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Abstract

Combinatorial optimization problems require selecting the best solution from

a discrete (albeit often extremely large) set of possible candidates. These problems

arise in a diverse range of fields, and tend to be quite challenging. Rather than

developing a specialised algorithm for each problem, however, modern approaches

to solving combinatorial problems often involve transforming the problem to allow

the use of existing general optimization techniques.

Recent developments in constraint programming combine the expressiveness

of general constraint solvers with the search reduction of conflict-directed SAT

solvers, allowing real-world problems to be solved in reasonable time-frames. Un-

fortunately, integrating new constraints into a lazy clause generation solver is a

non-trivial exercise. Rather than building a propagator for every special-purpose

global constraint, it is common to express the global constraint in terms of smaller

primitives.

Multi-valued decision diagrams (MDDs) can compactly represent a variety of

common global constraints, such as REGULAR and SEQUENCE. We present im-

proved methods for propagating MDD-based constraints, together with explana-

tion algorithms to allow integration into lazy clause generation solvers.

While MDDs can be used to express arbitrary constraints, some constraints will

produce an exponential representation. s-DNNF is an alternative representation

which permits polynomial representation of a larger class of functions, while still

allowing linear-time satisfiability checking. We present algorithms for integrating

constraints represented as s-DNNF circuits into a lazy clause generation solver, and

evaluate the algorithms on several global constraints.

Automated document composition gives rise to many combinatorial problems.

Historically these problems have been addressed using heuristics to give good enough

solutions. However, given the modest size of many document composition tasks

and recent improvements in combinatorial optimization techniques, it is possible

to solve many practical instances in reasonable time.



We explore the application of combinatorial optimization techniques to a vari-

ety of problems which arise in document composition and layout. First, we con-

sider the problem of constructing optimal layouts for k-layered directed graphs. We

present several models models for constructing constructing layouts with minimal

crossings, and with maximum planar subgraphs; motivated by aesthetic consider-

ations, we then consider weighted combinations of these objectives – specifically,

lexicographically ordered objectives (first minimizing one, then the other).

Next, we consider the problem of minimum-height table layout. We consider

existing integer-programming based approaches, and present A? and lazy clause

generation methods for constructing minimal height layouts. We empirically demon-

strate that these methods are capable of quickly computing minimal layouts for

real-world tables.

We also consider the guillotine layout problem, commonly used for newspaper

layout, where each region either contains a single article or is subdivided into two

smaller regions by a vertical or horizontal cut. We describe algorithms for finding

optimal layouts both for fixed trees of cuts and for the free guillotine layout prob-

lem, and demonstrate that these can quickly compute optimal layouts for instances

with a moderate number of articles.

The problems considered thus far have all been concerned with finding opti-

mal solutions to discrete configuration problems. When constructing diagrams, it

is often desirable to enforce specified constraints while permitting the user to di-

rectly manipulate the diagram. We present a modelling technique that may be used

to enforce such constraints, including non-overlap of complex shapes, text contain-

ment and arbitrary separation. We demonstrate that these constraints can be solved

quickly enough to allow direct manipulation.
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1
Introduction

COMBINATIONAL optimization addresses the task of finding the best so-

lution for a problem from a (potentially extremely large) discrete set

of possible choices. These problems arise in an exceptionally diverse

range of fields, from the logistics of transporting goods [Crainic and Rousseau,

1986] and packing crates [Martello et al., 2000], to designing staff rosters [Demassey

et al., 2006, Brand et al., 2007], cutting glass panes [Dyson and Gregory, 1974]

and scheduling sporting tournaments [Rasmussen and Trick, 2008]. Accordingly, a

great deal of effort has been expended in developing techniques for solving combi-

natorial optimization problems; indeed, early work on the assignment problem dates

to at least the 18th century.

It was not until the late 1940s, with the development of linear programming,

that the field of combinatorial optimization developed dramatically. Linear pro-

gramming gives the first example of a separation between the problem model and

the optimization procedure. Where previously it was necessary to painstakingly

develop an optimization procedure for each individual problem, now any prob-

lem that could be expressed as a linear program over continuous domains could be

solved using the simplex algorithm [Dantzig, 1963]; even better, any improvements

to solution techniques could immediately benefit the entire class of problems. The

development of integer programming techniques [Gomory, 1960] soon after finally

provided the ability to solve arbitrary problems over discrete domains.

Even though it is possible to model a problem as an integer program, that

doesn’t necessarily mean that the resulting model will be concise or perform well.
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CHAPTER 1. INTRODUCTION

While linear and integer programs were excellent for modelling problems involv-

ing sets of linear constraints, it was often inconvenient to model problems with a

complex structure – such as problems involving disjunctions, inequalities or per-

mutations. However, the principle of separation between model and solver was

instrumental to the eventual development of constraint programming [Jaffar and

Lassez, 1987]. Where integer programs are limited to inequalities over linear sums,

CP solvers can support arbitrary relations over sets of variables. Unfortunately,

since each constraint is enforced independently and communication occurs only

through variable domains, CP solvers cannot take advantage of the same degree of

global reasoning available to integer programming solvers.

Parallel to the development of integer programming techniques and constraint

programming solvers, algorithms were developed for Boolean satisfiability (SAT)

problems. SAT problems are a very restricted class of combinatorial problem; in-

stances contain only Boolean variables, and all the constraints are disjunctions of ei-

ther positive or negated variables. Although heavily restricted, SAT is nevertheless

NP-complete [Cook, 1971]. While the core algorithm for solving SAT problems was

developed in 1962 [Davis et al., 1962], the solvers were not particularly effective for

hard instances. It was only with the development of conflict-based learning algo-

rithms [Zhang et al., 2001], allowing the elimination of large parts of the problem

space, that it became feasible to solve large industrial instances, and worthwhile to

transform other combinatorial problems into SAT. Being restricted to Boolean vari-

ables, however, it is difficult to encode numerical problems with large domains.

As a wide range of combinatorial optimization problems require both com-

plex constraints and non-Boolean variables, we would like to take advantage of

the learning properties of SAT solvers, while maintaining the expressiveness of

finite-domain CP solvers. Lazy-clause generation solvers [Ohrimenko et al., 2009]

achieve this by maintaining a dual representation of the problem – they use a finite-

domain CP engine to propagate inferences, but also construct a partial SAT model

for the active parts of the problem. When a conflict is detected, conflict-based clause

learning is then performed on this partial SAT model. Recently, this combination

of techniques has dramatically improved solver performance on a wide range of

optimization and satisfiability problems. This improved performance comes at

a price, however – implementing a complex global propagator in a conventional
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finite-domain constraint solver requires only the definition of a filtering algorithm;

a propagator in a lazy clause generation solver must also be able to (often retro-

spectively) generate an explanation for any inferences it makes.

Document composition and layout are fields that give rise to an extraordinary

variety of combinatorial problems. Even seemingly simple problems, such as table

layout (described in Chapter 6), often turn out to be NP-hard. Document compo-

sition has historically been dominated by manual composition; however, with the

rise of automatically generated and customized media, it is no longer possible for

every document to be manually designed.

Most automated document composition methods [González et al., 1999, Strecker

and Hennig, 2009, Di Battista et al., 1999], then, tend to use a variety of heuristics

to generate an acceptable solution. In many cases, this may be sufficient. However,

evaluation of heuristics tends to be problematic. We can compare the performance

of heuristics relative to one another, but without some method for determining the

optimal solution we cannot determine how good the heuristic is. Now with mod-

ern solver technology, we can often find solutions to practical instances quickly

enough that there is no reason to use a heuristic rather than computing the opti-

mal solution. A further advantage of using standard solver technology is (as we

shall see in Chapter 5) that it permits easier exploration of related problems – it is

possible to quickly experiment with different objective values and side-constraints,

rather than having to construct a completely new heuristic for each modified ob-

jective.

Sometimes, however, completely automated composition is not desirable. Constraint-

assisted layout allows elements of the document to be directly manipulated, and

adjusts the other elements such that specified constraints are maintained. These

systems are generally limited to constraints that can be conveniently represented as

linear constraints, such as alignment, distribution and linear separation. In Chap-

ter 8 we present a modelling technique to integrate complex geometric constraints

(such as non-overlap of non-convex polygons) into a simplex-based constraint-

assisted layout system.

This thesis makes a number of contributions. First, we improve lazy clause

generation constraint solvers by developing algorithms for quickly constructing

efficient propagators for problem-specific global constraints. Second, we develop
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CHAPTER 1. INTRODUCTION

models for finding optimal solutions to a variety of combinatorial layout problems.

And finally, we develop techniques that allow the integration of complex, disjunc-

tive constraints into a constraint-assisted layout system.

1.1 Overview

In Chapter 2, we will introduce the general classes of optimization (and satisfiabil-

ity) problems we consider – integer and linear programming, constraint satisfaction

problems, Boolean satisfiability and dynamic programming – and the common ap-

proaches used for finding optimal solutions to each.

Developing global propagators for problem-specific constraints in a lazy clause

generation solver tends to be time-consuming and error-prone. In Chapter 3, we

present algorithms for integrating constraints expressed as Multi-valued Decision

Diagrams (MDDs) into a lazy clause generation solver, permitting the convenient

construction of problem-specific global constraints. We demonstrate that these

MDD propagators can outperform state-of-the-art constraint solvers.

A disadvantage of MDDs is that they are limited in expressiveness – some

classes of constraints produce an MDD with an exponential number of nodes. In

Chapter 4, we generalise the algorithms described in Chapter 3 to s-DNNF, a rep-

resentation that admits polynomial representations of a wider class of constraints,

and compare these propagators to comparable SAT-based decompositions for the

constraints.

We then move from developing new constraint-solving techniques to applying

combinatorial optimization techniques to a variety of problems that occur in doc-

ument and diagram composition. In Chapter 5, we consider the problem of con-

structing optimal layouts for k-layered directed graphs. We present SAT and MIP-

based models for layouts with minimal crossings, and maximal planar subgraph.

Motivated by aesthetic considerations, we also consider variants with combined

objectives – first minimising the number of crossings then finding the maximum

planar subgraph, and first planarization then crossing minimization. We then eval-

uate these models on a set of both collected and randomly generated graphs.

In Chapter 6 we present several models for constructing minimum-height lay-

outs for HTML-style tables. We compare integer-programming, A?and lazy clause
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generation approaches on a combination of real-world and artificially generated

tables, both with and without column- and row-spans.

Related to table layout is the problem of constructing guillotine layouts for a

collection of documents, such as when laying-out pages for a newspaper. In Chap-

ter 7, we present dynamic programming methods for constructing optimal guillo-

tine layouts for a moderate number of articles, and for efficiently updating a fixed

layout with a new display width.

As observed in Chapter 7, it is sometimes convenient to update a layout by

moving to a nearby solution according to user input. In Chapter 8, we develop

modelling techniques for handling complex disjunctive constraints in a constraint-

based diagram layout system. We then demonstrate the effectiveness of these tech-

niques by demonstrating non-convex polygon non-overlap constraints and flexible

text-containment.
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2
Background

THIS chapter introduces the various classes of (mostly-)combinatorial prob-

lems we shall be considering throughout this thesis, together with com-

mon approaches used to solve them.

2.1 Linear Programming

A linear program is a constrained continuous optimization problem over a set of

variables X = {x1, x2, . . . , xn}, of the form

min
∑
i

ci · xi

s.t
∧
j

∑
i

aij · xi ≤ kj

the feasible region of which forms a convex polytope. The most common method

for solving such problems is the simplex method [Dantzig, 1963], however interior-

point methods (such as the ellipsoid [Khachiyan, 1979] method) also exist.

The simplex method relies on the observation that the optimal solution must lie

on an extreme point (i.e. vertex) of the feasible region. The algorithm first finds a fea-

sible extreme point, then greedily walks between adjacent extreme points along the

boundary of the feasible region until no move improves the objective. In the worst

case, this may require an exponential number of steps; however the average case

complexity over a family of randomly perturbed linear programs is polynomially

bounded [Spielman and Teng, 2004], and the algorithm performs well in practice.
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CHAPTER 2. BACKGROUND

x ≥ 1

y ≤ 2
1
2x+ y ≤ 3

x+ 2
3y ≤ 4

Figure 2.1: Feasible region for the linear program in Example 2.1. Integer coordi-
nates are marked with a dot.

When solving a series of closely related linear problems, the simplex algorithm can

be given a warm-start, by using the optimum for a previous problem to construct

the initial basis for the next (see, e.g., Maros and Mitra [1996]).

Interior point methods, conversely, traverse the interior of the feasible region,

iteratively refining a conservative approximation of the optimal solution. The el-

lipsoid method, an early interior point method, is primarily of use in complex-

ity proofs – it is of polynomial complexity, but too slow to be useful in practice.

More recent methods, such as Karmarkar’s method [Karmarkar, 1984], outper-

form simplex-based methods on large linear programs [Karmarkar and Ramakrish-

nan, 1991]. However, for both integer programming (Section 2.1.1) and interactive

constraint-based layout (Section 8.2), closely related problems must be repeatedly

solved, so simplex-based methods are usually used.

The first step in the simplex algorithm is transforming the problem into standard

form. In standard form, the problem is reformulated as a minimization problem,

and all inequalities are transformed into equalities by introducing an additional

slack variable for each constraint, indicating the amount of slack between the current

solution and the constraint.

Example 2.1. Consider the linear program

max x+ y

s.t.
1

2
x+ y ≤ 3

x+
2

3
y ≤ 4

x ≥ 1

y ≤ 2

x, y ≥ 0
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The feasible region for this problem is shown in Figure 2.1. The problem is then trans-

formed into standard form by introducing slack variables:

min f(x, y) = −x− y

s.t
1

2
x+ y + s1 = 3

x+
2

3
y + s2 = 4

x− s3 = 1

y + s4 = 2

x, y, s1, s2, s3, s4 ≥ 0

2

Once the problem is reformulated, the simplex algorithm proceeds in two phases.

