and application of the rules of signs, such as “plus times minus yields minus.” The disadvantage of

an approximate computation is that the result it yields is not, in general, as precise as those of the

proper computation. However this is compensated for by the fact that the approximate computa-

tion is (usually) much faster than the proper computation. Our concern is with the approximate

computation of programs. In this case, the difference in speed between proper and approximate

computation may be extreme: non-termination versus termination.

4



We describe approximate computation more formally as evaluating a formula or a program, not

over its standard domain E, but by using a set D of descriptions of objects in E. The domain E

may consist of sets of terms, atomic formulas, substitutions, or whatever, depending on how the

semantics is modelled, and D is determined by the sort of program properties we want to expose.

Of course, when performing approximate computations, one must reinterpret all operators so as to

apply to descriptions rather than to proper values.

Assume we have a standard domain E and a set D of descriptions. To be precise about the

relation between values and descriptions, a concretization function γ : D → E is required. For

every description d ∈ D, (γ d) is the “largest” object which d describes. Thus γ is, in a sense,

the semantic function for descriptions. We follow P. and R. Cousot by requiring the existence of

an abstraction function α : E → D. For every object e ∈ E, (α e) is the “best,” that is least,

description of e. We require that α and γ form a “Galois insertion.”

Definition. Let D and E be complete lattices and γ : D → E and α : E → D be (monotonic)

functions. Then (D, γ,E, α) is a Galois insertion iff

∀d ∈ D . d = α (γ d),

∀ e ∈ E . e ≤ γ (α e),

where ≤ is the ordering on E.

Descriptions are ordered according to how large a set of objects they apply to: the more imprecise,

the “higher” they sit in the ordering. Note that, if they exist, α and γ uniquely determine each

other.

The requirement that there exist both an abstraction and a concretization function is rather

strong. In fact, one can generalize this discussion by dropping the requirement that there is a

concretization function [41, 43], or dropping the requirement that there is an abstraction function

[6, 32, 35]. Marriott [30] has a more detailed discussion of this.

Example 3.1 (Reachability) Assume E = PU. Let D = {⊥,⊤}, γ ⊥ = ∅, and γ ⊤ = U. This

simple domain can be used in a so-called reachability analysis: unreachable program points are

described by ⊥, and possibly reachable points by ⊤.

Example 3.2 (Standard semantics) Here D = E, the most fine-grained set of descriptions

possible. The concretization and abstraction functions are both the identity function.

Clearly, the finer-grained descriptions we use, the better dataflow analysis possible. On the other

hand, considerations of finite computability and efficiency put a limit on granularity.

5



In accordance with the observation that “larger” descriptions naturally correspond to decreased

precision, we now define what it means for d ∈ D to safely approximate e ∈ E.

Definition. Let (D, γ,E, α) be a Galois insertion. We define apprγ : D×E→ Bool by

apprγ (d, e) iff e ≤ γ d,

where ≤ is the ordering on E.

Thus apprγ (d, e) reads “d approximates e under γ.” Since γ will always be clear from the context,

we shall omit the subscript and simply denote the predicate by appr. Equivalently, we can define

appr in terms of α; appr (d, e) iff α e ≤ d. We shall often write appr as an infix operator. There

is a natural extension of appr to cartesian products and function spaces:

Definition. We extend appr from the domains D×E and D′ ×E′ to

(a) (D×D′)× (E×E′) by defining: (d,d′) appr (e, e′) iff d appr e ∧ d′ appr e′,

(b) (D→ D′)× (E→ E′) by defining:

F appr F′ iff ∀ (d, e) ∈ D×E′ . d appr e⇒ (F d) appr (F′ e).

We thus in fact have a series of relations “appr,” but in what follows, the “type” of appr should

always be clear from the context. This treatment of appr is similar to Reynold’s use of rela-

tional functors [45]. For semantic functions we shall sometimes use the symbol ∝ to denote the

approximation relation.

Definition. Let F : Prog → D and F′ : Prog → E be semantic functions, and let (D, γ,E, α) be

a Galois insertion. Then F ∝ F′ iff (F P) appr (F′ P) holds for all P ∈ Prog.

To illustrate these ideas we give a very simple dataflow analysis for “type inference” based on the

well-known TP operator [2]. In this setting we regard type inference as finding an approximation

to the least Herbrand model of the program. The least Herbrand model is just the least fixpoint

of TP so we are interested in approximating lfp TP. We first recapitulate the definition of TP.

Let Her denote the set of ground atoms (for some fixed alphabet). For a syntactic object s,

(ground s) denotes the set of ground instances of s. The domain of TP is the set of interpretations,

Int = PHer.

6



Definition. The immediate consequence function TP : Int→ Int is defined by

TP u = {A ∈ Her | ∃C ∈ P . ∃[[A←B]] ∈ ground C . u makes B true}.

where, if B = A1 : . . . : An : nil is a ground body, we say that

u makes B true iff ∀ i ∈ {1, . . . ,n} .Ai ∈ u.

The least model semantics of program P is L P = lfp TP.

The descriptions in our analysis are extremely simple—just sets of predicate symbols. A pred-

icate symbol is in a description if some ground atom with that predicate symbol is in the interpre-

tation. For instance, the best description of {p(a),p(b), r(a)} is {p, r}.

Definition. Let D = P Pred and let pred A denote the predicate symbol of atom A. Define

γD : D→ Int by

γD d = {A ∈ Her | pred A ∈ d}

and αD : Int→ D by

αD u = {Q ∈ Pred | ∃A ∈ u . pred A = Q}.

Proposition 3.3 The tuple (D, γD, Int, αD) is a Galois insertion.

We can approximate TP using the following operator.

Definition. The operator UP : D→ D is defined by

UP d = {Q ∈ Pred | ∃[[A←B]] ∈ P . pred A = Q ∧ d makes B true}

where d makes A1 : ... : An : nil true iff ∀ i ∈ {1, ...,n} . pred Ai ∈ d. The type semantics of

program P is T P = lfp UP.

