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Abstract

This paper investigates the stabilizability of a linear, discrete-time plant with a real-valued output when the controller,
which may be nonlinear, receives observation data at a known rate. It is �rst shown that, under a �nite horizon cost equal to
the mth output moment, the problem reduces to quantizing the initial output. Asymptotic quantization theory is then applied
to directly obtain the limiting coding and control scheme as the horizon approaches in�nity. This is proven to minimize a
particular in�nite horizon cost, the value of which is derived. A necessary and su�cient condition then follows for there to
exist a coding and control scheme with the speci�ed data rate that takes the mth output moment to zero asymptotically with
time. If the open-loop plant is �nite-dimensional and time-invariant, this condition simpli�es to an inequality involving the
data rate and the unstable plant pole with greatest magnitude. Analagous results automatically hold for the related problem
of state estimation with a �nite data rate. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

As large, digitally interconnected control systems
become more common, it is increasingly important to
understand how the communication and control ob-
jectives of such systems are related. The traditional
assumption that plant observations are available to
controllers with in�nite precision is clearly unrealistic
when the various parts of a system are connected by
a network that has �nite information-carrying capac-
ity. More than merely introducing delay and quantiza-
tion, this limited capacity forces the question of how
to choose the bits of information that would be most
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useful for control. In this paper we study the simplest
type of networked system, a plant and controller linked
by a channel with a �xed data rate. In particular, we
seek to determine the smallest data rate needed to sta-
bilize the output of a linear plant when no structural
constraints are imposed on the coder or controller.
In recent years, a number of researchers have pro-

posed and analyzed various versions of this problem.
In general, the focus has been on memoryless cod-
ing, in which the plant output is quantized without
reference to its past. In [4], it was shown that if the
output of an unstable, deterministic, discrete-time,
linear, time-invariant (LTI) system is passed through
a �xed, memoryless quantizer, then controllability
in the sense of being able to make the trajectory
approach any arbitrary point is impossible. In [9],
the communication delays in this model were ex-
plicitly included and su�cient conditions given for
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the state to eventually remain within a given bound.
Wong and Brockett proved that if the initial condition
of a continuous-time LTI system is within a given
bounded set then memoryless coding and control suf-
�ce to bound the state under certain conditions [16].
Investigating discrete-time, Gaussian LTI systems,
Borkar and Mitter derived a separation principle and
a memoryless, certainty equivalent controller, un-
der the constraint that the coder was a memoryless
quantizer acting on the innovations of a Kalman
�lter [1].
The only case in which schemes with memory have

been dealt with in communication-limited control ap-
pears to be in [14], in which a noisy, analog channel
was considered. In this paper, we assume a noiseless,
digital channel and permit the coder and controller
to have potentially unlimited memory. The motiva-
tion for this comes from the closely related �eld of
communication-limited state estimation, in which re-
cursive coding schemes have been studied extensively
[3,15,12,13]. Moreover, this divorces the e�ects of
the memory constraint from those of the communica-
tion constraint proper, thereby allowing the latter to
be analyzed more clearly. In the same spirit we ig-
nore �nite word-length issues, by assuming that the
measurements are available to the coder with in�nite
precision, and focus solely on the fundamental perfor-
mance limitations imposed by the �nite data rate.
We consider a discrete-time, linear, time-varying

and in�nite-dimensional plant with no process or
measurement noise and with a directly observed,
real-valued output which is zero before time zero and
governed by a probability density p at time zero. Our
primary aim is to �nd the smallest data rate needed to
asymptotically stabilize the output of this plant in mth
moment, i.e. to take the mth moment of the output to
zero with time, when no structural constraints save
causality are placed on the coder or controller. With
this in mind, we �rst consider a �nite horizon cost
proportional to the mth output moment and show that
the problem then reduces to causally reformulating
an optimal quantizer for the initial output.
The insights gained from the �nite horizon analy-

sis are then combined with asymptotic quantization
theory [10,5,2,8] to derive the limiting scheme as the
horizon tends to in�nity,without having to solve the �-
nite horizon problem �rst. We prove that this limiting
coding and control scheme is optimal with respect to
a certain in�nite horizon cost, provided that p is con-
tinuous and satis�es certain technical conditions, and
derive the optimal cost. This then leads to a necessary

and su�cient condition for the plant to be asymptoti-
cally stabilizable at a data rate R. If the open-loop dy-
namics are �nite-dimensional and time-invariant, this
simpli�es to

R¿ log2|�|; (1)

where � is the unstable open-loop pole with largest
magnitude. It is then observed that analogous results
automatically hold for the problem of state estimation
with a �nite data rate.