In Phase I, we construct an initial basic feasible solution. A basic solution for a prob-

lem with n variables and c constraints is a solution with at most c non-zero variables

– referred to as basic variables. We can construct a basic solution by making all ini-

tial problem variables 0 and maximising the introduced slack variables; however,

if there are any ≥ constraints, this will not be feasible.

Instead, we introduce an additional artificial variable for each such constraint.

This allows us to construct a feasible solution to the modified problem. We then

proceed to minimize the artificial variables – once we find a basic solution with

no artificial variables in the basis, we have a basic feasible solution to the original

problem.

Example 2.2. We cannot immediately compute a basic feasible solution for the problem in

Example 2.1, as this would result in s3 having a negative value. Instead, we introduce an

artificial variable a, giving us the following equations:

s1 = −1

2
x− y + 3

s2 = −x− 2

3
y + 4

a = −x+ s3 + 1

s4 = −y + 2

f = −x− y

g = −x+ s3 + 1
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Using this notation, variables on the left-hand side of the equations form the basis;

all other variables take the value 0. The new objective g represents our goal of removing

the artificial variable a from the solution. We remove a from the basis by replacing all

occurrences of x with s3 − a+ 1:

s1 = −y − 1

2
s3 +

1

2
a+

5

2

s2 = −2

3
y − s3 + a+ 3

x = s3 − a+ 1

s4 = −y + 2

f = −s3 + a− y − 1

g = a

This gives us a basic feasible solution (x, y, s1, s2, s3, s4) = (1, 0, 5
2 , 3, 0, 2) to the orig-

inal problem. 2

Once we have a basic feasible solution, we move to Phase II of the simplex algo-

rithm. In Phase II, we progressively move between adjacent basic feasible solutions

by pivoting – replacing variables in the basis with others that can give an improved

solution.

Example 2.3. Continuing the previous example, the simplex tableau generated for the

current solution (after removing all occurrences of a) is as follows:

s1 = −y − 1

2
s3 +

5

2

s2 = −2

3
y − s3 + 3

x = s3 + 1

s4 = −y + 2

f = −s3 − y − 1

We need to select a variable to move into the basis. Reducing either s3 or y will improve

the objective value, as they have negative coefficients in the equation for f . Once we decide

to swap s3 into the basis, we must determine which variable to swap out; we must pick the

equation

v = −cs3 + . . .+ k
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with the minimum value of k
c – otherwise the resulting tableau will be infeasible. In this

case, we add s3 to the basis by removing s2, then eliminate s3 from all the other equations.

s1 = −2

3
y +

1

2
s2 + 1

s3 = −2

3
y − s2 + 3

x = −2

3
y − s2 + 4

s4 = −y + 2

f = −1

3
y + s2 − 4

The only variable with a negative coefficient in the objective is now y, which can replace

s1 in the basis.

y = −3

2
s1 +

3

4
s2 +

3

2

s3 = s1 − s2 −
1

2
s2 + 2

x = s1 − s2 −
1

2
s2 + 3

s4 =
3

2
s1 −

3

4
s2 +

1

2

f =
1

2
s1 +

3

4
s2 −

9

2

This solution cannot be improved, as no variables have a negative coefficient in the objective.

This gives an optimal solution (x, y) = (3, 3
2), with f(x, y) = 9

2 . 2

Often it is useful to know how much impact a given constraint has on the opti-

mal value. The Lagrange multiplier λj for a given constraint indicates how much the

objective value would improve if the jth constraint in the problem were to be re-

laxed. At an optimal solution, the Lagrange multiplier λj is given by the coefficient

of the slack variable sj in the objective row.

Example 2.4. Consider the final tableau given in Example 2.3. The coefficient of s1 in the

objective row (and hence the value of λ1) is 1
2 . If the constraint 1

2x+ y ≤ 3 is relaxed by ε,

the objective value will be improved by 1
2ε. Conversely, the coefficient of s3 is 0 – relaxing

x ≥ 1 will not result in any improvement of the objective function. 2
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x ≥ 1

y ≤ 2
1
2x+ y ≤ 3

x+ 2
3y ≤ 4

x ≥ 1

y ≤ 2
1
2x+ y ≤ 3

x+ 2
3y ≤ 4

Figure 2.2: Resulting problem if the solver adds a cutting plane x + y ≤ 2 (left) or
branches on y ≤ 1 (right). In the latter case, the solver will later need to search
y ≥ 2.

2.1.1 Integer Programming

Mixed integer programming (MIP) is a superset of linear programs, where some or

all of the variables xi may be required to take integral values. In general, solving

integer programs is NP-hard.

Most MIP solvers, such as CPLEX1 and GUROBI2 are based on branch-and-cut

techniques (described in detail in Aardal et al. [2005]). These solvers operate by

solving the problem without integrality constraints (the linear relaxation of the prob-

lem), which provides a lower bound for the objective function. Solvers may also

add cutting-planes [Gomory, 1958], additional constraints which remove regions not

containing any integral solutions. If the feasible region contains no integer solu-

tions, or the lower bound is worse than the best solution found so far, the solver

can terminate the current branch. If the optimal solution is integral, the solver re-

turns the current solution. Otherwise, the solver must pick a branch, adding a new

constraint to split the feasible region, and recursively perform the same procedure

until an optimal solution is found.

Example 2.5. Consider the example used in Example 2.1, but with the added restriction

that x, y ∈ Z. The optimal solution for the linear relaxation is (x, y) = (3, 3
2).

A potential cutting plane is at x + y ≤ 2, as it only removes fractional solutions –

the resulting feasible region is shown on the left of Figure 2.2. If this constraint is added,

then the solution to the new relaxation is integral, and therefore must be the optimum. If a

cutting plane is not added, the solver must select a branch to reduce the search space. The

feasible region resulting from branching on y ≤ 1 is shown on the right of Figure 2.2.

2

1http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2http://www.gurobi.com
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2.2 Binary and Multi-valued Decision Diagrams

Reduced Ordered Binary Decision Diagrams [Bryant, 1986a] are a well-known method

for representing Boolean functions on Boolean variables using directed acyclic graphs

with a single root. Every internal node n(v, f, t) in a BDD r is labelled with a

Boolean variable v ∈ B, and has two outgoing arcs — the ‘false’ arc (to BDD f )

and the ‘true’ arc (to BDD t). Leaf nodes are either F (false) or T (true). Each node

represents a single test of the labelled variable; when traversing the tree the appro-

priate arc is followed depending on the value of the variable. A node n(v, f, t) can

be interpreted as representing the constraint� n�, where

� n� ≡ (v∧� t�) ∨ (¬v∧� f �)

Reduced Ordered Binary Decision Diagrams (BDDs) [Bryant, 1986b] require

that the BDD is: reduced, that is it contains no identical nodes (nodes with the same

variable label and identical then and else arcs) and has no redundant tests (no node

has both then and else arcs leading to the same node); and ordered (with respect to

a linear ordering ≺), if there is an arc from a node labelled v1 to a node labelled v2

then v1 ≺ v2. A long edge is an arc from a node labelled v1 to a node labelled v2 such

that, for some v′, v1 ≺ v′ ≺ v2.

The key property of BDDs, for the purposes of this thesis, is that a BDD can

be efficiently constructed from a sequence of Boolean operations. This allows us

to give a declarative specification of a Boolean function, and have an equivalent

BDD automatically constructed. Pseudo-code for applying a Boolean operator to

two BDDs is given in Figure 2.3. As will be shown in Sections 2.3.3 through 2.3.6,

this allows us to easily express a variety of complex global constraints. While the

constructed BDDs are not guaranteed to be polynomial in the number of variables,

many of the constraints we shall consider have concise BDD representations.

As with BDDs, Multi-valued Decision Diagrams (MDDs) [Srinivasan et al., 1990]

are directed acyclic graphs representing functions. However, MDDs instead repre-

sent Boolean functions over variables with arbitrary finite domains. Each internal

node in an MDD G, n0 = node(x, [(v1, n1), (v2, n2), · · · , (vk, nk)]) is labeled with a

variable x and outgoing arcs consisting of a value vi and a destination node ni. De-

fine node.var as the variable label appearing in the node, i.e. no.var = x. Each value

13
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bdd apply(op, x = n(vx, fx, tx), y = n(vy, fy, ty))
if(terminal(x) ∧ terminal(y))

return op(x, y)
if(vx < vy)
v := vx
f := bdd apply(op, fx, y)
t := bdd apply(op, tx, y)

else if(vx > vy)
v := vy
f := bdd apply(op, x, fy)
t := bdd apply(op, x, ty)

else
v := vx
f := bdd apply(op, fx, fy)
t := bdd apply(op, tx, ty)

if(f == t)
return f

else
return n(v, f, t)

Figure 2.3: Simple pseudo-code for applying a Boolean operator to a pair of BDDs.
An efficient implementation will also cache recent calls to bdd apply to avoid re-
peatedly constructing the same subgraph.

vi is in the initial domain of x. There is a final node T which represents true (the

false terminal is customarily omitted for MDDs). Let G.root be the root node of an

MDD G. We can understand an MDD node G where n0 = G.root as representing

the constraint� n0 �where

� n0 � ≡
k∨
i=1

((x = vi)∧ � ni �)

and� T � ≡ true . We denote by |G| the number of edges in MDDG. Algorithms

for constructing MDDs can be defined analogously to those for BDDs.

We assume that MDDs are ordered and without long edges, that is there is map-

ping σ from variables in the MDD to distinct integers such that for each internal

node n0 of the form above σ(ni.var) = σ(n0.var) + 1,∀1 ≤ i ≤ k where ni 6= T .

The condition can be loosened to σ(ni.var) > σ(n0.var) (which allows long edges)

but this complicates the algorithms considerably, as a single edge no longer corre-

sponds to a single (var, val) pair – processing an edge then requires checking the

destination node, and updating information for all skipped variables. In practice

this complication usually overcomes any benefits of treating long edges directly

14
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0
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Figure 2.4: BDDs for (a) x ⇔ y, (b) y ⊕ z, and for (x ⇔ y) ∨ (y ⊕ z) both (c) with,
and (d) without long edges.

(unlike the case for BDDs). The ith level of an MDD is the set of nodes correspond-

ing to the ith variable (and the outgoing edges from those nodes).

For convenience, we will refer to an edge e as a tuple (x, vi, s, d) of a variable

x, value vi, source node s = n0 and destination node d = ni. We will refer to

the components as (e.var, e.val, e.begin, e.end). An edge e = (x, vi, s, d) is said to

be alive if it occurs on some path from the root of the graph to the terminal T .

Otherwise, it is said to be killed. An edge e becomes killed if vi is removed from the

domain of x, all paths from the root r to s cross killed edges (killed from above), or all

paths from d to T cross killed edges (killed from below).

We use s.out edges to refer to all the edges of the form ( , , s, ), those leaving

node s, and d.in edges to refer to edges of the form ( , , , d) those entering node

d. Similar to above, a node is said to be killed if it does not occur on any reachable

path from the root node r to T . A node becomes killed if either all incoming or

all outgoing edges become killed. As a result, we can determine if a given node

n is killed by examining its incoming or outgoing edges. We use G.edges(x, vi) to

record the set of edges of the form (x, vi, , ) in MDD G.

Example 2.6. Consider the construction of a BDD for (x ⇔ y) ∨ (y ⊕ z). First, we con-

struct BDDs for (x ⇔ y) and (y ⊕ z), shown in Figure 2.4 (a) and (b) respectively. We

then use bdd apply to compute the disjunction of the two BDDs. This result is part (c) of

Figure 2.4. The presence of long edges (edges that skip variables) adds substantial complex-

ity to a variety of algorithms – Figure 2.4 (c) shows the same function with additional nodes

introduced to eliminate long edges. 2
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2.3 Finite-domain constraint satisfaction problems

Consider a set of variables X = {x1, . . . , xn}. Let D(xi) denote the domain of xi, the

set of values that xi may take. An assignment θ is a mapping from each variable

xi ∈ X to a value v ∈ D(xi). Let DX = D(x1) × . . . × D(xn) be the set of possible

assignments for the variables in X . A constraint c is a function DX′ → {true, false}
which restricts the allowed values for some subset X ′ of variables in X .

The objective of a constraint satisfaction problem (CSP) is, given a set of variables

X and a set of constraints C, to find an assignment θ ∈ DX such that each con-

straint c ∈ C is satisfied – that is, c(θ) = true . It is not normally feasible to directly

construct a satisfying assignment for an arbitrary set of constraints – CSPs in gen-

eral are NP-hard. Similarly, it is usually not practical to directly represent the set

of possible assignments to X permitted by the constraints even when the variable

domains in X are finite, since there are 2|DX | possible sets. Indeed, sometimes

it is too expensive to maintain an exact representation of the domain of a vari-

able. Instead, constraint solvers keep track of (an approximation of) the possible

values for each variable independently. Let DX denote these stored variable do-

mains. For convenience, we introduce a partial ordering v over domains such that

D′X v DX ⇔ ∀x ∈ X D′X(x) ⊆ DX(x). Often it is useful to reason about lower

and upper bounds for a variable x. We use lb(x) to refer to the smallest value in the

domain of x, and ub(x) for the largest value.

In this thesis we will consider primarily finite-domain CSPs, where each vari-

able must take a value from a discrete set of possibilities. The simplest approach

to solving a finite-domain CSP is to enumerate the set of possible assignments, and

test each one to determine if it satisfies the constraints. This process is typically per-

formed using backtracking search. During backtracking search, the solver maintains

a current partial assignment, and progressively extends this assignment by select-

ing a variable x and removing a set of values V from its domain. If the current par-

tial solution cannot be extended to a complete solution, the solver backtracks to the

previous partial solution, and tries again with the domain of x set to V (the values

that where previously removed). However, since |DX | is exponential in the num-

ber of variables, this is only viable for very small or extremely under-constrained

problems.
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In order to avoid exploring all possible solutions, constraint solvers apply prop-

agation to eliminate values that cannot be extended to a complete solution given

the current domains of other variables. A propagator f is a function over variable

domains (DX → DX ) which is monotonically decreasing f(D) v f(D′) whenever

D v D′, and contracting f(D) v D. Propagators remove values from variable do-

mains that are inconsistent with respect to a specific constraint. f is said to be idem-

potent if f(D) = f(f(D)) for any domain D – that is, f immediately reaches a fixed

point with respect to itself. During propagation, which occurs immediately after

the solver has restricted the current partial solution, the solver repeatedly applies

propagators until the variable domains reach a fixed point – that is, no propagators

can remove additional values from the domains. Once propagation has reached a

fixed point, backtracking search continues as before.