It is straightforward to show that UP appr TP holds. Usually we want a dataflow analysis to be as

precise as possible, in the sense of making the best possible use of available information. Letting an

approximating function F′ map every element of D to ⊤D clearly leads to a dataflow analysis that

is correct, but useless. We note that in the present framework, a best safe approximating function

F′ always exists, namely the function defined by F′ = α ◦F ◦ γ. This is not always true if we drop

the requirement that an abstraction function exists. We can show that for the descriptions D, UP

is the best approximation to TP.

7



Proposition 3.4 UP = αD ◦TP ◦ γD.

What we must now show is that T ∝ L. This is true if the relation appr is “preserved” by

the least fixpoint operator, that is, appr is inclusive. We note that not all seemingly reasonable

predicates are inclusive, for example the predicate “is finite” is not inclusive on an infinite powerset.

However in our case appr is inclusive.

Lemma 3.5 The predicate appr is inclusive on D×E, ordered componentwise.

The following proposition is easily proved by fixpoint induction.

Proposition 3.6 Let (D, γ,E, α) be a Galois insertion and let (monotonic) F : E → E and

F′ : D→ D be such that F′ appr F holds. Then (lfp F′) appr (lfp F) holds.

We thus have the following proposition.

Proposition 3.7 T ∝ L.

The reason for our interest in fixpoints is the fact that semantics for logic programs are nat-

urally expressed as fixpoint characterizations. This applies to the TP characterization, certain

formulations of SLD resolution, and to denotational definitions. More precisely, the idea is to have

the “standard” semantics of program P given as lfp F for some function F, and to have dataflow

analyses defined in terms of “non-standard” functions F′, approximating F. We can then use

Proposition 3.6 to conclude that all elements of lfp F have some property R, provided all elements

of γ (lfp F′) have property R. In other words, lfp F′ provides us with approximate information

about the standard semantics lfp F. In this way dataflow analyses are nothing but approximations

to the standard semantics.

Since it is preferable that approximations are finitely computable, the approximating function

F′ and the description domain are usually chosen such that the Kleene sequence for F′ is finite. It

is common to use description domains which are ascending chain finite lattices as this ensures that

the Kleene sequence for F′ is finite. While ascending chain finiteness is a sufficient condition for

termination, it is not necessary. For a discussion of termination, see P. and R. Cousot [7].

Most of the above discussion has been too simplistic in one respect. For dataflow analysis

purposes we are often interested in a semantics that is somewhat more complex than the standard

“base” semantics which simply specifies a program’s “input-output” relation. The reason is that

we are looking for invariants (such as “x is always ground”) that hold at program points, not just

results of computations. A sticky semantics is obtained by extending the base semantics so that for

8



each program, all run-time states associated with each of its program points are recorded. In this

connection, the base semantics may be viewed as a degenerate sticky semantics that has only one

program point, namely the “end” of the program. A dataflow analysis should be proven correct

with respect to a sticky semantics rather than the base semantics.

In the case of TP the sticky semantics could keep information about the ground clause instances

whose bodies succeed. This information is kept in a repository. A repository is similar to what

is sometimes called a “context vector” [7], a “log” [25, 48], or a “record” [31]. Let Gcla denote

the set of ground clauses (for some fixed alphabet), and let the domain of repositories be Rep =

Clause → PGcla. Ordered pointwise, Rep forms a complete lattice. The sticky semantics can

now be defined as a fixpoint of a certain operator on the domain Env = Int × Rep. Ordered

componentwise, Env forms a complete lattice.

Definition. Let VP : Env→ Env be defined by

VP (u, r) = (TP u, r ⊔ r′) where r′ C = {[[A←B]] ∈ ground C | u makes B true ∧ C ∈ P}.

The sticky semantics of program P is lfp VP.

It is not hard to see that VP is monotonic, so the sticky semantics is well-defined. Furthermore

the relation to the least model semantics should be clear: lfp VP has the form (u, r) where

u = lfp TP is the least model semantics. We further note that lfp VP = VP (lfp TP,⊥Rep). It is

straightforward to extend the type semantics to a sticky type semantics such that the sticky type

semantics approximates the sticky semantics.

4 Dataflow Analysis of Logic Programs

In this section we show how abstract interpretation can be used to develop dataflow analyses for

logic programs. The analysis sketched in Section 3 was based on the TP semantics. We saw how

it could be used for a kind of type inference, and we have shown elsewhere how this in turn may

be useful for program specialization and error detection [31, 32]. One limitation of this semantics

is that it does not give any information about how variables would actually get bound during

execution of a program. Most “compiler optimizations,” however, depend on knowledge about

variable bindings at various stages of execution, so to support such transformations, we have to

develop semantic definitions that manipulate substitutions. Furthermore, a typical Prolog compiler,

say, is based on an execution mechanism given by SLD resolution, but the TP model lacks the SLD

model’s notion of “calls” to clauses.

9



We therefore need to base our definitions on a formalization of SLD resolution. Such a for-

malization is given in Section 4.1. The SLD semantics, however, is not very useful as a basis for

dataflow analysis, and we explain why. We therefore develop denotational semantics that are bet-

ter suited. Section 4.2 introduces “parametric substitutions” as the natural semantic domain for

such definitions. The definition of a “base” semantics is given in Section 4.3, and in Section 4.4

we develop, by minor changes, the semantic definition into a generic definition of a wide range of

dataflow analyses. The definition is generic in the sense that it remains uncommitted as to what

“substitution approximations” are and how to “compose” and “unify” them. Finally, Section 4.5

lists a series of applications of the presented (or a very similar) framework.

4.1 SLD-Based Analysis

The definition in Section 3 is useful as a basis for dataflow analyses that yield approximations to

a program’s success set. It is, however, not very useful as a basis for a number of the dataflow

analyses that designers of compilers often are interested in. Interpreters and compilers for logic

programming languages are usually based on SLD resolution as execution mechanism. The previous

definition does not capture SLD resolution, because it has no notion of “calls” to clauses, as has

the SLD model. In the SLD model, the first thing that takes place when a clause is called is

unification of the calling atom and the clause’s head. This unification is an important target for

a compiler’s attempts to generate more efficient code, because the general unification algorithm is

expensive, and most calls only need very specialized versions of the algorithm. (There are other

transformations than unification specialization that we are interested in, but this serves as sufficient

motivation for incorporating “call unification” in the semantic definition).