2. Formulation of control problem

Consider the in�nite-dimensional, time-varying,
ARMA model

xk+1 =
∞∑
j=0

ak;jxk−j + bk;juk−j; k = 0; 1; 2; : : : ; (2)

where xk ; uk ∈R are the output and control, respec-
tively, at time k, with xk = uk = 0 when k ¡ 0, and
ak;j; bk; j ∈R, j; k¿0, are known parameters. We as-
sume that bk;0 6= 0, ∀k¿0, so that the control always
a�ects the output at the next time instant. In addition,
we further assume that x0 is a realization of a ran-
dom variable X0 on the probability space (R;L; P),
whereL is the �-algebra of Lebesgue sets on the real
line and P is a known probability measure such that
E|X0|m¡∞ for some m¿ 0.
Suppose a coder observes the outputs and then sends

real-time data to a distant controller over a digital
channel that can carry only one symbol sk from an al-
phabet ZM , [0; 1; : : : ; M − 1] during each sampling
interval. The corresponding data rate is R, log2M
bits per interval. Neglecting the propagation delay and
transmission errors, the �nite data rate implies that
each symbol takes one sampling interval to reach the
other end of the channel. Hence, at time k the con-
troller has s0; : : : ; sk−1 available and generates

uk = vk(s̃k−1); ∀k¿0; (3)

where the notation ỹ k denotes a sequence {yj}kj=0 and
vk : ZkM → R is the controller function at time k.
If no restrictions save causality are placed on the

structure of the coder, each symbol sk which it trans-
mits may be a function of the sequences of past and
present outputs x̃k and past symbols s̃k−1. However,
(2) and (3) imply that xk in its turn is completely de-
termined by the initial condition and s̃k−2, so sk is
consequently a function of x0 and s̃k−1,

sk = 
k(x0; s̃k−1); ∀k¿0; (4)
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where 
k :R × ZkM → ZM is the coder function at
time k.
Note that there is no explicit communication con-

straint between the controller and actuator. This is
obviously a reasonable assumption if they are colo-
cated, but even otherwise the formulation above would
be unchanged, since the location of the controller is
purely nominal. The symbols that would be transmit-
ted by it over an additional link to the actuator would
have to be translated once again into control signals,
making intermediate calculations redundant. The num-
ber R should thus be regarded as the overall rate of the
complete link from sensor to actuator. In addition, we
remark that there are slightly di�erent ways in which
the digital link can be de�ned (see [16,1] for details).
We call the pair of sequences (
; v) , ({
k}k¿0;

{vk}k¿0) a coder–controller and our objective is to
�nd one that minimizes an in�nite horizon cost of the
form

Jm , lim sup
k→∞

�−1k E|Xk |m; (5)

where Xk is the random variable corresponding to the
output xk . This compares the asymptotic behaviour of
themth output moment against some positive sequence
{�k}k¿0, which serves as a rough benchmark of the
desired output behaviour. Although it does not attach
a cost to the magnitudes of the controls or intermedi-
ate outputs, it does succeed in capturing the asymp-
totic stochastic behaviour of the closed-loop system.
However, before addressing this objective, we �rst
investigate the �nite horizon cost

Jm;N , E|XN+1|m: (6)

The insights gained then lead to an optimal solution of
the in�nite horizon problem and hence a necessary and
su�cient condition for the system to be asymptotically
stabilizable in mth moment.