A domain DX is said to be domain consistent with respect to a constraint c if for

every variable xi and value vi, vi ∈ DX(xi) if and only if there is some allowed

assignment, with xi assigned to vi, that satisfies c. Formally, this requirement is:

∀xi∈X,vi∈D(xi)∃θ∈DX
θ(xi) = vi ∧ c(θ) = true

A domain DX is said to be domain consistent if it is consistent with respect to all

constraints c ∈ C. For problems with large domains, it is sometimes impractical

to enforce domain consistency. In these cases weaker forms of consistency, such

as bounds consistency [Lhomme, 1993] may be used. A domain DX is said to be

bounds consistent with respect for a constraint c if and only if:

∀xi∈X,[v̌i,v̂i]=D(xi)(∃θ∈DX
θ(xi) = v̌i ∧ c(θ) = true) ∧ (∃θ∈DX

θ(xi) = v̂i ∧ c(θ) = true)

Example 2.7. Consider the variables x, y with domains D(x) = D(y) = {1, 2, 3}, and

constraint x < y. As there is no value vy ∈ D(y) such that 3 < vy, we can remove 3 from

D(x). Similarly, 1 can be removed from D(y), giving D(x) = {1, 2},D(y) = {2, 3}. 2

Example 2.8. Consider variables x, y, z with domains D(x) = {1, 2, 3},D(y) = D(z) =

{2, 3}, and constraints x 6= y, y 6= z and x 6= z. When propagating x 6= y, we find that

for x = 2, y = 3 satisfies the constraint (and similarly for x = 3). We find the same when

propagating x 6= z. As we propagate each constraint independently, we cannot prune any

values from the domain of x.
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With a global propagator enforcing domain consistency over all different(x, y, z),

however, we discover that if y = 2, then z = 3 and x must be 1; similarly, if y = 3, then

z = 2 and x again must be 1. Therefore, we can determine D(x) = {1}. 2

2.3.1 Propagation engine

The propagation engine is responsible for applying propagators until the variable

domains reach a fixed point. The propagation engine maintains a work-list of prop-

agators which need to be executed, and a list of propagators in which each variable

occurs.

Upon each iteration, the solver selects a propagator from the work-list to be

executed, removes it from the work-list, and applies it to the current variable do-

mains – if the propagator is idempotent or makes no change, it is then removed

from the work-list. If the propagator detects a conflict – that is, a variable has an

empty domain, the propagation terminates.

If all the variable domains are unchanged, the solver iterates again, picking an-

other propagator. If the domain for a variable v is changed, the engine scans the list

of propagators for v, and adds each propagator (excluding the current propagator)

to the work-list. This process then repeats until there are no more propagators in

the work-list, at which point all the propagators have reached a fixed point.

At this point the solver cannot directly make any further inferences; it must

then create a restricted subproblem by selecting a variable and removing one or

more values from its domain. This creates a new decision level – if this restricted

problem turns out to be infeasible, either because propagation detected a conflict or

because further search proved there were no solutions, the solver will backtrack to

this point and continue with only the reduced domains. This interleaved sequence

of search and propagation is repeated until either all variables become fixed (in

which case we have a satisfying assignment), or a contradiction is found at the top

level (and the problem is unsatisfiable).

There are typically two approaches used to facilitate this restoration of solver

state. The simplest method, copying, duplicates the variable domains for each

decision level. This means that backtracking simply requires changing a pointer

to the relevant copy; however, using copying for problem instances with many

variables and large domains can consume prohibitive amounts of memory. The
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D WORK-LIST

D(X) = {1, 2, 3}
D(Y ) = {2, 3}
D(Z) = {2, 3}

DECISION: X = 2

D(X) = {2} X 6= Y
D(Y ) = {2, 3} X 6= Z
D(Z) = {2, 3}

PROPAGATE: X 6= Y

D(X) = {2} X 6= Z
D(Y ) = {3} Y 6= Z
D(Z) = {2, 3}

PROPAGATE: X 6= Z

D(X) = {2} Y 6= Z
D(Y ) = {3}
D(Z) = {3}

PROPAGATE: Y 6= Z

CONFLICT!

Figure 2.5: A possible sequence of propagator executions for the problem in Exam-
ple 2.9, if the solver branches on X = 2. Updated domains, and the corresponding
queued propagators, are shown in purple.

other approach is known as trailing; trailing solvers record the sequence of changes

made during propagation; upon backtracking, the solver walks backwards along

the sequence of changes, inverting each until the previous state is restored. If there

are relatively few changes at each decision level, this approach can require sub-

stantially less memory and computation; however, it introduces a slight overhead

on every propagation, as the solver must record enough information to revert the

change.

Example 2.9. Consider again the problem described in Example 2.8, with primitive in-

equalities. Assume the solver decides to branch on X = 2. First the domain of X is

updated, then the propagators involving X are added to the work-list. We then select a

propagator from the work-list to execute – in this case, X 6= Y . Executing this propagator

removes 2 from the domain of Y ; we must then add propagators involving Y to the work-

list. However, we do not need to add X 6= Y back onto the work-list, as the propagator is

idempotent. The resulting sequence of actions and updates is shown in Figure 2.5. Once

the conflict is reached, the solver will backtrack to the decision, and instead remove 2 from

the domain of X . 2

We now describe several example propagators.

19



CHAPTER 2. BACKGROUND

2.3.2 Propagation of constraints represented as BDDs and MDDs

As shall be illustrated in the remainder of this section (and in Chapter 3), a variety

of constraints can be conveniently represented as MDDs or BDDs. However, to

be useful in a finite-domain constraint solver, we must also provide an algorithm

for propagation over the constraint. Domain consistent propagation of a constraint

represented as a BDD [Gange et al., 2008] or MDD [Pesant, 2004] is reasonably

straightforward. The graph is traversed from the root node, marking each reached

node (so that it is not revisited) with whether or not the node still has a path to T
given the current domains of variables. Any edge (x, vi, s, d) on such a path gives

support for the value vi for x. Any values in the current domain of x that are not

supported after the traversal is finished are removed. This algorithm is given in

Figure 2.6.

Cheng and Yap [2008] made this process more incremental by recording nodes

in the graph that were previously determined not to reach T , and sped up the

search by recording for which variables all values in the current domain are still

supported.

An alternative is to decompose the MDD, introducing state variables for each

level and implementing the transition relation with primitive constraints [Beldiceanu

et al., 2004]. In this case, the overall constraint maintains domain consistency if and

only if the transition constraints are domain consistent.

Example 2.10. Propagation of the MDD shown in Figure 2.7(b), after x2 6= 1 and x3 6= 1,

traverses the MDD from the root visiting all nodes except {5, 6, 14, 16, 17}. The shown arcs

of Figure 2.7(c) are traversed by the propagation algorithm; the doubled arcs are determined

to be on paths from the root to T and hence support values. There is no support found for

x0 = 0, x1 = 0, or x5 = 0 so their negations are new inferences made by the propagation

algorithm. 2

2.3.3 regular

A deterministic finite-state automaton (DFA) is a model of computation for determin-

ing if a given input sequence matches the desired pattern. Formally, a DFA consists

of a 5-tuple D = (Q, q0,Σ, δ, F ). The set Q defines the possible states of the au-

tomaton, and q0 gives the initial state. Σ is the alphabet, defining the set of possible
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% G is the constraint MDD
% D is the current domains
propagate mdd(G,D)
unsupp := {}
clear cache()
% Mark all available values as unsupported
for(var ∈ D)

for(val ∈ D(var))
unsupp∪: ={(var, val)}

if(¬propagate rec(D,unsupp,G.root))
return FAIL

return unsupp

propagate rec(D, unsupp, node)
% If the node has already been processed,
% use the cached value.
c := lookup(node)
if(c 6= NOTFOUND) return c
if(node == T ) return true
c := false
for((val, n′) ∈ node.out edges)

if(val ∈ D(node.var))
if(propagate rec(D,unsupp, n′) 6= false)

% Found a support for the current value.
unsupp \: =(node.var, val)
c := true

cache(node, c)
return c

Figure 2.6: Basic algorithm for propagating MDD constraints. unsupp holds the set
of (var, val) pairs that haven’t yet occurred on a path to T . The algorithm traverses
the constraint depth-first, and (var, val) pairs as supported once they occur on a
path to T . The operation cache(key, value) is used to store (key, value) pairs in a
global table. lookup(key) returns value if there is a corresponding entry in the table,
and NOTFOUND otherwise. clear cache removes all entries from the table.
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(a) Constraint
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(b) x2 6= 1, x3 6= 1

1:x0

2:x1 12:x1

3:x2 13:x2 15:x2

4:x3 14:x3 16:x3

5:x4 8:x4 17:x4

6:x5 9:x5 10:x5

7:x6 11:x6

T
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1 0

1

1

0

0
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1
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0
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1
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(c) Propagation

Figure 2.7: An example MDD for a regular constraint 0?1100?110? over the vari-
ables [x0, x1, x2, x3, x4, x5, x6], and the effect of propagating x2 6= 1 and x3 6= 1.
Edges traversed by the propagation algorithm are shown in (c) – doubled edges
are on a path to T .

input values. δ is a function (Q × Σ) → Q which defines how the automaton state

is updated given a new input. If the final state of the automaton is an element of

the accept states F , then the input was in the language defined by D.

A non-deterministic finite-state automaton (NFA) has the same structure as a DFA;

however, the transition function δ is replaced with a relation on (Q×Σ ∪ {ε} ×Q).

This permits a state to have either zero or multiple transitions on an input, as well

as ε-transitions which consume no input. An NFA will accept on a sequence of

inputs if there is any corresponding path through the NFA which ends in an accept

state.

A regular constraint takes a DFA D and a sequence of variables [x1, . . . , xk],

and requires that the values of [x1, . . . , xk] must be in the language defined by D.

This can be defined recursively as follows:

regular(D = (Q, q0,Σ, δ, F ), [x1, . . . , xk]) = regularD(q0, [x1, . . . , xk])

regularD(q, [ ]) =

 true if q ∈ FD
false otherwise

regularD(q, [xi, . . . , xk]) =
∨

(q,v)∈δD

Jxi = vK ∧ regular(δ(q, v), [xi+1, . . . , xk])
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In the worst case, this constructs an MDD with O(k|G|) nodes.

This construction, the propagator of Pesant [2004] and the decomposition de-

scribed by Beldiceanu et al. [2004] all work without modification for NFAs with-

out ε-transitions. An arbitrary NFA can be transformed to remove ε-transitions

by computing the ε-closure of each state (see, e.g., Sipser [2006] for details of this

transformation).

2.3.4 table

Sometimes, particularly in configuration and sequencing problems, it is useful to

specify a constraint extensionally – that is, specify the constraint by giving an ex-

haustive list of permitted combinations (or, in the case of negative extensional con-

straints, a list of disallowed combinations).

A positive table can be formulated as follows:

table([ ], [x1, . . . , xk]) = false

table([Vi = (vi1, . . . , vik), . . . , Vn], [x1, . . . , xk]) =
(Jx1 = vi1K ∧ . . . ∧ Jxk = vikK)

∨ table([Vi+1, . . . , Vn], [x1, . . . , xk])

where each Vi = (vi1, . . . , vik) is a row in the table. This constructs an MDD with

at most O(nk) nodes. A negative table can be obtained simply by negating this

MDD; this also has O(nk) nodes, but in the worst case may introduce an addi-

tional O(|D(xi)|) edges per node (as previously omitted paths to false must be in-

troduced).

A number of propagation algorithms have been developed for extensional ta-

bles, either using the list of rows directly [Lecoutre and Szymanek, 2006], or aug-

menting this with some form of acceleration structure [Lhomme and Régin, 2005,

Lecoutre, 2008].
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2.3.5 Global cardinality (gcc)

A cardinality constraint card([x1, . . . , xk], v, l, h) requires that between l and h vari-

ables in {x1, . . . , xk} take the value v. This can be formulated as follows:

card([x1, . . . , xk], v, l, h) = card([x1, . . . , xk], v, l, h, 0)

card([ ], v, l, h, c) =

 true if l ≤ c ∧ c ≤ h
false otherwise

card([xi, . . . , xk], v, l, h, c) =
(Jxi 6= vK ∧ card([xi+1, . . . , xk], v, l, h, c)

∨ (Jxi = vK ∧ card([xi+1, . . . , xk], v, l, h, c+ 1)

The global cardinality constraint gcc([x1, . . . , xk], [(v1, l1, h1), . . . , (vm, lmhm)]) re-

stricts the number of occurrences of a set of values {v1, . . . , vm} to be within the

given bounds. This can be encoded as a conjunction of card constraints:

gcc(X,V ) =
∧

(vi,li,hi)∈V

card(X, vi, li, hi)

Unfortunately, this direct implementation can propagate quite weakly, and build-

ing the gcc constraint into an MDD produces an exponential number of nodes –

for small numbers of variables, the MDD approach can be feasible. A propagation

algorithm based on flow networks [Régin, 1996] enforces domain consistency in

O(|X|2|V |) time.

2.3.6 Context-free grammar (grammar)

Context-free grammars (CFGs), like DFAs, allow us to specify a desired set of permit-

ted sequences. A CFG consists of a tuple C = (V,Σ, R, S), for a set of non-terminal

symbols V , alphabet Σ, production rules R and start symbol S. Each rule in R de-

scribes a transformation wherein a non-terminal T is replaced with either a series

of non-terminal or terminal (alphabet) symbols, or the empty string ε. A string in

the language is constructed by starting with S and sequentially applying rewrite

rules until only terminal symbols remain.
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Example 2.11. The language {0i1j | i ≥ j} (where ak denotes the symbol a repeated k

times) can be recognized by the CFG:

S → 0S1 | T

T → 0T | ε

with non-terminals {S, T} and start symbol S.