We now formulate SLD resolution. We assume that we are given a function vars : (Prog ∪

Atom ∪Term)→ PVar, such that (vars s) is the set of variables in the syntactic object s.

A program denotes a computation in a domain of substitutions. A substitution is an almost-

identity mapping θ ∈ Sub ⊆ Var → Term from the set of variables Var to the set of terms over

Var. Substitutions are not distinguished from their natural extensions to Atom → Atom. Our

notation for substitutions is standard. For instance {x 7→ a} denotes the substitution θ such that

(θ x) = a and (θ V) = V for all V 6= x. We let ι denote the identity substitution. The functions

dom, rng,vars : Sub→ PVar are defined by

dom θ = {V | θ V 6= V}

rng θ =
⋃

(V∈dom θ) vars (θ V)

vars θ = (dom θ) ∪ (rng θ).

A unifier of A,H ∈ Atom is a substitution θ such that (θ A) = (θ H). A unifier θ of A and H

10



is an (idempotent) most general unifier of A and H iff θ′ = θ′ ◦ θ for every unifier θ′ of A and

H. The auxiliary function mgu : Atom→ Atom→ P Sub is defined as follows. If A and H are

unifiable, then (mgu A H) yields a singleton set consisting of a most general unifier of A and H.

Otherwise (mgu A H) = ∅.

The function restrict : PVar→ Sub→ Sub is defined by

restrict U θ V = if V ∈ U then θ V else V.

We also use a function rename : PVar → Var → Var for renaming: (rename U) is some

bijective substitution, or renaming , such that (rename U V) 6∈ U for all V ∈ Var. We shall use

the extension of (rename U) to Clause→ Clause.

We will assume the standard (left-to-right) computation rule. As we discuss shortly, our

dataflow analyses will not distinguish non-termination from finite failure. As a result of this,

we can assume a parallel search rule, rather than the customary depth-first rule—this simplifies

our task. Owing to the use of a parallel search rule, the execution of a program naturally yields a

set of answer substitutions.

We now give a definition of the SLD semantics of a definite program. The definition is given

in a form that should make it clear that it is equivalent to the usual SLD model [2, 28]. We let

:: denote concatenation of sequences. Clauses are implicitly universally quantified, so each call of

a clause should produce new incarnations of its variables. This is done by means of the function

rename, so that the generated clause instance will contain no variables previously met during

execution (those in θ) or to be met later (those in A :: G). As usual, we think of a program as a

set of clauses, and of goals and bodies as sequences of atoms.

Definition. The SLD semantics has semantic function O : Prog → Atom∗ → P Sub and is

defined as follows.

O P G = ∆ (restrict (vars G)) (FP G ι)

FP nil θ = {θ}

FP (A : G) θ =
⋃

C∈P let [[H←B]] = rename ((vars θ) ∪ (vars (A : G))) C in

let Θ = mgu A H in
⋃

θ′∈ΘFP (θ′ (B :: G)) (θ′ ◦ θ).

Note that finite failure is not distinguished from non-termination. For example, let P be the

program consisting only of the clause p. Let P′ be the program consisting only of the clause q←q,

and consider the query←q. We have that O P q = O P′ q = ∅. This is not a flaw in the semantic

definition, it merely reflects the fact that we are not interested in the distinction, since termination

issues are often disregarded in dataflow analysis. The statements we generate are of the form

11



“whenever execution reaches this point, so and so holds.” But in saying so, we do not actually say

that execution does reach the point. In particular, “whenever the computation terminates, so and

so holds” concludes nothing about termination.

Example 4.1 Consider the following list concatenation program P:

append(nil,y,y).

append(u : x,y,u : z)← append(x,y, z).

and the query G = ←append(x,y,a : nil). Execution of P yields two instantiations of the

variables in G. We have that O P G = {{x 7→ nil,y 7→ a : nil}, {x 7→ a : nil,y 7→ nil}}.

The SLD semantics is not really what we are interested in for dataflow analysis purposes,

because it does not associate information about runtime states with program points. The program

points that we are interested in here are the “arrows” in a program. This is because we are primarily

interested in specializing unification code. As in Section 3 we therefore extend our definition to

one of the “sticky” SLD semantics. Our repository logs sets of atoms. Since we essentially want to

partially evaluate unification code, we choose to let program points be the “arrows” in a program’s

clauses. The repository maps to each clause the set of atoms that the clause was called with. So the

domain of repositories is Rep = Clause → PAtom. A repository is created using the function

log : Clause→ Atom→ Rep defined by

log C A C′ = if C = C′ then {A} else ∅.

Definition. The sticky SLD semantics has semantic function O′ : Prog → Atom∗ → (P Sub ×

Rep) and is defined as follows.

O′ P G = let (Θ, r) = F′

P G ι in (∆ (restrict (vars G)) Θ, r)

F′

P nil θ = ({θ},⊥Rep)

F′

P (A : G) θ =
⊔

C∈P let [[H←B]] = rename ((vars θ) ∪ (vars (A : G))) C in

let Θ = mgu A H in
⊔

θ′∈Θ((F
′

P (θ′ (B :: G)) (θ′ ◦ θ)) ⊔ (∅, log C A)).

This semantics is still not particularly suitable for dataflow analysis, as termination of the analyses

cannot easily be guaranteed. Assume we are interested in determining which variables are bound to

ground terms in calls to clauses. As descriptions we choose sets U of variables, with the intention

that V ∈ U means that the current substitution definitely grounds V. Now consider the following

program.

12



ancestor(x, z)← parent(x, z).

ancestor(x, z)← ancestor(x,y),ancestor(y, z).

parent(a,b).