3. Finite horizon cost

If the initial condition were known with com-
plete accuracy by the controller, it could easily use
the system equations to generate controls that yield
x1 = x2 = · · · = 0. However, in the presence of the
data rate constraint this is evidently impossible. One
way around this is for the coder to transmit a progres-
sively more accurate estimate of x0 to the controller,
by using the bits available at each time instant to
quantize it recursively. The controller can then use
these estimates to generate the controls. It is shown

in this section that for linear systems of form (2), the
optimal �nite horizon scheme has exactly this struc-
ture. More precisely, the core of the Jm;N -optimal
coder-controller is shown to be a causally reformu-
lated, optimal quantizer for X0 with MN levels.
Observe that by using downward induction on k,

the output of the system can be expressed in terms of
the initial condition and past controls,

xk+1 = �kx0 +
k∑
j=0

�k;juk−j; ∀k¿0; (7)

where �−1 , 1 and �k , �k;j are given recursively by

�k+1 ,
k+1∑
j=0

ak+1; j�k−j;

�k+1; j , bk+1; j +
j−1∑
i=0

ak+1; i�k−i; j−i−1; (8)

∀k¿0; j∈ [0; : : : ; k + 1]:
Notice that the problem becomes trivial if �k = 0 for
some k ∈ [0; : : : ; N ], since from (7) and (2) controls
uk ; : : : ; uN can then be found which yield xk+1 = · · ·=
xN+1 = 0. As such, we focus on the nontrivial case
when �k 6= 0, ∀k ∈ [0; : : : ; N ].
The next step is to change variables. De�ne the

mappings by

�k(t̃k−1), −�−1k
k∑
j=0

�k;jvk−j(t̃k−j−1);

∀k ∈ [0; : : : ; N ]; t̃k−1 ∈ZkM ; (9)

so that−�k�k(s̃k−1) represents the cumulative e�ect of
past controls on the output at time k+1. As �k;0=bk;0,
which by hypothesis is nonzero, the matrix of coe�-
cients {−�−1k �k; j}k; j is triangular with nonzero diag-
onal elements. Hence, the equation above can easily
be inverted to express the coder function sequence ṽN
in terms of �̃N ,

vk(t̃k−1),
k∑
j=0

�k; j�k−j(t̃k−j−1);

∀k ∈ [0; : : : ; N ]; t̃k−1 ∈ZkM ; (10)

where �k; j is given by the recursion

�k;0 , −�−1k;0�k ; �k; j , −�−1k;0
j∑
i=1

�k; i�k−i; j−i ;

∀k ∈ [0; : : : ; N ]; j∈ [0; : : : ; k]: (11)
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This one-to-one correspondence between �̃N and ṽN
implies that it is perfectly equivalent to optimize Jm;N
with respect to either. Substituting (7) and (9) into
(6), we obtain

Jm;N = |�N |mE|X0 − �N (S̃N−1)|m; (12)

where S̃N−1 is the random variable corresponding to
the symbol sequence s̃N−1. Now, �N (s̃N−1) is a func-
tion of x0 with up to MN distinct values, one for
each possible symbol sequence, so the function RN
de�ned by RN (x0) , �N (s̃N−1) can be regarded as
an MN -level quantizer for x0. The RHS of (12) is
then simply its mean mth power error (MmPE), scaled
by |�N |m. As such, if we can �nd a pair (
∗; �∗) that
achieves the minimum MmPE for an MN -level quan-
tizer for X0, it will automatically be Jm;N -optimal. We
show next how to construct such a pair.
Denote the points of the MmPE-optimal, MN -level

quantizer for X0 by qN (0); qN (1); : : : ; qN (MN − 1),
ranked from least to greatest, and set

�∗N (t̃N−1), qN

(
N−1∑
k=0

tkMN−1−k
)
; ∀ t̃N−1 ∈ZNM ;

(13)

i.e. the argument of �∗N is the M -ary representation
of that of qN . By the nearest-neighbour rule [6], the
optimal quantizer selects the point closest to x0, so
choose the symbol sequence by

s̃N−1 = arg min
t̃N−1 ∈ZNM

|x0 − �∗N (t̃N−1)|m; (14)

breaking possible ties by selecting the greater point.
As this equation can be expressed recursively,
∀k ∈ [0; : : : ; N − 1], as
sk = 
∗k (x0; s̃k−1)

, arg min
tk ∈ZM

{
min

tk+1 ;:::; tN−1 ∈ZM
|x0 − �∗N (s̃k−1; tk ;

tk+1; : : : : ; tN−1)|m
}
; (15)

it is realizable within our framework. Substituting (14)
into (12), we obtain

|�N |−mJ ∗m;N =
∫

min
t̃N−1∈ZNM

|x0 − �∗N (t̃N−1)|m dP(x0)

=
∫

min
j∈ZMN

|x0 − qN (j)|m dP(x0):
(16)

As the last integral is simply the expression for the
MmPE of the optimal MN -level quantizer for X0 [6],
the pair (
∗; �∗) is Jm;N -optimal.