We can then generate any string in the language by starting with S and applying some

sequence of production rules:

RULE STRING

— S

S → 0S1 0S1

S → 0S1 00S11

S → T 00T11

T → 0T 000T11

T → 0T 0000T11

T → ε 000011

2

As for regular, the constraint grammar(G,[x1, . . . , xk]) requires that the val-

ues assigned to [x1, . . . , xk] form a string in the language recognized by the CFG G.

A dedicated propagator [Sellmann, 2006, Quimper and Walsh, 2006] and a decom-

position [Quimper and Walsh, 2007] have been presented for enforcing grammar

constraints, both based on the structure of the CYK parsing algorithm [Younger,

1967].

2.4 Boolean Satisfiability (SAT)

Boolean Satisfiability (SAT) is a well-studied restricted class of CSP. The problem

variables must be Boolean. A literal is either a variable vi or its negation ¬vi. A

SAT problem consists of a set B of Boolean variables together with a set of clauses

of the form
∨
i

li, where each li is a literal from B. A solution is an assignment to all

variables in B such that at least one literal in each clause is true.
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Example 2.12. Consider a SAT problem with variables B = {x, y, z}, and clauses

(x ∨ y) ∧ (¬y ∨ ¬z) ∧ (z ∨ ¬x)

A satisfying assignment to this problem is θ(x, y, z) = {true, false, true}. 2

Example 2.13. Consider again the problem given in Example 2.12, but with the additional

constraints
(x ∨ ¬y) ∧ ¬z

This problem is unsatisfiable. Since z = false is asserted, we can only satisfy (z ∨ ¬x) by

fixing x = true . However, (z∨¬x) forces x = false . Since we cannot have both x and ¬x,

the set of clauses cannot be satisfied. 2

Notice that since every clause must be true, whenever all but one literal in a

clause becomes false, the remaining literal must become true. The process of de-

tecting such clauses (referred to as unit clauses) and asserting the remaining literal

is known as unit propagation, and is the foundation of the DPLL (Davis-Putnam-

Loveland-Logemann) procedure [Davis et al., 1962], on which all modern complete

SAT solvers are based.3 As with a conventional finite-domain constraint solver,

these solvers interleave search (by picking a literal to assert) with unit propagation

to find a satisfying assignment. A decision literal is a literal that is chosen by the

search strategy after unit propagation reaches a fixed point.

Unit propagation can be implemented efficiently by using a two-literal watch-

ing scheme [Moskewicz et al., 2001]. Observe that we perform unit propagation

exactly when the second last literal in a clause becomes false. Specifically, so long

as we know that at least 2 literals in the clause have not become false, changes to

the other literals cannot cause unit propagation.

With each literal l in the problem, we associate a list of clauses that may become

unit clauses if l becomes true. For each clause c, we pick two literals w0 and w1 to

be watched literals (or watches), and add c to the lists for ¬w0 and ¬w1. Consider the

case when w0 = false is asserted (the case for w1 is analogous). We first check if w1

is true; if this is the case, the c is already satisfied, and we don’t need to look for a

replacement for w0. Otherwise, we scan c to find any literal w′ (other than w1) that

is not yet false. If a literal w′ is found, the clause does not propagate, but (w0, w1) is
3Local search methods are used for stochastic SAT solvers, however tend not to be effective for

industrial or structured problems.
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no longer a valid pair of watched literals. So we remove c from the list of watched

clauses for w0, and add it to the list for ¬w′. If no replacement literal is found, we

check ifw1 is false. If so, the current partial solution is inconsistent, so we backtrack

to a previous decision level. If w1 is unfixed, we know w1 must be true under the

current assignment.

Example 2.14. Consider variables B = {w, x, y, z} and clauses:

c0 = w ∨ x

c1 = x ∨ ¬y ∨ ¬z

c2 = ¬w ∨ ¬x ∨ ¬y

If we select the first two literals in each clause as watches, we get the initial watch lists:

w {c2} ¬w {c0}
x {c2} ¬x {c0, c1}
y {c1} ¬y
z ¬z

Assume search first asserts ¬x. ¬x is watched by c0 and c1. As c0 is a binary clause, we

cannot find a replacement watch, so we propagate w. We then scan c1 for a replacement

watch. z has not yet been given a value, so we pick ¬z as our watch, and move c1 from the

watch list for ¬x to the list for z.

We then examine the watch list for w, which contains only c2. However, ¬x, the second

watch for c2 is already true, so the clause is satisfied – we then don’t need to find a new

watch for c2.

This gives the updated watch lists as follows:

w {c2} ¬w {c0}
x {c2} ¬x {c0}
y {c1} ¬y
z {c1} ¬z

2

Over the past 15 years, several improvements have been developed which sub-

stantially improve the performance of basic DPLL algorithm on a wide range of

problems. Conflict analysis [Marques-Silva and Sakallah, 1999] allows the solver
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u@0

¬v@1

q@3

w@2

s@3

t@3
r@3

¬p@3

z@3

y@2

x@3

¬x@3

Figure 2.8: Implication graph for Example 2.15. The dashed line indicates the deci-
sion cut. The dotted line indicates the 1-UIP cut.

to substantially reduce search space by avoiding similar regions of the search tree,

and activity-directed search drives the solver towards a solution by concentrating

search on variables that have recently been involved in conflicts.

Conflict analysis in SAT solvers is generally used to construct a nogood, a clause

that is (a) implied by the clause database, (b) unsatisfiable under the current assign-

ment and (c) contains only one literal at the current decision level. Requirement (a)

ensures that the clause won’t eliminate a satisfying assignment. Requirements (b)

and (c) ensure that, when we backtrack to the previous decision level and add the

nogood to the clause database, the current branch will be eliminated.

The simplest conflict clause is the negation of all decision literals. While this

is a correct nogood (and sufficient to ensure eventual termination), nogoods con-

structed in this way tend to be large, and cannot prune additional branches of the

search space. These can be improved by including only those decisions that partic-

ipated in the conflict [Bayardo and Schrag, 1997], however these still propagate rel-

atively infrequently; it is desirable to construct stronger nogoods which will elimi-

nate more of the search space. Most SAT solvers construct nogoods according to the

1-UIP (first unique implication point) scheme [Zhang et al., 2001]. 1-UIP nogoods

can be constructed by sequentially resolving the most recent clauses in the implica-

tion graph together until there is exactly one literal at the current level remaining.

1-UIP nogoods are not guaranteed to be smaller (and therefore stronger) than the

decision nogoods, but appear to perform well in practice.
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Example 2.15. Consider the following sequence of inferences made during SAT solving:

Level Inference Reason

0 u —

1 ¬v —

2 w —

y ¬w ∨ y
3 q —

s ¬q ∨ s
t ¬q ∨ t
r ¬s ∨ ¬t ∨ r
¬p v ∨ ¬r ∨ ¬p
x p ∨ ¬u ∨ x
z ¬w ∨ ¬r ∨ z
¬x ¬z ∨ ¬y ∨ ¬x

CONFLICT

This forms the inference graph shown in Figure 2.8. Each node represents a clause that

has become unit and propagated; for example, the node marked r@3 shows that the clause

(¬s ∨ ¬t ∨ r) propagated asserted r at decision level 3 – the inbound edges indicate the set

of literals that caused propagation. A conflict was found, as both x and ¬x were inferred at

the current decision level, so we must construct a nogood for the conflict.

The decision (or last-UIP) nogood is (¬u ∨ v ∨ ¬q ∨ ¬w) – this is indicated by the

dashed line in Figure 2.8. To construct the 1-UIP nogood, we start with the conflicting

clause C = (¬z ∨ ¬y ∨ ¬x). We then walk back along the sequence of inferences and

progressively resolve the conflict clause with each reason. The most recent inference was z,

so we resolve C with (¬w ∨ ¬r ∨ z), giving an updated clause (¬y ∨ ¬x ∨ ¬w ∨ ¬r). We

then continue this process until exactly one literal at the current decision level remains:

Inference Reason Learnt

— — ¬z ∨ ¬y ∨ ¬x
z ¬w ∨ ¬r ∨ z ¬y ∨ ¬x ∨ ¬w ∨ ¬r
x p ∨ ¬u ∨ x ¬y ∨ ¬w ∨ ¬r ∨ p ∨ u
¬p v ∨ ¬r ∨ ¬p ¬y ∨ ¬w ∨ ¬r ∨ u ∨ v
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At this point, ¬r is the only literal at the current decision level; the current learnt clause

(¬y ∨ ¬w ∨ ¬r ∨ u ∨ v) is the 1-UIP nogood. After backtracking to the previous level,

adding this clause will then cause ¬r to be propagated.

Notice that both ¬w and ¬y are in the 1-UIP nogood. By testing for subsumed literals,

we can determine that y is a consequence of w, and as such can be eliminated from the

clause [Sörensson and Biere, 2009]. This gives a resulting nogood of (¬u ∨ v ∨ ¬r ∨ ¬w).

2

The solver generates a nogood for each conflict, which is then added to the

clause database. However, maintining a continually increasing set of clauses causes

the solver to gradually degrade. In practice, solvers periodically scan the database

of learnt clauses to remove any clauses that haven’t recently participated in conflict

(and aren’t currently asserting a literal).

2.4.1 Tseitin Transformation

One of the major challenges in using a SAT solver to solve combinatorial problems

is constructing a clausal representation of the problem. A direct conversion of an

arbitrary Boolean expression into an equivalent CNF may produce an exponen-

tial number of clauses – indeed, some formulae require an exponential number of

clauses for the minimal CNF representation.

Example 2.16. Consider the formula (x1 ∧ y1) ∨ . . . ∨ (xn ∧ yn). A direct conversion of

this formula into CNF produces the formula:∧
l1∈{x1,y1}

∧
l2∈{x2,y2}

. . .
∧

ln∈{xn,yn}

(l1 ∨ l2 ∨ . . . ∨ ln)

which has O(2n) clauses. 2

However, we don’t need an equivalent CNF formula, merely an equisatisfiable

formula. The Tseitin transformation [Tseitin, 1968] produces an polynomial sized

CNF encoding of a formula by introducing intermediate variables to represent the

value of each subformula.

Example 2.17. Consider the formula given in Example 2.16. By introducing an additional

variable ci for each conjunction, we can construct the following formula:

(c1 ∨ c2 ∨ . . . ∨ cn) ∧
n∧
i=1

(ci ⇔ xi ∧ yi)
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By directly expanding this formula, we produce the following set of clauses:

(c1 ∨ c2 ∨ . . . ∨ cn) ∧
n∧
i=1

(xi ∨ ¬ci) ∧ (yi ∨ ¬ci) ∧ (¬xi ∨ ¬yi ∨ ci)

This introduces an additional n variables, but requires only O(n) clauses, rather than the

O(2n) of the direct encoding. 2

There are some disadvantages to applying these transformations. The trans-

formed formula often doesn’t maintain the same level of consistency as the original

formula – it has weaker propagation. Also, the introduced variables can interfere

with the conflict-directed search strategies which most SAT solvers use. Finally,

there can be considerable overhead in maintaining the additional variables and

clauses in the SAT solver, particularly as most will propagate very rarely. A sig-

nificant amount of recent research has been into developing CNF transformations

of various classes of formulae which are concise, but still maintain domain consis-

tency over the external variables [Jung et al., 2008, Quimper and Walsh, 2007, Abı́o

et al., 2011].

2.4.2 Pseudo-Boolean CSPs

Linear pseudo-Boolean (PB) constraint problems (also known as binary integer pro-

grams) can be considered to be either an extension of SAT, or a restricted case of

integer programs. Pseudo-Boolean constraint problems have the same basic struc-

ture as conventional integer programs; however, all variables are restricted to 0–1

domains. Solvers for this class of problems are generally either SAT-based or inte-

ger programming based. In the absence of an objective function, SAT-based solvers

may convert these constraints directly into clauses, as in the case of MINISAT+ [Eén

and Sörensson, 2006], or extend the propagation and learning algorithms of the

solver, such as GALENA [Chai and Kuehlmann, 2003]. If there is an objective func-

tion, the solver will generally solve a sequence of SAT problems constructed with

increasingly restricted objective values. Integer programming based solvers, such

as SCIP [Achterberg et al., 2008], simply treat the problem as an integer program,

and use similar techniques to those described in Section 2.1.1 to solve the problem.
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Example 2.18. Consider the cardinality constraint:
n∑
i=1

xi ≤ 1 , xi ∈ [0, 1]

The direct encoding into SAT produces O(n2) clauses:

n−1∧
i=1

n∧
j=i+1

¬xi ∨ ¬xj

However, we can introduce partial-sum variables {p1, . . . , pn−1} such that pi is true if

any of {x1, . . . , xi} is true. These new intermediate variables allow us to construct a more

concise encoding [Silva and Lynce, 2007] requiring only O(n) clauses:

(¬x1 ∨ ¬p1) ∧ (¬xn ∨ ¬pn−1) ∧
n−1∧
i=2

(¬xi ∨ pi) ∧ (¬pi−1 ∨ pi) ∧ (¬xi ∨ ¬pi−1)

It is worth noting that this corresponds to the Tseitin encoding of the corresponding BDD.

2

For more general pseudo-Boolean constraints, the constraint is commonly trans-

formed into a Boolean circuit, then decomposed into CNF using transformations

similar to those described in Section 2.4.1. Common approaches involve represent-

ing the constraint using BDDs [Eén and Sörensson, 2006, Abı́o et al., 2011] or vari-

ants of sorting networks [Eén and Sörensson, 2006, Codish and Zazon-Ivry, 2010,

Ası́n et al., 2011].

Example 2.19. Consider the BDD used in Example 2.20. When directly using the Tseitin

transformation as described in Eén and Sörensson [2006], the following clauses are gener-

ated for the node marked n3 in Figure 2.9(a):

x1 ∧ n5 → n3

¬x1 ∧ n4 → n3

x1 ∧ ¬n5 → ¬n3

¬x1 ∧ ¬n4 → ¬n3
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Figure 2.9: The constraint
4∑
i=1

xi ≤ 2 as (a) a BDD, and (b) a sorting network.