Assume we are given the goal ←ancestor(a, z). An analysis based on the SLD semantics must

compute an infinite number of goal/description pairs, namely (among others)

(ancestor(x, z), {x})

(ancestor(x,y),ancestor(y, z), {x})

(ancestor(x,w),ancestor(w,y),ancestor(y, z), {x})
...

Clearly such a dataflow analysis will not terminate. What we need is a semantic definition that

somehow “merges” information about all incarnations of a variable that appears in a program. We

develop such a definition in the following sections.

4.2 Parametric Substitutions

In this section we develop a theory of “substitutions” which differs somewhat from classical sub-

stitution theory. There are a number of reasons for doing this. First, classical substitutions have

some drawbacks when used in a denotational definition. Most general unifiers are not unique,

even when idempotent. For example, unifying p(x) and p(y), it is not clear whether the result

should be {x 7→ y} or {y 7→ x}, and it is hard to guarantee that a semantic definition is invariant

under choice of unification function. Second, renaming traditionally causes problems. Existing

approaches either ignore the problem by postulating some magical (invisible or nondeterministic)

renaming operator, or they commit themselves to a particular renaming technique (as do Jones

and Søndergaard [25]).

As an example of the problem, consider the program

←p(x).

p(x).

By the definition of Jones and Søndergaard this program denotes {{x 7→ x1}}, but one could argue

that {{x 7→ x17}}, {{x 7→ z}}, or even {ι}, would be just as appropriate (recall that ι is the identity

substitution). It would be nice if substitutions would somehow “automatically” perform renaming,

preferably in such a way that the definition made no assumptions about renaming technique. The

urge to avoid use of some specific “renaming function” is so much more pressing as renaming is

practically superfluous in the dataflow analyses that we aim to capture.

13



Our denotational definition is based on a notion of “parametric substitutions.” These have

previously been studied by Maher [29], although for a different purpose and under the name “pa-

rameterized substitutions.” We follow Maher in distinguishing between variables, whose names are

significant, and parameters, whose names are insignificant.

Recall that Var is a set of countably infinite variables. We think of Var, Term, and Atom

as syntactic categories: the variables that appear in a program are all assumed to be taken from

Var. In contradistinction to Var, Par is a countably infinite set of parameters. Both variables

and parameters serve as “placeholders,” but it proves useful to maintain the distinction: Var and

Par are disjoint. A one-to-one correspondence between the two is given by the bijective function

ǫ : Var → Par. In examples we distinguish variables from parameters by putting primes on the

latter.

The set of terms over Par is denoted by Term[Par], and the set of atoms over Par is denoted

by Atom[Par]. A substitution into Par is a total mapping σ : Var→ Term[Par] which is “finitely

based” in the sense that all but a finite number of variables are mapped into distinct parameters.

We do not distinguish substitutions into Par from their natural extension to Atom→ Atom[Par].

The set of substitutions into Par is denoted Sub[Par].

Let us for the time being denoteAtom byAtom[Var] to stress its distinction fromAtom[Par],

and let X be either Var or Par. We define the standard preordering , ⊳, on Atom[X] by A ⊳ A′ iff

∃ τ : X → Term[X] . A = (τ A′). The standard preordering clearly induces an equivalence

relation on Atom[Var] (or Atom[Par]) which is “consistent variable (or parameter) renaming.”

We denote the resulting quotient by Atom[X]⊳ and use ⊳ to denote the induced partial ordering

on Atom[X]⊳ as well. Note that Atom[X]⊳ has no least element.

For A ∈ Â, where Â ∈ Atom[X]⊳, we may denote Â by [A]. In fact we think of [·] as the

function from Atom[X] to Atom[X]⊳ that, given A, yields the equivalence class of A.

A parametric substitution is a mapping from Atom to Atom[Par]⊳. We will not allow all such

mappings, though: the mappings we use are “essentially” substitutions. More precisely, the set

Psub ⊆ ⊙ (Atom→ Atom[Par]⊳) of parametric substitutions is defined by

Psub = ⊙ {[·] ◦ σ | σ ∈ Sub[Par]}.

That is, application of a parametric substitution can be seen as application of a substitution that

has only parameters in its range, followed by taking the equivalence class of the result. We define

(⊥Psub A) to be the least element of ⊙Atom[Par]⊳ and equip Psub with a partial ordering ≤,

which is pointwise ordering on {[·] ◦ σ | σ ∈ Sub[Par]}.

Proposition 4.2 Psub is a complete lattice.

14



We use a notation for parametric substitutions similar to that used for substitutions; however,

square rather than curly brackets are used, to distinguish the two. For example, [x 7→ x′,y 7→ f(x′)]

will map p(x,y, z) to [p(x′, f(x′), z′)]. This parametric substitution corresponds to the substitution

{y 7→ f(x)}.

Definition. The function meet : P Psub→ P Psub→ P Psub is defined by

meet Π Π′ = {π ⊓ π′ | π ∈ Π ∧ π′ ∈ Π′}.

The function pmgu : Atom→ Atom[Par]⊳ → Psub is defined by

pmgu A Â =
⊔
{π | π A ⊳ Â}.

The function unify : Atom→ Atom→ P Psub→ P Psub is defined by

unify A A′ Π = {pmgu A (π A′) | π ∈ Π}.

Readers may wonder why our auxiliary functions are defined to operate on sets of parametric

substitutions, when they will typically be applied only to singleton sets. In fact it is only in this

section that they are used in that way. Later it proves useful to have the broader definitions.

Example 4.3 Let A1 = p(a,x),A2 = p(y, z), and let

π = [y 7→ y′, z 7→ f(y′)].

Then unify A1 A2 {π} = {[x 7→ f(a)]}. Notice that this parametric substitution does not

constrain y or z, only variables in A1 may be constrained. On the other hand we have that

unify A2 A1 {π} = {[y 7→ a]}, in which both x and z are unconstrained. Notice also that

unify A1 A1 {π} = {ǫ}, while unify A2 A2 {π} = {π}.