We now recast the coder equation (5) in a somewhat
simpler form. First extend qN over the real interval
[−1; MN ], so that it remains increasing and is further-
more continuous, and for convenience set qN (−1),
−∞, qN (MN ),∞. Next, de�ne
eN (z), (qN (MNz − 1) + qN (MNz))=2;

∀z ∈ [0; 1]; (17)

�k ,
k∑
j=0

sjM−j−1; ∀k¿0; (18)

so that eN (�N−1) is half-way between the neigh-
bouring quantizer points qN (MN�N−1) and qN (MN

�N−1+1). From (14), the sequence s̃N−1 is transmitted
i� the quantizer point closest to x0 is qN (MN�N−1),
equivalent to x0 lying inside the interval [eN (�N−1);
eN (�N−1 +M−N )). As eN is increasing and continu-
ous, x0 lies in this interval i� e−1N (x0)∈ [�N−1; �N−1 +
M−N ). Referring to (18), this in turn is equivalent
to s̃N−1 being the �rst N digits of the M -ary rep-
resentation for e−1N (x0). That is, the optimal coder
simply applies a transformation e−1N to the initial
condition and then transmits the �rst N digits of its
M -ary expansion. This and the previous results are
encapsulated below:

Coder 1. First, transform the initial condition x0 of
system (2) to obtain � , cN (x0) , e−1N (x0); where
eN is given by (17). Then at time k; transmit the
(k + 1)th most signi�cant digit in the M-ary repre-
sentation of � as the symbol sk .

Controller 1. Upon receiving the symbol sk−1 at time
k; calculate the number �k using (18). Set

�∗N (s̃N−1), qN (MN�N−1);

�∗k (s̃k−1), c−1N (�k−1 + 0:5=M
k); (19)

∀k ∈ [0; : : : ; N − 1];
where qN (0)¡qN (1)¡ · · ·¡qN (MN − 1) are the
points of the MmPE-optimal; MN -level quantizer
for X0; and use (10) to calculate the control vk(s̃k−1).

We make several comments here. Firstly, the op-
timal coder–controller is basically a compander, i.e.
it consists of a compressor cN which maps x0 ∈R
to �∈ [0; 1], followed by a uniform, MN -level quan-
tizer which maps this to �N−1 and then an expander
qN (MN ·) which transforms �N−1 into an estimate of
x0 [6]. Secondly, the mappings �∗0 ; : : : ; �

∗
N−1 are ac-

tually completely arbitrary, since they do not a�ect
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the integrand in (16). However, the choice above is
intuitively appealing, as �k + (1=2Mk+1) is the mid-
point of the interval of length M−k−1 which the con-
troller knows that � lies in, from the sequence s̃k .
Furthermore, this makes the in�nite horizon analysis
of the next section somewhat easier. Thirdly, although
the optimal quantizer may be unique, �∗N can be de-
�ned in as many di�erent ways as there are one-to-one
maps from the integers ZMN to the M -ary sequences
ZNM . The choice of mapping taken here, as implied in
Eq. (13), is one of the more tractable ones. Finally,
explicit expressions for the optimal coder–controller
are generally impossible to derive, since qN can nor-
mally only be obtained numerically for a given p and
N [10,6]. One of the few exceptions is when X0 is
Laplacian and m=1, for which case a closed form so-
lution parametrized by N and the mean and variance
of X0 has been obtained [11].