However, as observed in Abı́o et al. [2011], since cardinality constraints are monotone

Boolean functions, this set of clauses can be reduced to:

¬n4 → ¬n3

x1 ∧ ¬n5 → ¬n3

2

Sorting networks are Boolean circuits which take an unsorted sequence of in-

puts, and produce the same values in sorted order as outputs. Sorting networks are

generally constructed using comparators. A comparator xyIx
′
y′ is a Boolean circuit that

takes two inputs x and y, and produces the sorted values x′ and y′ as its outputs.

The comparator can be implemented as

comparator(� x, y �,� x′, y′ �) ≡ (x ∨ y → x′) ∧ (x ∧ y → y′)

Conceptually, sorting networks operate fairly similarly to traditional sorting algo-

rithms. Indeed, most sorting networks used for pseudo-Boolean constraints are

based on variants of merge sort; the inputs are divided into two sets (maintaining

some precondition), then recursively sorted, and finally merged (using the afore-

mentioned precondition to reduce the number of necessary comparators).

Example 2.20. Consider the constraint
4∑
i=1

xi ≤ 2. Figure 2.9(a) shows this constraint

as a BDD (as described in Section 2.2). This BDD can be decomposed by introducing

33



CHAPTER 2. BACKGROUND

additional variables for each internal node, and performing the Tseitin transformation (or

related decomposition) as usual.

Figure 2.9(b) gives a 4-input sorting network. Each vertical bar denotes a comparator

which takes two Boolean inputs x and y and sorts them. The sorting network uses these

comparators to perform a merge sort on the input, producing a unary representation of the

number of true inputs. The two leftmost comparators sort their respective pairs of inputs;

the remaining three merge the two sorted sequences. The constraint
∑
xi ≤ 2 can then be

enforced by asserting ¬o3 (shown dotted in Fig. 2.9). 2

Sorting networks have the convenient property that they can be incrementally

restricted – if we have the constraint
∑
xi ≤ k, we can strengthen the constraint to∑

xi ≤ k′ by forcing the (k′ + 1)th output to be false.

2.4.3 Lazy Clause Generation

As mentioned in Section 2.4, the conflict-learning techniques used by modern SAT

solvers often produce substantial reductions in search space. Unfortunately, it is

problematic to represent problems with numerical constraints and large integer

domains directly in CNF.

One approach, often used in bit-vector solvers such as BOOLECTOR [Brummayer

and Biere, 2009] and YICES [Dutertre and De Moura, 2006], is to construct a loga-

rithmic encoding by introducing a Boolean variable for each bit. Integer constraints

can then be constructed by building logic circuits similar to those used in normal

computation. While this representation is polynomial in the number of bits, this

representation propagates very weakly, as inferences only occur once a bit becomes

fixed.

Example 2.21. Let x =<x2x1x0>, y =<y2y1y0> and z =<z2z1z0>. We can enforce the

constraint z = x+ y by introducing carry variables <c2c1c0> and building an adder:

(c0 ⇔ x0 ∧ y0) ∧ (z0 ⇔ x0 ⊕ y0) ∧ ¬cn
n∧
i=1

zi ⇔ xi ⊕ yi ⊕ ci−1

n∧
i=1

ci ⇔ (xi ∧ yi) ∨ (xi ∧ ci−1) ∨ (yi ∧ ci−1)

2
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Example 2.22. Let x =<x3x2x1x0>, with the constraint x ≥ 3. We cannot determine

the value of any bits, since x = 3 has b1 and b0 true, but x = 4 has b1 and b0 false. In fact,

bounds cannot produce any inferences until lb(x) ≥ 8 or ub(x) ≤ 7. 2

The other alternative is to use a unary encoding for the integer variables. In

this case, we introduce Boolean variables for each value the variable can take, and

add clauses to ensure the ordering is maintained. However, in problems with large

domains, many of these literals will likely not be used in solving the problem – they

simply serve to introduce overhead into the solver. Also, integer constraints (such

as addition and multiplication) tend to be quite expensive to directly encode with

this representation.

By integrating SAT-style nogood handling into an FD solver, we can avoid these

representation problems while maintaining the advantages of having a SAT encod-

ing. Rather than defining a SAT model initially, the solver uses a standard FD-style

engine for propagation, modified to record the reason for each inference. It then con-

structs a clausal representation lazily, only when needed for conflict analysis. Early

work integrating conflict analysis and clause learning with FD solvers [Katsirelos

and Bacchus, 2003, 2005] used an exhaustive encoding of variable domains, intro-

ducing a literal for each value, and enforcing assignments through the FD engine.

Lazy clause generation [Ohrimenko et al., 2009] solvers extend this by maintaining

only a partial representation of variable domains, and introducing literals for rep-

resenting variable bounds (rather than just values). As such, the solver can benefit

from conflict-directed learning without having to maintain a complete SAT model

of the problem.

For convenience, we use Jx ≤ vK to indicate the literal representing x ≤ v. When

lb(x) is set to v, we can assert ¬ Jx ≤ v − 1K; when ub(x) is set to v, we can assert

Jx ≤ vK. We will often use Jx ≥ vK rather than ¬ Jx ≤ v − 1K when manipulating

lower bounds; both notations refer to the same literal. However, bounds literals

cannot express an interval with gaps, which is necessary when we want to en-

force domain consistency over constraints. In this case, we introduce equality lit-

erals Jx = vK, which are tied to bounds literals by the addition of the constraint

Jx = vK↔ ¬ Jx ≤ v − 1K ∧ Jx ≤ vK.

There are a number of variations amongst lazy clause generation solvers in how

explanations are generated. When the solver finds a conflict, it begins computing a
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conflict clause following the same procedure described in Section 2.4. However, in

order to do so, the solver must be able to determine which literals were responsible

for each inference. If explanations are generated eagerly, as the solver of Ohrimenko

et al. [2009], any time an inference is made by a propagator, a corresponding expla-

nation is generated and recorded. In this case, the conflict analysis can proceed

precisely as if it were a pure SAT problem. However, often a conflict will only in-

volve a small subset of inferences; if constructing explanations is expensive, it is

desirable to avoid generating explanations that will be unused. It is possible to in-

stead use deferred explanations [Gent et al., 2010, Gange et al., 2010]. In this case,

the solver records a time-stamp with each inference, instead of an explanation –

this must give enough information to restore the propagator state to the time the

inference was made. During conflict analysis, when the solver attempts to retrieve

the reason for an inference, it must first check if a time-stamp is recorded instead.

If so, the inferring propagator must construct an explanation which was correct

at the specified time; this then replaces the time-stamp, and the conflict analysis

continues as usual. An important decision to be made is how to handle the gener-

ated explanations. If the explanations are to be used only for conflict analysis, they

can simply be discarded once the solver has backtracked beyond the current level –

this can be done either eagerly, or by periodic garbage collection (similar to the han-

dling of learnt clauses). However, adding the generated explanations to the clause

database allows these explanations to be re-used when the same inference occurs

in a different subtree. This can be directly beneficial in cases when explanations

are expensive compute; however, since generated explanations for an inference can

be wildly different despite occurring in similar subtrees, keeping explanations can

also direct the inference graph (and thus, conflict analysis) to focus repeatedly on

the same subproblem, hopefully resulting in stronger nogoods. In this case, the

explanations (once generated) can be treated exactly as conventional learnt clauses.

Example 2.23. Consider a problem with variables x, y and z, with D(x) = D(y) =

D(z) = [0, 300] and the constraint z = x + y. Assume that the following propagations

have occurred:
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D(x) D(y) D(z)

[0, 300] [0, 300] [0, 300]

x ≥ 50 [50, 300] [0, 250] [50, 300]

y ≥ 80 [50, 220] [80, 250] [130, 300]

At this point, the following literals have been created:

x {Jx ≤ 49K , Jx ≤ 220K}
y {Jy ≤ 79K , Jy ≤ 250K}
z {Jz ≤ 49K , Jz ≤ 129K}

During conflict analysis, it may be necessary to generate clauses explaining any of the

inferences made during propagation.

Generating an explanation for ¬ Jz ≤ 129K will produce

¬ Jx ≤ 49K ∧ ¬ Jy ≤ 79K→ ¬ Jz ≤ 129K

An explanation for Jx ≤ 220K would be

¬ Jy ≤ 79K→ Jx ≤ 220K

2

Lazy-clause generation is closely related to SAT Modulo Theory (SMT) solvers.

SMT solvers combine SAT reasoning with a theory solver for reasoning about the

non-Boolean parts of the problem. The theory solvers communicate with the Boolean

parts of the model through theory literals, similarly to the relationship between vari-

able bounds and bound literals in a lazy clause generation solver. A variety of

theory solvers have been developed, such as for fixed-width bit-vectors [Brum-

mayer and Biere, 2009], difference logic [Nieuwenhuis and Oliveras, 2005] and lin-

ear arithmetic [Dutertre and de Moura, 2006]. As observed by Ohrimenko et al.

[2009], lazy clause generation solvers can be seen as a special form of SMT solver

where each propagator is a theory solver.

Example 2.24. Consider again the problem of Example 2.23, but with the added constraint

z ≤ x. When we set x ≥ 50, the propagation progresses exactly as in the previous example,
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x ≥ 50

z ≤ 300

y ≥ 80

x ≤ 220 z ≤ 220 x ≤ 140 z ≤ 140

z ≥ 130 x ≥ 130 z ≥ 210

false

Figure 2.10: Generated inference graph for Example 2.24.

as the propagator for z ≤ x fires only when the upper bound of x decreases, or the lower

bound of z increases.

As before, asserting y ≥ 80 forces z ≥ 130 and x ≤ 220. The constraint z ≤ x then

fires, ensuring x ≥ 130 and z ≤ 220. Since x and z have changed, we again propagate

z = x + y, which propagates x ≤ 140, y ≤ 90 and z ≥ 210. When z ≤ x propagates

again, the propagator attempts to set z ≤ 140 but fails, as z ≥ 210.

As before, the solver starts with the conflict clause Jz ≥ 210K∧Jz ≤ 140K→ false , and

replaces Jz ≤ 140K with its reason, Jx ≤ 140K. It then repeats this process, next replacing

Jx ≤ 140K with its reason Jz ≤ 220K∧Jy ≥ 80K, constructing the conflict clause in the same

manner as a SAT solver. The inference graph constructed during this process is shown in

Figure 2.10. 2

The use of nogood learning can provide dramatic improvements to the perfor-

mance of BDD-based constraint solvers. Several such solvers have been developed,

mostly in the context of solving set constraints. The solver of Hawkins and Stuckey

[2006] used BDD conjunction and existential quantification to implement propa-

gation and explanation. Subbarayan [2008] introduced a more efficient algorithm

for computing explanations, and Gange et al. [2010] incorporated a more efficient

propagation algorithm, and took advantage of the conflict-directed search heuris-

tics of modern SAT solvers. The solver of Damiano and Kukula [2003] used very

similar techniques, but constructed BDDs from an existing SAT model (with the

goal of eliminating variables) rather than preserving the structure of a high-level

constraint.
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2.5 Dynamic Programming

Dynamic programming [Bellman, 1952] is a technique used to solve optimization

problems that can be recursively defined in terms of smaller subproblems. In many

cases, the solution to a problem pmay require solving subproblems pα and pβ , both

of which depend on subproblem pγ . In a naive implementation, we will have to

solve pγ (at least) twice – first when solving pα and again to solve pβ . The key idea

of dynamic programming is to store the optimal solution to pγ so it can be used

without being recalculated.

Bottom-up dynamic programming is the simplest form, where the optimal so-

lution is computed for all subproblems, ordered such that a problem p is not com-

puted until after all its subproblems. This is convenient, as it requires no special

data structures (beyond an array to store the subproblem solutions), but it may

compute the solution to subproblems that aren’t used in computing the final opti-

mum.

Top-down dynamic programming is slightly more complex than bottom-up, as

it requires a hash table or other data structure to record the set of subproblems that

have been computed. When solving a problem p, we first check if p is in the table

– if so, we return the computed value. Otherwise, we recursively solve the sub-

problems required by p, compute the optimum, then enter it in the table. If there

are many subproblems that don’t occur in the dependency tree of p, then top-down

can provide a substantial performance improvement over bottom-up. When de-

scribing top-down dynamic programming algorithms (such as the MDD propaga-

tion algorithm given in Section 2.3.2), we will use the procedures cache(key, value)

and lookup(key) to insert and find entries in this global table; clear cache() is used

to remove all entries from the table (when we are about to solve a new problem).

Dynamic programming problems often involve taking the min or max of a set

of possible subproblems. Bounded top-down dynamic programming avoids explor-

ing subproblems that cannot result in an improved solution. Assume that we are

maximising a dynamic program f . We define a bounding function ubf such that

ubf (c) ≥ f(c) (preferably one that can be computed quickly). ubf gives a limit on

how far the objective value can be improved (if minimizing, we define lbf simi-

larly). Local bounding records the best solution f̂ found for the current node, and
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avoids expanding any children c where ubf (c) ≤ f̂ . Local bounding is guaranteed

to expand at most as many nodes as the basic dynamic programming algorithm.

Argument bounding (also called global bounding) extends this by keeping track of

the best solution found so far along any branch of the search tree, rather than just

children of the current node. While it generally reduces the search space, argu-

ment bounding can potentially expand more nodes than basic top-down dynamic

programming, as a node that is cut off initially may be checked repeatedly along

different paths with weaker bounds each time.