Let A3 = p(f(y), z). Then unify A3 A2 π = {π}. There is no “occur check problem,” because

the names of placeholders in (π A2) have no significance. One can think of this as automatic

renaming being performed by unify.

Finally let A4 = p(x,x). Then unify A4 A2 {π} = {⊥Psub}, corresponding to failure of

unification.

The idea behind unify should be clear from this example: not only does the function unify

perform renaming “automatically,” it also restricts interest to certain variables, namely those of its

first argument.

15



Definition. The function β : Sub→ Psub maps a substitution to the corresponding parametric

substitution. It is defined by β θ A = [ǫ (θ A)].

So every substitution θ has a corresponding parametric substitution (β θ). However, there are

parametric substitutions that are not in the range of β. For example, there is no substitution θ

such that (β θ) = [x 7→ f(y′, z′)].

16



4.3 A Denotational Base Semantics

Definition. The base semantics has domain Den = Atom → P Psub → P Psub and semantic

functions

Pbas : Prog → Den

Cbas : Clause→ Den→ Den.

It is defined as follows.

Pbas P A Π = d0 A Π where rec d0 =
⊔

C∈PCbas C d0

Cbas [[H←B]] d A Π =
⋃

π∈Πmeet {π} (unify A H (Σ d B (unify H A {π}))).

This definition captures the essence of an SLD refutation-based interpreter using a standard com-

putation rule and a parallel search rule. Recall that (Σ d) is the sequentialized version of d (Σ was

defined on page 3). The semantics is well-defined: (Cbas C) is clearly monotonic.

Note that finite failure is not distinguished from non-termination. For example, let P be the

program consisting only of the clause p. Let P′ be the program consisting only of the clause q←q,

and consider the query ←q. We have that Pbas P q = Pbas P′ q = ∅. This is not a flaw in

the semantic definition, it merely reflects the fact that we are not interested in the distinction,

since termination issues are often disregarded in dataflow analysis. The statements we generate

are of the form “whenever execution reaches this point, so and so holds.” But in saying so, we do

not actually say that execution does reach the point. In particular, “whenever the computation

terminates, so and so holds” concludes nothing about termination.

Readers not familiar with the area should compare the above definition with others from the

literature, both operational definitions, for example [5, 23, 28, 38] and denotational definitions, for

example [13, 23, 25, 35]. Both the definition by Jones and Mycroft [23] and that by Debray and

Mishra [13] assume a left-to-right computation rule and depth-first search of SLD trees and both

capture non-termination. However, both use sequences of substitutions as denotations, which gives

the semantics a rather different flavour. The definition by Jones and Søndergaard [25] uses sets

of substitutions but is more complex than the present because of its use of an elaborate renaming

technique. The present definition is closest to definitions previously suggested by Marriott and

Søndergaard [35].

Let restrict U π be the parametric substitution that acts like π when applied to variables in

U, but maps variables outside U to distinct parameters.

Theorem 4.4 θ ∈ O P A⇒ restrict (vars A) (β θ) ∈ Pbas P A {ι}.

17



Again we make a detour to present a sticky semantics. As before, the repository keeps track of the

atoms that clauses are called with, but for reasons that will soon be clear, the calling atom and the

current substitution are kept separate. The domain of repositories is Rep = Clause→ P(Atom×

Psub). A repository is created using the function log : Clause→ (Atom×Psub)→ Rep defined

by

log C φ C′ = if C = C′ then {φ} else ∅.

Definition. The sticky base semantics has domainDen = Atom→ P Psub→ ((P Psub)×Rep)

and semantic functions

Pstk : Prog → Den

Cstk : Clause→ Den→ Den.

It is defined as follows.

Pstk P A Π = d0 A Π where rec d0 =
⊔

C∈PCstk C d0

Cstk [[H←B]] d A Π =
⋃

π∈Π let Π′ = unify H A {π} in

(meet {π} (unify A H (Σ d B Π′)), log [[H←B]] (A, π)).

A theorem about the relation between the sticky SLD semantics and the sticky base semantics,

similar to Theorem 4.4, clearly holds.

Example 4.5 Let P be the program consisting of the two clauses (as before)

C1 : append(nil,y,y).

C2 : append(u : x,y,u : z)← append(x,y, z).

and let A be the query ←append(x,y,a : nil). We have that Pstk P A {ǫ} = (Π, r), where

Π = {[x 7→ nil,y 7→ a : nil], [x 7→ a : nil,y 7→ nil]}

r C1 = {[y 7→ a : nil], [y 7→ nil]}

r C2 = {[u 7→ a, z 7→ nil]}.

The semantic function Pstk yields sufficient information for dataflow analyses, but is not in

general finitely computable. This is the reason why we aim at realizing a variety of dataflow analyses

by finding finitely computable approximations to Pstk. These approximations must preserve the

behavioural properties of “pure Prolog” programs. For instance, in applications to compiling, they

should give reliable answers to questions such as “is this variable instantiated to a ground term?”

18



or “can this unification be done without the occur check?” Each such analysis requires the use of a

coarser domain, the elements of which approximately describe substitutions or atom denotations.

Bye now it should be clear that the extension of the base semantics to a sticky semantics is fairly

straightforward. To limit the complexity of definitions we shall forget about sticky semantics in the

remainder of these notes. Readers should keep in mind, however, that ultimately the touchstone

for the correctness of a dataflow analysis is its soundness with respect to the sticky semantics.

4.4 A Dataflow Semantics for Definite Logic Programs

The base semantics has been designed to capture the essence of SLD resolution. Now, however, we

introduce some imprecision in the semantics. So far, for all substitutions generated by a clause,

track was kept of the particular substitution the clause was called with, so that the “meet” of

generated substitutions and call substitutions could be computed. We now abandon this approach

in order to get closer to a dataflow semantics.

Definition. The plural semantics has domain Den = Atom→ P Psub→ P Psub and semantic

functions

Pplu : Prog→ Den

Cplu : Clause→ Den→ Den.

It is defined as follows.