4. In�nite horizon cost

In the previous section, we observed that Jm;N -
optimal coder–controllers are usually impossible to
derive in closed form. However, we demonstrate
here that when N → ∞ the limiting coder–controller
can be obtained directly, without explicitly solving
the �nite horizon problem. We then prove that this
limiting scheme is in fact optimal with respect to an
in�nite horizon cost of form (5), under certain mild
conditions on the probability density p governing the
initial output x0.
The key is the classic result that as the number of

MmPE-optimal quantizer points approaches in�nity,
their normalized density per unit x0 approaches

�(x0),
(∫

p(y)1=(m+1) dy
)−1

p(x0)1=(m+1);

∀x0 ∈R; (20)

under certain technical conditions on p [5,2]. As
qN (MN�N−1) is the (MN�N−1 + 1)th quantizer point
by (13), the nearest-neighbour rule implies that there
are MN�N−1 + O(1) points less than or equal to x0.
Observing that �N−1, being a sum of exponentially
decaying terms, must converge to a number ��∈ [0; 1]
as N → ∞, we may de�ne

c(x0), �� = lim
N→∞

MN�N−1 + O(1)
MN

=
∫
y6x0

�(y) dy; ∀x0 ∈R: (21)

By analogy with Coder–Controller 1, the following
scheme as the horizon N becomes unbounded is
suggested:

Coder 2. First, transform the initial condition x0 of
system (2) to yield �� , c(x0); where c is given by
(21). Then at time k transmit the (k + 1)th most
signi�cant digit in the M-ary representation of �� as
the symbol sk .

Controller 2. Upon receiving the symbol sk−1 at time
k; calculate

�k(s̃k−1) = c−1(�k−1 + 0:5=Mk); (22)

where �k−1 is de�ned by (18); and use (10) to gener-
ate the control signal vk(s̃k−1).

For instance, for Laplacian X0 with mean � and
mean absolute deviation �, it can be shown that

c(x0) = 0:5 + sign(x0 − �)(1− e−|x0−�|=((m+1)�))=2;

and for Gaussian X0 with mean � and standard devi-
ation �, we have

c(x0) = F
(
x0 − �
�
√
m+ 1

)
;

where F is the unit normal distribution function.
We now consider whether the coder–controller

above is actually optimal with respect to an in�nite
horizon cost of form (5). First we need to �x the
weights �k , k¿0. Observe that as N → ∞,
min

;v

MmN |�N |−mE|XN+1|m

=min

;�

MmNE|X0 − �N (S̃N−1)|m

→ (m+ 1)−12−m‖p‖1=(m+1); (23)

where the limit is a well-known result of asymptotic
quantization theory [2] and ‖p‖r , (

∫
p(x0)r dx0)1=r .

This is nearly what we want, except that in (5) the
minimization is to be performed after the limit is taken.
This suggests that an appropriate choice of weighting
sequence is

�k = |�k−1|m=Mm(k−1); ∀k¿0: (24)

In order to prove that Coder–Controller 2 is
Jm-optimal, we make use of the fact that it is es-
sentially a compander and apply a result of [8]. Let
G : R → [0; 1] be a compressor function with a
continuous and nonnegative derivative g such that
g(x) decreases monotonically with |x| for su�ciently
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large |x|. Suppose G is applied to a real random vari-
able X with a probability density function � such
that E{g(X )−m}¡∞ and such that, for some �¿ 0,
both∫ �

0
s(z)mh(2z) dz;

∫ 1

1−�
s(z)mh(2z − 1) dz¡∞;

where s , 1=gG−1(·) and h , �G−1(·)=gG−1(·).
In [8], it is shown that if G(x) is quantized by fQ, a
Q-level, midpoint-based, uniform quantizer on [0; 1],
and G−1 subsequently applied to form an estimate of
x, then

QmE|X0 − G−1fQG(X )|m

→ (m+ 1)−12−mE{g(X )−m} as Q → ∞: (25)
We can now prove the main result of this sec-
tion:

Theorem 1. Let the initial output x0 of system (2) be
governed by a continuous probability density func-
tion p which decreases with |x0| for su�ciently large
|x0| and satis�es E|X0|m+n ¡∞; for some m; n¿ 0.
Suppose further that

pc−1(2z − 1)6Apc−1(z); ∀z ∈ [1− �; 1];
pc−1(2z)6Apc−1(z); ∀z ∈ [0; �]
for some A; �¿ 0; where c is given by (21). Then
Coder–Controller 2 is Jm-optimal and achieves