Example 2.25. A 0–1 knapsack problem is defined by a set of items I = {(w1, v1), . . . , (wk, vk)}
with weight wi and value vi, and a capacity C. The objective is to find the subset of items

with maximal value, but can still fit within the knapsack. This can be formulated as follows:

knapsack(I, C) = max
∑

(wi,vi)∈I′
vi

s.t
∑

(wi,vi)∈I′
wi ≤ C

I ′ ⊆ I

When formulated as a dynamic program, this becomes:

knapsack(C) = knapsack(|I|, C)

knapsack(k, c) =


0 if k = 0

knapsack(i− 1, c) if wi > c

max(vi + knapsack(i− 1, c− wi), knapsack(i− 1, c)) otherwise

Assuming for convenience that the items are sorted in order of decreasing efficiency

(that is, viwi
), we can calculate an upper bound for the subproblem (i, c) as follows [Dantzig,

1957]:

knapsack ub(i, c) =

 vi
c
wi

if wi > c

vi + knapsack ub(i− 1, c− wi) otherwise

Consider the knapsack problem shown in Figure 2.11. As it has 5 items and capacity 18,

bottom-up dynamic programming would require calculating all 90 entries in the table.

However, the majority of these entries are never used in the construction of the optimal

40



2.5. DYNAMIC PROGRAMMING

item wi vi
vi
wi

i5 1 2 2
i4 6 7 1.16
i3 7 8 1.14
i2 8 9 1.12
i1 9 10 1.11

cap 18

Figure 2.11: Example knapsack problem.

i
012345

c

0

5

10

15

(a)

i
012345

c

0

5

10

15

(b)

Figure 2.12: Sequence of cells explored when solving the knapsack problem of Ex-
ample 2.25. (a) Using top-down dynamic programming with no bounding. (b)
With local bounding.

solution. Figure 2.12 (a) shows the sequence of calls made during a top-down computa-

tion, and Figure 2.13 (a) shows the set of computed values. The optimal value is v = 21 –

by tracing back along the call graph, we can determine that the corresponding solution is

{i5, i2, i1}.
As can be seen from part (b) of Figures 2.12 and 2.13, by using local bounding we

can construct the optimal solution while computing fewer subproblems. In this instance,

argument bounding provides no improvement over local bounding, as the subproblems end

up being traversed in order of increasing value.

2
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c i5 i4 i3 i2 i1
0
1
2 0
3 0
4 0 0
5 0 0
6
7
8
9 10

10 10 10
11 10 10 10
12 10 10 10
13
14
15
16
17 19 19 19 10
18 21 19 19 19 10

(a)

c i5 i4 i3 i2 i1
0
1
2 0
3 0
4 0 0
5
6
7
8
9 10

10 10 10
11 10 10 10
12
13
14
15
16
17 19 19 19
18 21

(b)

Figure 2.13: Table of results computed for the knapsack problem in Example 2.25
with (a) no bounding, and (b) local bounding.
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Part I

Generic Propagation Techniques

ONE of the key properties that makes solving a wide range of combina-

torial optimization problems possible is the existence of general tech-

niques that can be applied to multiple problems; either by transforming

the problem (as in the case of SAT and MIP), or by describing a solution procedure

(as with dynamic programming).

Constraint satisfaction and optimization problems often involve domain-specific

constraints that aren’t natively supported by the constraint solver. In the case of

finite-domain CP and lazy clause generation solvers, it is then necessary to either

reformulate the domain-specific constraint in terms of primitive constraints, or de-

sign and implement propagation and explanation algorithms for the constraint.

A preferable option is to provide a declarative specification of the constraint,

and have an efficient learning propagator automatically constructed to be used by

the solver. In Part I, we describe several techniques for constructing learning prop-

agators for arbitrary global constraints, using MDDs or s-DNNF as an underlying

representation, that can be integrated into a lazy clause generation solver.
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3
Multi-valued Decision Diagrams

ONE of the major challenges in using constraint propagation solvers in

general, and particularly lazy clause generation solvers, is the prob-

lem of handling problem-specific global constraints. If the solver does

not already have a specific propagator for the constraint, the options are generally

either to use a decomposition, or implement a propagator. Decompositions are

(comparatively) simple, but often introduce large numbers of intermediate vari-

ables, and can propagate poorly. Implementing propagators requires a thorough

understanding of the constraint, lots of time and is error prone (particularly in the

case of lazy clause generation solvers).

An alternative approach is to have a declarative specification of the constraint,

and some method for automatically deriving a propagator from this specification.

Multi-valued decision diagrams (MDDs), described in Chapter 2, are well suited to

this task, as they can be automatically constructed from a series of logical opera-

tions and the satisfiability of an MDD G can be tested in O(|G|) time.

In order to use MDD-based constraints in a lazy clause generation based solver,

we need two components. First, a propagation algorithm for pruning values from

domains; and second, an explanation algorithm to generate explanation clauses

for inferences generated. In this chapter, we introduce an incremental propagation

algorithm for MDDs that avoids touching parts of the MDD that haven’t changed,

and describe two explanation algorithms for MDDs: an extension of the algorithm

of Subbarayan [Subbarayan, 2008], and an incremental algorithm that attempts to

avoid traversing the entire graph.
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s

d

e (x = vi)

(a)

s

d

e

(b)

s

d

e

(c)

Figure 3.1: Consider an edge e from s to d, shown in (a). Assume e is killed from
below (due to the death of d). If s has living children other than e, as in (b), the
death of e does not cause further propagation. If e was the last living child of
s, such as in (c), s is killed, and the death propagates upwards to any incoming
nodes of s. Propagation occurs similarly when e is killed from above – we continue
propagating downwards if and only if d has no other living parents. If vi is removed
from the domain of x (and e was alive), we must both check for children of s and
for parents of d.

This chapter is organized as follows. In the next section, we describe incremen-

tal propagation algorithms for enforcing constraints represented as MDDs. In Sec-

tion 3.2, we describe several explanation algorithms to integrate MDD constraints

with a conflict-learning solver, together with some refinements to reduce learnt

clause size. In Section 3.3, we compare the performance of the described methods

on a variety of problems, and finally we conclude in Section 3.4.

3.1 Incremental Propagation

When a value vi is removed from the domain of a variable x, the edges correspond-

ing to that value are killed. An edge (x, vi, s, d) being killed in this way can only

cause changes if it is the last remaining outgoing edge of s, in which case it will

kill s and all incoming edges to s, or the last incoming edge of d, in which case

it may kill all outgoing edges from d – this is illustrated in Figure 3.1. Thus, if s

(and d) have other incoming (and outgoing) edges remaining, we need not explore

more distant parts of the graph. If this is not the case, however, we must repeat this

process for the new edges that have been killed.

Similarly, removing an edge (x, vi, s, d) can cause vi to be removed from the do-

main of x if and only if all other edges supporting that value are killed. Thus, we

want to efficiently determine whether or not a given edge is the last remaining edge

for the given value. However, keeping edge counts for nodes and values is not de-

sirable, as we would then have to restore these counts upon backtracking. Accord-

46



3.1. INCREMENTAL PROPAGATION

ingly, we adopt a similar method to the two-literal watching scheme [Moskewicz

et al., 2001] used in SAT solvers.

We associate with each edge flags indicating whether (a) the edge is alive, and

(b) whether it provides support for a value, the node above, or the node below.

We initially mark one edge for each value as watched, along with one incoming and

outgoing edge for each node. When an edge is removed, it is marked as killed, then

the watch flags are examined. If none of the watch flags are set, the edge cannot

cause any further changes to the graph or domains. If it is watched by a node (not

in the direction from which it was killed), we must then search the corresponding

node for a new watched edge; if none can be found, the node is killed, and further

propagation occurs. Likewise, if it is watched by a value, we must then search for a

new supporting edge; if none exists, the corresponding value is removed from the

domain. Otherwise, the new supporting edge is marked as watched, and the mark

is removed from the old edge. While the liveness flags must still be restored upon

backtracking, this is less expensive than updating separate counts for incoming,

outgoing and value supports each time an edge is killed or restored.

Pseudo-code for the algorithm is given in Figures 3.2 and 3.3. Algorithm mdd inc-

propagate takes an MDD G and a set of pairs (var, val) where var 6= val is the

change in domains by new propagation. The MDD graph G maintains a status

G.status[e] for each edge e as either: alive, dom killed by domain change, below

killed from below (no path to T from e.end), or above killed from above (no path

from the root to e.start). It also maintains a watched edge for each node n’s input

(n.watch in), output (n.watch out), and each (var, val) pair (G.support[var, val]).

For simplicity of presentation, the information about how each edge e is being

watched is also recorded asG.watched[e] ⊆ {begin,end, val}. If begin ∈ G.watched[e],

the edge e is watched by the node e.begin; likewise for end and val. The pseudo-

code for upward pass is omitted since it is completely analogous to downward pass.

The graph also maintains a trail of killed edges G.trail (which is initially empty)

and, for each (var, val) pair, a pointer to the level of the trail when it was removed

(G.limit[var, val]). The list kfa holds the set of nodes that may have been killed due

to removal of incoming edges (killed from above); kfb is used similarly with regard

to outgoing edges. Note that restoring the state of the propagator, mdd restore
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mdd incpropagate(G, changes)
kfa := {}% The set of nodes that may have been killed from above.
kfb := {}% Nodes which may have been killed from below.
pinf := {}% (var,val) pairs that may be removed from the domain.
count := length(G.trail) % Record how far to unroll the trail to get back to this state.

for((var, val) in changes)
G.limit[var, val] := count % Mark the restoration point.
% Kill all remaining edges for the value.
for(edge in G.edges(var, val))

if(G.status[edge] 6= alive) continue
G.status[edge] := dom % Mark the edge as killed due to external inference.
insert(G .trail , edge) % Add the edge to the trail
if(begin ∈ G.watched[edge])

% If this edge supports the above node e.begin,
% add the node to the queue for processing.
kfb ∪: ={edge.begin}

if(end ∈ G.watched[edge])
% Likewise, add the end node if it is supported by the edge.
kfa ∪: ={edge.end}

pinf := downward pass(G, kfa)
if(G.status[T .watch in] 6= alive)

% If T is unreachable, the partial assignment is inconsistent.
% Otherwise, propagating upwards is safe.
return FAIL

pinf ∪: = upward pass(G, kfb)
return collect(G, pinf )

Figure 3.2: Top level of the incremental propagation algorithm.

shown in Figure 3.3, requires only restoring the status of killed edges to alive. The

maximum trail size is the number of edges in G.

The mdd incpropagate algorithm enforces domain consistency on the MDD.

The complexity of mdd incpropagate is O(|G|) down a branch of the search tree

(with a little care in implementation). In each forward computation each edge

is only killed once. As each edge corresponds to exactly one (var, val) pair, and

each (var, val) pair is killed at most once, each edge is only considered at most

once in the inner for loop of mdd incpropagate. Each node n can appear in kfa at

most |n.in edges| times, hence the for loop in downward pass runs O(|G|) times.

By traversing n.in edges (in downward pass) from the previously watched edge,

we can guarantee that we only traverse each edge twice down the branch of the

search tree. Similarly when traversing G.edges[var, val] (in collect) looking for new

support, if we look from the previously watched edge we can guarantee we only

traverse each edge at most twice down the branch of the search tree.
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downward pass(G, kfa)
pinf := {};
for(node in kfa)

% Search for a new support
for(edge in node.in edges)

if(G.status[edge] := alive)
% Support found. Update the watches.
G.watched[node.watch in] \: ={end}
G.watched[edge] ∪: ={end}
node.watch in := edge
break

if(is dead(node.watch in))
% The node is still dead
% kill the outgoing edges.
for(edge in node.out edges)

if(G.status[edge] 6= alive { continue }
G.status[edge] := above
insert(G .trail , edge)
if(end ∈ G.watched[edge])

% If the edge supports a node,
% queue it for processing.
kfa ∪: ={edge.end}

if(val ∈ G.watched[edge])
% If the edge supports a value,
% add it to the queue.
pinf ∪: ={(edge.var, edge.val)}

return pinf

collect(G, pinf )
inf = {}
for((var, val) in pinf )

% Search for a new support.
edge = G .support [var, val]
for(e in G.edges(var, val))

if(G.status[e] = alive)
% Support found.
G.watched[edge] \: ={val}
G.watched[e] ∪: ={val}
G.support[var, val] = e
break

edge = G .support [var, val]
if(G.status[edge] 6= alive)

% Still dead.
inf ∪: ={(var, val)}
G.limit[var, val] = count

return inf

mdd restore(G, var, val)
% Determine how far to unroll
lim = G.limit[var, val]
while(length(G.trail) > lim)

% Restore the propagator.
edge = pop last(G.trail)
G.status[edge] = alive

Figure 3.3: Pseudo-code for determining killed edges and possibly removed values
in the downward pass, collecting inferred removals, and backtracking.

Example 3.1. Consider the MDD shown in Fig 3.4(a). If the values x2 = 1 and x3 = 1

are removed from the domain, we must mark the corresponding edges as removed. These

edges are shown dashed.

Incremental propagation works as follows assuming the leftmost edge leaving and en-

tering a node is watched, and the leftmost edge for each x = d valuation is watched. The

removal of the edge (x2, 1, 13, 14) removes the support for node 13 which is added to kfb,

as denoted by operation ∪: =, and node 14 which is added to kfa . Similarly 15 is added to

kfb and 16 to kfa by the removal of (x2, 1, 15, 16). The removal of the edges (x3, 1, 4, 5)

and (x3, 1, 16, 17) leave kfa = {5, 14, 16, 17} and kfb = {4, 13, 15, 16} before down-

ward pass execution.

We then perform the downward pass. We find no new supports from above for 5 which

means we mark (x4, 1, 5, 6) as killed from above (above) and add 6 to kfa and add (x4, 1)

to the queue of values to check pinf . Similarly we kill (x5, 0, 6, 7) and add 7 to kfa and

(x5, 0) to pinf . We do find a new support from above for node 7. We similarly kill edges
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x0

x1 x1

x2 x2 x2

x3 x3 x3

x4 x4 x4

x5 x5 x5

x6 x6

T

1 0

1

0

0

1

0

0

1 0

1 1

1

1 0

0

0

1 1

1 1

(a) x2 6= 1, x3 6= 1

1:x0

2:x1 12:x1

3:x2 13:x2 15:x2

4:x3 14:x3 16:x3

5:x4 8:x4 17:x4

6:x5 9:x5 10:x5

7:x6 11:x6

T

1

1

0

0

0

1 0

1 1

1

1

0

0

0

01

0

1 1

1 1

(b) Propagation

Figure 3.4: An example MDD for a regular constraint 0?1100?110? over the vari-
ables [x0, x1, x2, x3, x4, x5, x6], and the effect of propagating x2 6= 1 and x3 6= 1 using
the incremental propagation algorithm.