Pplu P A Π = d0 A Π where rec d0 =
⊔

C∈PCplu C d0

Cplu [[H←B]] d A Π = meet Π (unify A H (Σ d B (unify H A Π))).

Proposition 4.6 Pplu ∝ Pbas.

We now turn to dataflow semantics. To extract runtime properties of pure Prolog programs one

can develop a variety of more or less abstract versions of the preceding semantics. To put many

such (dataflow) semantic versions into a common framework, we extract from the plural semantics

a dataflow semantics. This semantics contains exactly those features that are common to all the

approximate versions that we want. It leaves one domain and two auxiliary functions unspecified.

These missing details of the dataflow semantics are to be filled in by interpretations (see below).

Different interpretations correspond to different dataflow analyses. The parametric domain, X,

contains whatever “descriptions” we choose in approximating sets of parametric substitutions.

X should thus be a complete lattice which corresponds to P Psub in the standard semantics

in a way laid down by a Galois insertion (X, γ,P Psub, α). The two auxiliary functions should

“compose” and “unify” descriptions in a sound manner.

19



Definition. The dataflow semantics has domain Den = Atom→ X→ X and semantic functions

P : Prog → Den

C : Clause→ Den→ Den.

It is defined as follows.

P P A φ = d0 A φ where rec d0 =
⊔

C∈PC C d0

C [[H←B]] d A φ = m φ (u A H (Σ d B (u H A φ))).

Note that the definition is incomplete because X, m, and u have not been specified. We assume

that X is a complete lattice. The posets Prog, Clause, and Atom are ordered by identity, and the

orderings on all other domains are then naturally induced by that on X (that is, all other domains

are ordered pointwise). We now further overload the term “interpretation” to mean “that which

fills in the missing details of the dataflow semantics.”

Definition. An interpretation is a triple (X,m,u) where X is a non-empty complete lattice, and

m : X→ X→ X and u : Atom→ Atom→ X→ X are (monotonic) functions.

We use the notational convention that PX denotes the version of P which is obtained by completing

the definition of the dataflow semantics with interpretation IX.

Proposition 4.7 For every interpretation IX, PX is well-defined.

Definition. Let I = (X,m,u) and I′ = (X′,m′,u′) be interpretations. Let Den = Atom→ X→

X and Den′ = Atom→ X′ → X′. Then I′ is sound with respect to I under G = (X′, γ,X, α) iff

G is a Galois insertion, m′ appr m, and u′ appr u. If there is a Galois insertion G such that I′

is sound with respect to I under G, we may simply say that I′ is sound with respect to I.

Theorem 4.8 If interpretation Ix is sound with respect to Iy, then Px ∝ Py holds.

Clearly we obtain a partial ordering ⊑ on interpretations by defining I ⊑ I′ iff I′ is sound with

respect to I. This in fact gives rise to a complete lattice of semantics [7].

4.5 Applications

Approximating call patterns in logic programs seems very versatile. In the previous section we

distilled a dataflow semantics which left undefined certain details assumed to be application depen-

dent. The idea is that particular dataflow analyses can be obtained by providing interpretations

that give the missing details. A large number of useful dataflow analyses fit into this framework.

20



Some dataflow analyses aim at providing information about the structure of the terms that will

be generated at runtime. This is the case, for instance, for most analyses that would be characterized

as “type analyses.” For many purposes, however, it suffices to disregard term structure and functors

altogether and use descriptions based entirely on the variables that appear in a program. This is

the case for the groundness analysis detailed in Section 5 and many other useful analyses. Without

claiming completeness of the list or the attached references, we mention some other applications

that fit into the present or a very similar framework:

• Compile time garbage collection [6].

• Determinacy analysis [15].

• Floundering analysis for normal logic programs [10].

• Independence analysis for and-parallelism [18, 50].

• Intelligent backtracking [12].

• Mode analysis [5, 14, 38, 39].

• Occur check analysis [48].

• Program specialization and partial evaluation [16].

• Program transformation [34].

• Trailing analysis [49].

• Type inference [6, 19].

5 An Example: Groundness Analysis

In this section we give an example dataflow analysis for groundness propagation. The analysis is

non-trivial and, to our knowledge, is more accurate than existing groundness analyses.

In this analysis, propositional formulas, or more precisely, classes of equivalent propositional

formulas, are the descriptions. These descriptions are closely related to those used by Dart [9]. A

parametric substitution π is described by a formula F if the truth assignment given by “V is true

iff π grounds V” satifies F. For example, the formula x↔ y describes the parametric substitutions

[x 7→ a,y 7→ b] and [x 7→ u′,y 7→ u′,u 7→ u′] but not [x 7→ a].

21



Let Prop be the poset of equivalent propositional formulas (ordered by implication) over some

suitable finite variable set. We can represent an equivalence class in Prop by a canonical represen-

tative for the class, perhaps a formula which is in disjunctive or conjunctive normal form. By an

abuse of notation we will apply logical connectives to both propositional formulas and to classes of

equivalent formulas.

Lemma 5.1 The poset Prop is a finite (complete) lattice with conjunction as the greatest lower

bound and disjunction as the least upper bound.

22



Definition. Let γ : Prop→ P Psub be defined by

γ F = {π ∈ Psub | assign π satisfies F}

where assign : Psub → Var → Bool is given by assign π V = true iff π grounds V. We define

α : P Psub→ Prop by

α Π = ⊓{F ∈ Prop | Π ⊆ γ F}.

Example 5.2 Let F = [x↔ y]. Then [x 7→ a,y 7→ b] ∈ γ F and

F = α {[x 7→ a,y 7→ b], [x 7→ u′,y 7→ u′]}.

Proposition 5.3 The tuple (Prop, γ,P Psub, α) is a Galois insertion.

In the analysis the function meet is approximated by conjunction.

Definition. The function meet′ : Prop → Prop → Prop is defined by meet′ F F′ = F ∧ F′.

It is straightforward to show that meet′ is the best approximation to meet.

Proposition 5.4 meet′ = α ◦meet ◦ γ.