J ∗m =min
;v lim
k→∞

|�k−1|−mMm(k−1)E|Xk |m

=
1

(m+ 1)2m

(∫
p(x0)1=(m+1) dx0

)m+1
; (26)

where �k ; k¿0; are given by (8). Furthermore; for a
given coding alphabet sizeM; a coder–controller that
takes E|Xk |m → 0 exists if and only if

�k=Mk → 0 as k → ∞: (27)

Proof. Note that �−1k E|Xk |m = Mm(k−1)E|X0 −
�k−1(S̃k−2)|m. As �k−1(s̃k−2) may be expressed as the
compander output c−1fMk−1c(x0), with fMk−1 being
the Mk−1-level, midpoint-based, uniform quantizer
on [0; 1], our �rst step is to show that the compres-
sor c satis�es the conditions of [8]. Its derivative
c′=�=�−1p(·)1=(m+1), where �, ∫

p(x0)1=(m+1) dx0,
so c′ is evidently continuous, nonnegative and mono-
tonically decreasing for large enough x0, by hypoth-
esis on p. Furthermore, E{g(X0)−m} = ‖p‖1=(m+1)
which, as remarked in [2], is guaranteed to be bounded
by H�older’s inequality if E|X0|m+n ¡∞. Next, note

that h = �pc−1(·)m=(m+1), so that h(2z)6A′h(z),
∀z ∈ [0; �], where A′ , Am=(m+1). Hence,∫ �

0
s(z)mh(2z) dz 6A′

∫ �

0
s(z)mh(�) dz

=A′�m
∫ c−1(�)

0
p(x0)1=(m+1) dx0;

which is �nite. The boundedness of the remaining in-
tegral can be proven in exactly the same way. Hence,
all the preconditions for (25) hold, so that as k → ∞,
Mm(k−1)E|X0 − �k−1(S̃k−2)|m

→ (m+ 1)−12−mE{�(X0)−m}
=(m+ 1)−12−m‖p‖1=(m+1):

Now observe that for any coder–controller (
′; �′),

lim sup
k→∞

Mm(k−1)E|X0 − �′k−1(S̃k−2)|m

¿ lim
k→∞

min

′ ;�′

Mm(k−1)E|X0 − �′k−1(S̃k−2)|m

=
‖p‖1=(m+1)
(m+ 1)2m

;

by (23). As the scheme above achieves this lower
bound, it is optimal.
To prove the su�ciency of (27), suppose it holds.

Eq. (26) indicates that if Coder–Controller 2 is applied
then the sequence {|�k−1|−mMm(k−1)E|Xk |m}k¿0 is
bounded, which forces E|Xk |m to approach zero. To
prove necessity, suppose that (27) does not hold. For
any coder–controller,

Mm(k−1)

|�k−1|m E|Xk |
m

=Mm(k−1)E|X0 − �′k−1(S̃k−2)|m
¿min


′ ;�′
Mm(k−1)E|X0 − �′k−1(S̃k−2)|m

→ ‖p‖1=(m+1)
(m+ 1)2m

as k → ∞;

where we have again made use of the limit from (23).
Hence, for any coder–controller and �¿ 0, ∃k ′¿ 0
such that

E|Xk |m¿ |�k−1|m
Mm(k−1)

(‖p‖1=(m+1)
(m+ 1)2m

− �
)
; ∀k¿k ′:

By hypothesis the RHS cannot approach zero, so no
coder–controller exists which takes E|Xk |m → 0.

Condition (27) compares the accuracy of the ini-
tial condition estimate, proportional to Mk , with the
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dynamical coe�cient �k which propagates the uncer-
tainty in x0 and states that the system can be stabilized
if and only if the former increases more rapidly than
the latter. Note that it is trivially satis�ed by asymp-
totically stable systems, for which �k → 0. When the
open-loop portion of the system is d-dimensional, lin-
ear and time-invariant (LTI), the �rst equation in (8)
becomes

�k+1 =
d−1∑
j=0

aj�k−j;

where �−1 = 1 and �−2 = · · ·= �−d=0. The solution
to this is of the form

�k =
d−1∑
j=0

hj�kj ;

where �0; : : : ; �d−1 are the poles of the system and
h0; : : : ; hd−1 are constants, with possibly a polynomial
dependence on k if a pole is repeated. Hence, if � is
the pole with largest magnitude then �k ∼ �k for large
k, to within a polynomial factor in k. Substituting this
into (27), we see that this system is asymptotically
stabilizable in mth moment i� M ¿ |�|. As the data
rate R=log2M , we obtain the condition R¿ log2 |�|.
This makes precise the notion that the more unstable
a system is, the higher the data rate needed to stabilize
it. This result is summarized below.