(x3, 0, 14, 8) but note since this is neither watched by its destination nor its value, nothing

is added to kfa or pinf . We similarly kill the edge (x4, 0, 17, 10) but again this is not

watched.

We then perform the upward pass. We find a new support for node 4 from below. We

find no new supports for nodes 13 hence we kill edge (x1, 1, 12, 13) and add 12 to kfb, We

similarly kill node 15 and edge (x1, 0, 12, 15) which adds (x1, 0) to pinf . Examining node

12 we find no support from below and kill (x0, 0, 1, 12) adding (x0, 0) to pinf (but not 1

to kfb). The killed from below nodes and edges are shown dashed in Figure 3.4(b), while the

killed from above nodes and edges are shown dotted.

We finally consider pinf = {(x4, 1), (x5, 0), (x1, 0), (x0, 0)}. We find a new support

(x4, 1, 8, 9) for x4 = 1, therefore we remove val from G.watches of edge (x4, 1, 5, 6) as

denoted by the \: = operation. We are not able to find new supports for the other variable

value pairs. Propagation determines that x5 6= 0, x1 6= 0 and x0 6= 0.

2
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3.2 Explaining MDD Propagation

In this section, we describe several explanation generation algorithms for MDD

propagators.

3.2.1 Non-incremental Explanation

The best previous approach to explaining BDD propagation is due to Subbarayan

[2008]. Here we extend this approach to MDDs. It works in two passes. It first tra-

verses the MDD backwards from the true node T marking which nodes can reach

T in the current state assuming the negation of the inference to be explained holds.

It then performs a breadth-first traversal from the root progressively adding back

domain values as long as this does not create a path to T . The algorithm creates

a minimal explanation (removing any part of it does not create a correct explana-

tion), but it requires traversing the entire MDD once for each new inference.1 Note

that it does not create a minimum size explanation; doing so is NP-hard [Subbarayan,

2008]. Pseudo-code explaining the inference var 6= val is given in Figure 3.5.

Example 3.2. Consider explaining the inference x0 6= 0 discovered in Example 3.1. The

mark reachT call walks the MDD from T adding which nodes can reach T into reachT in

the state where the inference was performed (Figure 3.4(a)) with the additional assumption

that the converse of the inference holds (x0 = 0). It discovers that all nodes reach T except

{1, 12, 13, 15, 16}. It then does a breadth-first traversal from the root looking for currently

killed edges that if not excluded would create a path from the root to T . From the root

we only reach node 12 (under the assumption that x0 = 0), from 12 we reach 13 and 15.

Restoring the killed edge (x2, 1, 13, 14) would create a path to T , hence we require x2 6= 1

in the reason. Once we have this requirement, from 15 we cannot reach 16 and the algorithm

stops with the explanation ¬[[x2 = 1]]→ ¬[[x0 = 0]]. 2

3.2.2 Incremental Explanation

The non-incremental explanation approach above requires examining the entire

MDD for each new inference made. This is a significant overhead, although one

1It is interesting to note that any minimal explanation for [[x 6= v]] under a partial assignment
[[x1 6= v1]] ∧ . . . ∧ [[xn 6= vn]] is a prime implicate [Reiter and de Kleer, 1987] of the constraint C con-
taining [[x 6= v]] and some subset of {[[x1 = v1]], . . . , [[xk = vk]]}.
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mdd explain(G, var, val)
reachT = mark reachT(G, var, val) % Find the set of nodes that can reach true.
explanation = {}
queue = {G.root}
while(queue 6= ∅)

for(node in queue)
for(e ∈ node.out edges)

if(e.var 6= var and e.end ∈ reachT )
explanation∪: =(e.var, e.val)

nqueue = {}% Record nodes of interest on the next level.
for(node in queue)

for(e ∈ node.out edges)
if (e.var == var and e.val == val)

or (e.var 6= var and (e.var, e.val) /∈ explanation))
nqueue ∪: = e.end

queue = nqueue
return explanation

mark reachT(G, var, val) )
reachT = {T }% Reset the set of nodes that can reach true.
queue = {T .in edges}% Reset the queue of nodes to be processed.
for(edge in queue)

if(edge.begin ∈ reachT ) continue
if(edge.var == var)

if(edge.val == val)
reachT ∪: ={edge.begin}
queue∪: = edge.begin.in edges

else if(G.status[edge] == alive and edge.begin /∈ reachT )
reachT ∪: ={edge.begin}
queue∪: ={edge.begin.in edges}

return reachT

Figure 3.5: Non-incremental MDD explanation. Extended from Subbarayan [2008].

should note that explanations are only required to be generated during the compu-

tation of a nogood from failure, not during propagation, hence not every inference

will need to be explained. Once we are using incremental propagation, the over-

head of constructing minimal explanations is relatively even higher.

It is difficult to see how to generate a minimal explanation incrementally, since

the minimality relies on examining the whole MDD.2 Thus we give up on minimal-

ity and instead search for a sufficiently small reason without exploring the whole

graph.

In order to achieve this, we make two observations. First, an edge being killed

is most likely to have effects in the nearby levels; an edge at level j can kill a node at

2Note that references to incrementality in this section are not referring to the re-use of informa-
tion between executions, but instead to the traversal of the graph starting from only the edges to be
explained, and progressively expanding as needed.
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mdd inc explain(G, var, val)
kfa = {}% edges killed from above
kfb = {}% edges killed from below
for(edge in G.edges(var, val))

% Split possible supports
if(killed(edge, above))

kfa ∪: ={edge}
else

kfb ∪: ={edge}
% Explain all those killed from below
return explain down(kfb)
% And all those killed from above

∪ explain up(kfa)

Figure 3.6: Top-level wrapper for incremental explanation.

level j+2 only if it is the final support to a node at level j+1, which in turn remains

the only support for a node at level j + 2. If we are searching for an explanation

for the death of an edge, it is most likely to be near the edge being explained. This

is particularly the case for constraints which are local in nature, where the possible

values for xj are most strongly constrained by the values of variables in nearby

levels. Second, if the cause of the propagation is far from the killed node, this may

indicate the presence of a narrow cut in the graph, which eliminates a large set of

nodes. The goal of the incremental algorithm is to search the section of the graph

where the explanation is likely to be, but follow chains of propagation to hopefully

find any narrow cuts (which provide explanation for an entire subgraph).

Pseudo-code explaining the inference var 6= val is given in Figures 3.6 and 3.7.

The code makes use of function killed below to check if a node has been killed from

below (and similarly for killed above). In practice, the results of these functions are

cached to avoid recomputation. The functions explain down and explain up keep

track of pending nodes of the next level which may be required to be explained.

We omit code to explain failure, which is similar.

The algorithm first records the reason for the removal of each edge. We then tra-

verse the graph from all the edges defining a removed value var = val depending

on how they were killed. For those killed from below we search breadth-first for

edges below that were killed by domain reduction, whose endpoint was not also

killed from below. They are added to the reason for the removal of var = val. We

then traverse the edges which are not already part of the reason and add their child

edges to check in the next level. Pending edges are edges whose end node may be
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killed below(G,node)
% node is killed below if
for(edge in node.out edges)
s = G.status[edge]
if(s ∈ {alive, above})

% No outgoing edge is alive
% or killed from above
return false;

return true

explain down(kfb)
reason = {}
% Traverse the MDD downwards, breadth first
while(¬is empty(kfb))

% Scan the current level for edges
% that will need explaining.
pending = {}
for(e in kfb)

% For each edge requiring explanation
if(G.status[e] = dom and
¬killed below(G, e.end))
% There is no later explanation,
% so add (e.var, e.val) to the reason.
reason ∪: ={(e.var, e.val)}

else
pending ∪: ={e}

next = {}
% Collect the edges that haven’t been
% explained at this level.
for(e in pending)

if((e.var, e.val) 6∈ reason)
% If e is not explained already
% collect its outgoing edges
next ∪: = e.end.out edges

% Continue with the next layer of edges.
kfb = next

return reason

Figure 3.7: Pseudo-code for incremental explanation of MDDs. killed above and
explain up act in exactly the same fashion as killed below and explain down, but in
opposite directions.
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required to be explained on the next level, but it can happen that before the current

level is finished they are already explained. Hence the two pass approach.

A greedier algorithm which just tried to find a “close” reason why var = val

has been removed would stop the search whenever it reached an edge killed by

domain reduction. On first sight this might seem to be preferable, as it traverses

less of the MDD and gives a more “local” explanation. Our experiments showed

two deficiencies: in many cases this killed edge may be redundant as it is explained

by other edges killed higher up that are still required to be part of the explanation

for other reasons; and it failed to find “narrow cuts” in the MDD which lead to

more reusable explanations.

Example 3.3. Consider the explanation of x0 6= 0 determined in Example 3.1. The edge

(x0, 0, 1, 12) is marked as below, so it is added to kfb. In explain down we add 12 as a

pending node. We then insert (x1, 1, 12, 13) and (x1, 0, 12, 15) into next and restart the

while loop. Nodes 13 and 15 become pending and in the next iteration of the while loop kfb

is {(x2, 1, 13, 14), (x2, 1, 15, 16)}. The first edge is killed by domain and its end node 14 is

not killed from below so we add (x2, 1) to reason. For the second edge node 16 is killed from

below, so (x2, 1, 15, 16) is a pending edge. In the second for loop over kfb we determine

that is already explained by reason. The algorithm terminates with the reason {(x2, 1)}.
This becomes the clause ¬[[x2 = 1]]→ ¬[[x0 = 0]]. 2

Example 3.4. Unfortunately, these explanations are not guaranteed to be minimal. Con-

sider again the constraint demonstrated in Example 3.1, but instead with x3 6= 1 fixed first,

and x0 6= 0 fixed later. This kills nodes {15, 16} from below, and nodes {5, 6, 12, 13, 14, 17}
killed from above. In order to explain x2 6= 1, we must determine reasons for the edges

(x2, 1, 13, 14) and (x2, 1, 15, 16). Explaining (x2, 1, 13, 14) gives us {x0 6= 0}. As

(x2, 1, 15, 16) was killed from below, we also add x3 6= 1 to the reason, even though x0 6= 0

already explains this edge.

The algorithm mdd inc explain is O(|G|) for a single execution, no better than

the non-incremental explanation in the worst case. However, if the constraint is

reasonably local in nature, significantly fewer edges will be explored – if an ex-

planation e contains variables Ve, the algorithm will explore at most those edges

between min(Ve) and max(Ve).
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3.2.3 Shortening Explanations for Large Domains

Both the non-incremental and incremental algorithms for MDD explanation collect

explanations of the form (∧¬[[xi = vij ]]) → ¬[[x = v]]. These are guaranteed to be

correct, and, in the non-incremental case, minimal. But they may be very large

since for a single variable xi with large initial domain D(xi) we may have up to

|D(xi)| − 1 literals involved.

A first simplification is to replace any subexpression ∧d∈D(xi),d 6=d′¬[[xi = d]] by

the equivalent expression [[xi = d′]]. This shortens explanation clauses considerably

without weakening them. But it does not occur frequently. A second simplifica-

tion is to replace ∧d∈S¬[[xi = d]] by ¬[[xi ≤ l − 1]] ∧ [[xi ≤ u]] ∧ ∧d∈S∩[ l .. u ]¬[[xi = d]]

where l = min(D(xi) − S) and u = max(D(xi) − S) are the least and greatest val-

ues of xi consistent with the formula. Again this can sometimes shorten clauses

considerably, but sometimes is of no benefit.

Finally we can choose to weaken the explanation. Suppose that in the current

stateD(xi) = d′, that is xi is fixed to d′, then we can choose to replace∧d∈S¬[[xi = d]],

where |S| > 1 and d′ 6∈ S by [[xi = d′]]. This shortens the explanation, but weakens

it.

Example 3.5. Consider a state where the following explanation has been generated:

Jx 6= 2K ∧ Jx 6= 3K→ Jy 6= 1K

We can resolve this with the implicit clauses Jx = 5K → Jx 6= 2K and Jx = 5K → Jx 6= 3K

to give:

Jx = 5K→ Jy 6= 1K

If D(x) = {5} at the time of inference, we can replace the original explanation with this

smaller explanation. 2

While we could perform this as a postprocess by first creating an explanation

and then weakening it, doing so will make the explanations far from minimal.

Hence we need to adjust the explanation algorithms so that as soon as they col-

lect (xi, e) and (xi, e
′) in a reason, when in the current state xi = d′ we in effect add

all of (xi, e
′′), e′′ ∈ D(xi) − {d′} to the reason being generated (which will simplify

to a single literal [[xi = d′]] in the explanation).

56



3.3. EXPERIMENTAL RESULTS

x2 x2 x2

x1 x1 x1 x1

x0

T

3

3

10 0

2

0 1

0 1

2

(a) Constraint

x2 x2 x2

x1 x1 x1 x1

x0

T

3

3

10 0

2

0 1

0 1

2

(b) Without weakening

x2 x2 x2

x1 x1 x1 x1

x0

T

3

3

10 0

2

0 1

0 1

2

(c) Inline weakening

Figure 3.8: Explaining the inference x2 6= 0. The incremental explanation algorithm
will generate the explanation x0 6= 2 ∧ x1 6= 0 ∧ x1 6= 1. This can then be shortened
to x0 6= 2 ∧ x1 = 3. If weakening is performed during explanation, x1 6= 0 ∧ x1 6= 1
will immediately be shortened, and the edge x0 = 2 will never be reached, yielding
the explanation x1 = 3.