The function unify is somewhat trickier to approximate. It makes use of project, a projection

function on propositional formulas and mgpu, the analogue of mgu for parametric substitutions.

Definition. Let tass U be the set of truth assignments to the variables in U ⊆ Var. Define the

function project : PVar→ Prop→ Prop by

project U F =
∨
{ψ F | ψ ∈ tass (vars F) \W}.

Define the function mgpu : Atom→ Atom→ Psub by

mgpu A A′ = {β θ | θ ∈mgu A A′}.

Define the function unify′ : Atom→ Atom→ Prop→ Prop by

unify′ H A F = let (A′,F′) = rename (vars H) (A,F) in

project (vars H) (F ∧ (α (mgpu H A))).

23



Example 5.5 Let A = append(x,y, z), H = append(nil,y,y), and H′ = append(u : x,y,u :

z). Then

unify′ H A [true] = [true]

unify′ A H [true] = [x ∧ (y↔ z)]

unify′ H′ A [true] = [true]

unify′ A H′ [false] = [false]

unify′ A H′ [x ∧ (y↔ z)] = [(x ∧ y)↔ z].

Proposition 5.6 unify′ = α ◦ unify ◦ γ.

The groundness analysis Pground is given by instantiating the dataflow semantics with the inter-

pretation (Prop,meet′,unify′).

Example 5.7 Let P be the append program

append(nil,y,y).

append(u : x,y,u : z)← append(x,y, z).

Consider the goal A =←append(x,y, z). To compute Pground P A [true] the analysis proceeds

as follows. Let f d =
⊔

C∈PC C d. We then have

(f ↑ 0) append(x,y, z) [true] = [false]

(f ↑ 1) append(x,y, z) [true] = [x ∧ (y ↔ z)] ∨ [false] = [x ∧ (y↔ z)]

(f ↑ 2) append(x,y, z) [true] = [x ∧ (y ↔ z)] ∨ [(x ∧ y)↔ z] = [(x ∧ y)↔ z]

and f ↑ 3 = f ↑ 2 = d0. Thus Pground P A [true] = [(x ∧ y)↔ z].

Similarly one can show that Pground P A [x ∧ ¬y] = [x ∧ (y ↔ z)]. In the sticky version of

Pground, we would find that in all calls to append, the first argument is definitely ground, and

the second argument is definitely not ground.

Theorem 5.8 Pground ∝ Pplu.

When performing a dataflow analysis, one is usually interested in computing the value of

(Pground P) for some fixed query consisting of an atom A and propositional formula F. To

do this efficiently one can make use of techniques for efficient fixpoint computation. The first thing

to observe is that one is not interested in computing (Pground P) for all queries. The idea is to

push information about the query into the fixpoint computation and only compute those values of

(Pground P) actually required. This can be done by simultaneously computing the set of queries

24



which may be called and the denotation of these queries. Standard tabulation techniques can be

used for this [11]. The same basic idea appears in the magic set transformation used in deductive

databases [3]. It is also related to the “minimal function graph” semantics introduced by Jones

and Mycroft [24]. See also Marriott and Søndergaard [35].

Analysis efficiency may also be improved by first computing minimal cliques of mutually recur-

sive clauses and performing the analysis on these (relatively) independently. One may also be able

to make use of differential fixpoint techniques. In the groundness analysis this is facilitated if the

classes of propositional formulas are represented by formulas in disjunctive normal form.

References

[1] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Languages. Ellis

Horwood, 1987.

[2] K. Apt and M. van Emden. Contributions to the theory of logic programming. Journal of the

ACM 29 : 841–862, 1982.

[3] F. Bancilhon et al. Magic sets and other strange ways to implement logic programs. In Proc.

Fifth ACM Symp. Principles of Database Systems, pages 1–15. Cambridge, Massachusetts,

1986.

[4] G. Birkhoff. Lattice Theory (AMS Coll. Publ. XXV). American Mathematical Society, third

edition 1973.

[5] M. Bruynooghe. A practical framework for the abstract interpretation of logic programs. To

appear in Journal of Logic Programming.

[6] M. Bruynooghe et al. Abstract interpretation: towards the global optimization of Prolog pro-

grams. In Proc. Fourth Int. Symp. Logic Programming, pages 192–204. San Francisco, Califor-

nia, 1987.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proc. Fourth Ann. ACM Symp.

Principles of Programming Languages, pages 238–252. Los Angeles, California, 1977.

[8] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. Sixth

Ann. ACM Symp. Principles of Programming Languages, pages 269–282. San Antonio, Texas,

1979.

[9] P. Dart. On derived dependencies and connected databases. To appear in Journal of Logic

Programming.

[10] P. Dart, K. Marriott and H. Søndergaard. Detection of floundering in logic programs. In

preparation. Dept. of Computer Science, University of Melbourne, Australia.

25



[11] S. K. Debray. Efficient dataflow analysis of logic programs. In Proc. Fifteenth Ann. ACM

Symp. Principles of Programming Languages, pages 260–273. San Diego, California, 1988.

[12] S. K. Debray. Global Optimization of Logic Programs. Ph. D. Thesis, State University of New

York at Stony Brook, New York, 1986.

[13] S. K. Debray and P. Mishra. Denotational and operational semantics for Prolog. Journal of

Logic Programming 5 (1) : 61–91, 1988.

[14] S. K. Debray and D. S. Warren. Automatic mode inference of logic programs. Journal of Logic

Programming 5 (3) : 207–229, 1988.

[15] S. K. Debray and D. S. Warren. Detection and optimization of functional computations in

Prolog. In E. Shapiro, editor, Proc. Third Int. Conf. Logic Programming (Lecture Notes in

Computer Science 225), pages 490–504. Springer-Verlag, 1986.

[16] J. Gallagher, M. Codish and E. Shapiro. Specialisation of Prolog and FCP programs using

abstract interpretation. New Generation Computing 6 (2,3) : 159–186, 1988.

[17] M. Hecht. Flow Analysis of Computer Programs. North-Holland, 1977.