Corollary 1. Consider the linear system below; with
time-invariant; d-dimensional open-loop dynamics;

xk+1 =
d−1∑
j=0

ajxk−j +
∞∑
j=0

bk;juk−j; ∀k¿0;

where xk ; uk ∈R are the output and control;
respectively; at time k; aj; bk; j ∈R with bk;0 6= 0;
∀j; k¿0; and xk = uk = 0 when k ¡ 0. If the proba-
bility density function governing x0 satis�es the con-
ditions in Theorem 1; then a coder–controller with
data rate R that takes E|Xk |m → 0 exists if and only

R¿ log2|�|;
where � is the unstable system pole with largest mag-
nitude.

The technical conditions on p in Theorem 1 e�ec-
tively limit the speed of decay of pc−1(z) as z ap-
proaches 0 and 1. They can be shown to be satis�ed
by any p such that p(y) ∼ |y|v exp(−B|y|w) for large
|y| and parameters B; w¿ 0, v∈R, which includes

densities such as the Gaussian and Laplacian. We con-
jecture that the in�mum of Jm assuming only that p
is Lebesgue-integrable is also given by (23), since it
should be possible to construct compressors ci, i¿0,
which satisfy the conditions of [8] and approach c in
an appropriate integral sense as i → ∞. However, it
is much more di�cult to prove that Coder–Controller
2 actually achieves this lower bound for any such gen-
eral p, despite being the limiting form of the optimal
�nite horizon scheme.
We remark that the results above automatically ap-

ply to the problem of output estimation under a data
rate constraint [15,12]. The only di�erences in the
problem formulation are that the controls in the system
equation (2) are set to zero, the controller is replaced
by an estimator

x̂k = �k(s̃k−1); ∀k¿0 (28)

and the objective is to �nd a coder–estimator (
; �),
({
k}k¿0; {�k}k¿0) that minimizes the distortion

Dm , lim sup
k→∞

�−1k E|Xk − X̂ k |m: (29)

The optimal coder–estimator is the same as Coder–
Controller 2, except that �k(s̃k−1) is used to gener-
ate an estimate �k(s̃k−1) = �k−1�k(s̃k−1) rather than a
control.
Finally, note that the results of this section in-

dicate that one-bit mean coding schemes [15,7]
are suboptimal with respect to the in�nite horizon,
mean-square-error cost J2. Such schemes have intu-
itive appeal, as they proceed by simply partitioning a
coding interval I containing x0 at the conditional mean
E{X0|x0 ∈ I} to form two new candidate intervals.
However, it is easy to show from the discussion at the
beginning of this section that the intervals formed by
Coder 2 always contain equal proportions of optimal,
in�nite-level quantizer points. For a one-bit scheme,
this means that each coding interval [a; b) should be
divided at the point u such that

∫ u

a
�(x0) dx0 =

∫ b

u
�(x0) dx0;

which in general does not coincide with E{X0|x0 ∈
[a; b)}. Hence, although the conditional mean is the
mean-square-error-optimal reconstruction point, it is
not the J2-optimal partition point.
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5. Conclusion

In this paper, the asymptotic stabilizability of a lin-
ear, discrete-time system with a communication con-
straint was investigated. Finite and in�nite horizon
control objectives were formulated and it was shown
that the optimal �nite horizon coder–controller is es-
sentially an optimal quantizer for the initial output.
Asymptotic quantization theory was then used to di-
rectly obtain the limiting scheme as the horizon ap-
proaches in�nity. Under certain technical conditions
on the probability density p governing the initial out-
put, this scheme was shown to be optimal in the in�-
nite horizon sense and an expression for the optimal
cost was derived. This led to a necessary and su�cient
condition for the system to be asymptotically stabiliz-
able in mth moment at a given data rate. Further work
is currently being undertaken on relaxing the condi-
tions on p and extending the results presented here to
stochastic and nonlinear systems.
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