[18] D. Jacobs and A. Langen. Static analysis of logic programs for independent and-parallelism.

Technical Report 89-03, Computer Science Dept., University of Southern California, Los An-

geles, California, 1989.

[19] G. Janssens and M. Bruynooghe. An application of abstract interpretation: Integrated type

and mode inferencing. Report CW 86, Dept. of Computer Science, University of Leuven,

Belgium, 1989.

[20] J. Jensen. Generation of machine code in Algol compilers. BIT 5 : 235–245, 1965.

[21] N. D. Jones. Flow analysis of lambda expressions. In S. Even and O. Kariv, editors, Proc. Eighth

Int. Coll. Automata, Languages and Programming (Lecture Notes in Computer Science 115),

pages 114–128. Springer-Verlag, 1981.

[22] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like structures. In

S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis, pages 102–131. Prentice-

Hall, 1981.

[23] N. D. Jones and A. Mycroft. A stepwise development of operational and denotational semantics

for Prolog. In Proc. 1984 Int. Symp. Logic Programming, pages 289–298. Atlantic City, New

Jersey, 1984.

[24] N. D. Jones and A. Mycroft. Dataflow analysis of applicative programs using minimal function

graphs. In Proc. Thirteenth Ann. ACM Symp. Principles of Programming Languages, pages

296–306. St. Petersburg, Florida, 1986.

[25] N. D. Jones and H. Søndergaard. A semantics-based framework for the abstract interpretation

of Prolog. In Abramsky and Hankin [1], pages 123–142.

26



[26] T. Kanamori and T. Kawamura. Analyzing success patterns of logic programs by abstract

hybrid interpretation. ICOT TR-279, ICOT, Tokyo, Japan, 1987.

[27] S. C. Kleene. Introduction to Metamathematics. North-Holland, 1971. Originally published by

Van Nostrand, 1952.

[28] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition 1987.

[29] M. Maher. On parameterized substitutions. Unpublished manuscript. IBM T. J. Watson Re-

search Center, Yorktown Heights, New York, 1986.

[30] K. Marriott. Generalizing abstract interpretation. In preparation. IBM T. J. Watson Research

Center, Yorktown Heights, New York, 1989.

[31] K. Marriott and H. Søndergaard. Bottom-up abstract interpretation of logic programs. In R.

Kowalski and K. Bowen, editors, Logic Programming: Proc. Fifth Int. Conf. Symp., pages

733–748. MIT Press, 1988.

[32] K. Marriott and H. Søndergaard. Bottom-up dataflow analysis of normal logic programs. Re-

search Report RC 14858, IBM T. J. Watson Research Center, Yorktown Heights, New York,

1989.

[33] K. Marriott and H. Søndergaard. A fully abstract semantics for Horn clause programs. In

preparation. IBM T. J. Watson Research Center, Yorktown Heights, New York, 1989.

[34] K. Marriott and H. Søndergaard. Prolog program transformation by introduction of difference-

lists. In Proc. Int. Computer Science Conf. 88, pages 206–213. IEEE Computer Society, Hong

Kong, 1988.

[35] K. Marriott and H. Søndergaard. Semantics-based dataflow analysis of logic programs. In

G. X. Ritter, editor, Information Processing 89, pages 601–606. North-Holland, 1989.

[36] K. Marriott, H. Søndergaard and N. D. Jones. Denotational abstract interpretation of pure

Prolog. In preparation. Dept. of Computer Science, University of Melbourne, Australia, 1989.

[37] C. S. Mellish. The automatic generation of mode declarations for Prolog programs. DAI Re-

search Paper No. 163, University of Edinburgh, Scotland, 1981.

[38] C. S. Mellish. Abstract interpretation of Prolog programs. In E. Shapiro, editor, Proc. Third

Int. Conf. Logic Programming (Lecture Notes in Computer Science 240), pages463–474.

Springer-Verlag 1986.

[39] C. S. Mellish. Some global optimizations for a Prolog compiler. Journal of Logic Programming

2 (1) : 43–66, 1985.

[40] A. Mycroft. Abstract Interpretation and Optimising Transformations for Applicative Programs.

Ph. D. Thesis, University of Edinburgh, Scotland, 1981.

27



[41] A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In H. Ganzinger

and N. D. Jones, editors, Programs as Data Objects (Lecture Notes in Computer Science 217),

pages 536–547. Springer-Verlag, 1986.

[42] P. Naur. The design of the Gier Algol compiler, part II. BIT 3 : 145–166, 1963.

[43] F. Nielson. Strictness analysis and denotational abstract interpretation. Information and Com-

putation 76 (1) : 29–92, 1988.

[44] J. C. Reynolds. Automatic computation of data set definitions. In A. Morrell, editor, Infor-

mation Processing 68, pages 456–461. North-Holland, 1969.

[45] J. C. Reynolds. On the relation between direct and continuation semantics. In J. Loeckx, editor,

Proc. Second Int. Coll. Automata, Languages and Programming (Lecture Notes in Computer

Science 14), pages 141–156. Springer-Verlag, 1974.

[46] D. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and

Bacon, 1986.

[47] M. Sintzoff. Calculating Properties of Programs by Valuation on Specific Models. SIGPLAN

Notices 7 (1) : 203–207, 1972. Proc. ACM Conf. Proving Assertions about Programs.

[48] H. Søndergaard. An application of abstract interpretation of logic programs: Occur check

reduction. In B. Robinet and R. Wilhelm, editors, Proc. ESOP 86 (Lecture Notes in Computer

Science 213), pages 327–338. Springer-Verlag, 1986.

[49] A. Taylor. Removal of dereferencing and trailing in Prolog compilation. In G. Levi and

M. Martelli, editors, Logic Programming: Proc. Sixth Int. Conf., pages 48–60. MIT Press,

1989.

[50] W. Winsborough and A. Wærn. Transparent and-parallelism in the presence of shared free

variables. In R. Kowalski and K. Bowen, editors, Logic Programming: Proc. Fifth Int. Conf.

Symp., pages 749–764. MIT Press, 1988.

28