Example 3.6. Consider the MDD state shown in Figure 3.8(a) after the external inferences

that x1 6= 0, x1 6= 1, and x0 6= 2. The two leftmost x1 nodes are killed from below, while

the third x1 node is killed from above. In explaining the inference x2 6= 0, the incremental

explanation algorithm starts at the edges to be explained, then collects x1 6= 0 and x1 6= 1

as values that must remain removed. Since the edge x1 = 2 has not yet been explained,

the algorithm continues, fixing x0 6= 2. We can then shorten this explanation to x1 =

3 ∧ x0 6= 2. However, if we weaken the explanation during construction, we detect that

x1 6= 0 ∧ x1 6= 1 can be weakened to x1 = 3, which eliminates the remaining x1 6= 2 edge,

giving us a final explanation of x1 = 3→ x2 6= 0. 2

3.3 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 2 GB of RAM running

Ubuntu GNU/Linux 8.10. Our solver is a modified version of MiniSAT2 (release

070721), augmented with MDD propagators. Explanations are constructed on de-

mand during conflict analysis, and added to the clause database as learned clauses.

We compare a number of variations of our solver: base propagation and non-

incremental explanation; ip is the incremental propagation approach described

herein, with non-incremental explanation; +w denotes a method with explana-

tion weakening; and +e denotes incremental explanations. dectse is the standard

Tseitin decomposition described in Chapter 2, and decdc is a domain consistent de-

composition that is described in detail in Chapter 4. All times are given in seconds.
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Figure 3.9: (a) An example nonogram puzzle, (b) the corresponding solution.

3.3.1 Nonograms

Nonograms [Ueda and Nagao, 1996] are a set of puzzles that have been studied

both in terms of constraint programming, and in their own right, and a number

of standalone solvers have been designed to solve these problems. A nonogram

consists of an n × m matrix of blocks which may or may not be filled. Each row

and column is marked with a sequence of numbers [n0, n1, ..., nk]. This constraint

indicates that there must be a sequence of n0 filled squares, followed by one or

more empty squares, followed by n1 filled squares, and so on. Nonogram solvers

are often used to assist puzzle design – rather than finding a single solution, a solver

is used to determine uniqueness of a solution.

In all cases, the model is constructed introducing a Boolean variable for each

square in the matrix, and converting each row and column constraint into a DFA,

then expanding the DFA into a BDD.

An example nonogram is given in Figure 3.9a. The [2, 2] next to the second

row indicates that there must be a block of 2 filled blocks, followed by a gap, then

another 2 filled squares. This constraint is converted into a DFA. The solution to

this puzzle is given in Figure 3.9b.

The nonogram puzzle instances are taken from Wolter [b], which compares 15

different solvers for the problem on a 2.6GHz AMD Phenom quad-core processor

with 8Gb of memory. These solvers either find two distinct solutions, or prove

that there is a unique solution. Two solvers (PBNSolve and BGU) are listed as

solving all but two instances within 30 minutes, taking a total of 97.08s and 236.34s

respectively for the solved instances; all other solvers fail to solve at least three of

the instances within the time limit.

The results in Tables 3.1 to 3.3 compare various approaches: the best solver

from Wolter [b] PBNSOLVE 1.09, GECODE 3.10, and our solvers. The tables show
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Without learning

Problem PBNSOLVE GECODE Seq
time fails time fails base ip fails

1 dancer 0.0 0 0.0 0 0.02 0.03 0
6 cat 0.0 0 0.0 0 0.05 0.04 0
21 skid 0.0 0 0.0 0 0.04 0.04 0
27 bucks 0.0 2 0.0 2 0.06 0.06 2
23 edge 0.0 22 0.0 25 0.03 0.03 26
2413 smoke 0.0 7 0.0 8 0.04 0.05 9
16 knot 0.0 0 0.00 0 0.09 0.08 0
529 swing 0.0 0 0.01 0 0.16 0.16 0
65 mum 0.00 22 0.01 22 0.11 0.11 23
7604 dicap 0.01 0 0.01 0 0.25 0.25 0
1694 tragic 0.03 193 0.11 255 0.24 0.19 256
1611 merka 0.00 25 0.02 13 0.29 0.27 14
436 petro 0.06 246 69.20 106919 34.75 15.73 106920
4645 m and m 0.07 180 0.65 428 0.80 0.38 429
3541 signed 0.03 146 8.43 6484 4.95 1.75 6485
803 light 0.43 995 — — — — —
6574 forever 3.94 147112 4.94 30900 2.91 1.45 30901
10810 center 8.43 277046 0.03 2 0.28 0.28 3
2040 hot 0.89 2508 — — — — —
6739 karate 0.87 9959 53.41 170355 34.06 13.00 170356
8098 domIII 11.55 208689 — — 368.90 243.70 8351050
2556 flag 0.50 22184 3.06 16531 1.95 0.67 16532
2712 lion 6.67 44214 — — — — —
10088 marley — — — — — — —
9892 nature — — — — — — —
12548 sierp — — — — — — —∑

— — — — — — —

Table 3.1: Unique-solution performance results on hard nonogram instances from
Wolter [b], using solvers without learning.

the average time (over 25 runs) in seconds and the number of failures in the search

for each instance. The sums of each column are given in row
∑

. Since the MDDs

are BDDs in this case weakening (Section 3.2.3) is not applicable. Note that base

and ip perform exactly the same search. We use two search strategies: (Seq) filling

in the matrix in order from left-to-right and top-to-bottom which is also used by

GECODE; and (VSIDS) using activity based VSIDS search [Zhang et al., 2001] which

concentrates on the exploring decisions that have been most active in contributing

to failure.

Table 3.1 compares the non-learning approaches. Note that VSIDS search is

only applicable with learning since activity is derived from learning. The results

here show that specialized code PBNSolve (which is not based on constraint pro-

gramming) is highly competitive. Interestingly, PBNSolve is listed in Wolter [b]
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Without learning With learning

Problem Seq Seq
base ip fails base ip fails ip+e fails

1 dancer 0.02 0.03 0 0.03 0.03 0 0.02 0
6 cat 0.05 0.04 0 0.04 0.05 0 0.05 0
21 skid 0.04 0.04 0 0.05 0.05 0 0.04 0
27 bucks 0.06 0.06 2 0.06 0.05 2 0.06 2
23 edge 0.03 0.03 26 0.03 0.03 18 0.03 22
2413 smoke 0.04 0.05 9 0.04 0.05 7 0.05 8
16 knot 0.09 0.08 0 0.08 0.08 0 0.08 0
529 swing 0.16 0.16 0 0.16 0.15 0 0.16 0
65 mum 0.11 0.11 23 0.12 0.11 22 0.11 22
7604 dicap 0.25 0.25 0 0.26 0.25 0 0.24 0
1694 tragic 0.24 0.19 256 0.22 0.21 141 0.19 123
1611 merka 0.29 0.27 14 0.29 0.28 13 0.27 10
436 petro 34.75 15.73 106920 0.53 0.38 3068 0.56 5173
4645 m and m 0.80 0.38 429 0.40 0.31 130 0.29 128
3541 signed 4.95 1.75 6485 0.40 0.32 337 0.32 425
803 light — — — 0.37 0.24 1585 0.19 1064
6574 forever 2.91 1.45 30901 0.08 0.07 207 0.07 258
10810 center 0.28 0.28 3 0.27 0.27 2 0.28 2
2040 hot — — — 1.12 0.77 4708 0.72 5527
6739 karate 34.06 13.00 170356 0.67 0.48 4525 0.40 3717
8098 domIII 368.90 243.70 8351050 8.37 7.09 147444 6.17 130704
2556 flag 1.95 0.67 16532 0.18 0.17 179 0.17 389
2712 lion — — — 9.97 7.26 39193 6.19 29673
10088 marley — — — — — — — —
9892 nature — — — 1.01 0.68 5346 0.60 5456
12548 sierp — — — 9.21 6.97 55994 7.45 53558∑

— — — — — — — —

Table 3.2: Unique-solution performance results on hard nonogram instances from
Wolter [b] using a sequential search strategy.

as solving nature in 68s, where here it exceeds the 10 minute time limit; the other

reported runtimes match the observed results. Gecode and our approaches have

the same sequential search. Clearly incremental propagation is advantageous over

the base approach in terms of speed.

Table 3.2 compares our algorithms with learning. Clearly learning makes an

enormous difference on these benchmarks. First, note that even base is competi-

tive with the best reported solution. Next, the results show that incremental expla-

nation is clearly beneficial, although it can increase search space because it creates

non-minimal explanations. While the domain consistent decomposition dramati-

cally outperformed the standard Tseitin decomposition, the incremental propaga-

tors were substantially faster (despite requiring, in some cases, substantially more

search).
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With learning

Problem VSIDS
dectse fails decdc fails base ip fails ip+e fails

1 dancer 0.03 9 0.03 0 0.03 0.03 0 0.03 0
6 cat 0.05 46 0.05 0 0.05 0.05 0 0.05 0
21 skid 0.05 41 0.05 0 0.05 0.05 0 0.05 0
27 bucks 0.08 39 0.08 2 0.07 0.07 2 0.07 2
23 edge 0.03 37 0.03 13 0.03 0.04 10 0.03 10
2413 smoke 0.06 282 0.06 5 0.06 0.06 4 0.05 3
16 knot 0.18 551 0.12 0 0.09 0.09 0 0.09 0
529 swing 0.40 1186 0.24 0 0.18 0.18 0 0.18 0
65 mum 0.23 899 0.16 19 0.12 0.12 11 0.12 8
7604 dicap 2.27 16749 0.42 0 0.29 0.28 0 0.27 0
1694 tragic 0.58 2371 0.33 82 0.25 0.24 107 0.21 102
1611 merka 1.80 6923 0.50 16 0.32 0.29 11 0.30 11
436 petro 0.72 6183 0.20 111 0.13 0.13 21 0.13 64
4645 m and m 4.62 10201 0.71 230 0.48 0.34 146 0.33 131
3541 signed 0.66 1878 0.57 102 0.84 0.55 531 0.35 292
803 light 0.42 1923 0.19 82 0.14 0.13 40 0.12 39
6574 forever 0.10 618 0.09 97 0.08 0.07 128 0.07 199
10810 center 1.68 9852 0.44 3 0.31 0.30 5 0.31 5
2040 hot 20.68 40411 0.76 213 0.63 0.43 221 0.35 141
6739 karate 2.60 13171 0.33 544 0.19 0.17 150 0.15 92
8098 domIII 0.69 9460 0.56 3592 0.16 0.13 2089 0.11 1652
2556 flag 0.26 174 0.23 12 0.18 0.19 25 0.18 16
2712 lion 18.07 62531 6.24 6297 2.67 1.53 6940 0.34 898
10088 marley 45.89 134859 12.61 11058 5.08 2.25 7034 0.76 2218
9892 nature 18.19 75179 3.00 5967 0.98 0.58 2401 0.65 3516
12548 sierp 220.90 345854 11.51 15904 19.84 11.65 42281 7.61 37063∑

341.24 741427 39.51 44349 33.25 19.95 62157 12.91 46462

Table 3.3: Unique-solution performance results on hard nonogram instances from
Wolter [b] using a VSIDS search strategy.

Figure 3.10: An example of the domino logic problem set, with n = 3.

Since the survey benchmarks were very easy for the MDD propagators we also

experimented on a hard artificial class of nonogram problems: domino logic, or n-

Dom problems, described at Wolter [a]. These are very hard to solve, no solver

on the website can solve instances beyond size n = 16. These instances are con-

structed from n identical rotated V shapes, illustrated in Figure 3.10. Comparative

results are shown in Tables 3.4 to 3.6. As before, incremental propagation is ben-
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Without learning

n
PBNSOLVE GECODE Seq

time fails time fails base ip fails
05 0.00 121 0.01 163 0.04 0.04 163
06 0.04 718 0.11 2K 0.10 0.08 2K
07 0.34 8K 1.70 29K 0.98 0.76 29K
08 2.14 30K 29.89 435K 16.59 11.88 435K
09 17.09 209K — — 362.63 247.50 8351K
10 169.89 1745K — — — — —
11 — — — — — — —

Table 3.4: Unique solution performance results for non-learning solvers on domino
logic nonograms. None of these solvers solve any problem of size greater than 10.

With learning

n
Seq

base ip fails ip+e fails
05 0.03 0.02 60 0.04 76
06 0.04 0.04 328 0.04 341
07 0.10 0.08 1959 0.08 1825
08 0.48 0.38 11622 0.54 16326
09 8.37 7.04 147444 6.12 130704
10 91.63 79.42 1068666 87.96 1174063
11 — — — — —
12 — — — — —
13 — — — — —
14 — — — — —
15 — — — — —
16 — — — — —
17 — — — — —
18 — — — — —
19 — — — — —
20 — — — — —∑

— — — — —

Table 3.5: Unique solution performance results on the domino logic nonogram in-
stances using a sequential search strategy.

eficial, and learning is vital. The BDDs for these constraints are very narrow (be-

tween 2 and 6 nodes), so explanation generation accounts for only 1% of execution

time; differences between the execution time of ip and ip+e are due to differences

in search. While ip+e seems to perform slightly worse than ip using a sequential

search method, it appears to drive VSIDS consistently towards better search deci-

sions, reducing time and backtracks by up to 50%.
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With learning

n
VSIDS

dectse fails decdc fails base ip fails ip+e fails
05 0.04 64 0.04 41 0.05 0.03 34 0.04 41
06 0.04 281 0.04 137 0.04 0.03 135 0.04 108
07 0.09 1330 0.08 454 0.04 0.05 330 0.04 345
08 0.26 3774 0.26 1895 0.06 0.06 733 0.06 670
09 0.67 9460 0.56 3592 0.14 0.14 2089 0.10 1652
10 4.41 44680 1.14 6651 0.33 0.23 4571 0.15 2729
11 7.97 58414 2.40 11804 0.53 0.39 6565 0.28 4855
12 17.76 107155 4.46 19019 1.38 0.98 15133 0.70 10937
13 183.80 888493 13.28 41529 2.33 1.68 24351 1.06 15289
14 75.24 331334 24.39 63129 5.59 3.88 51167 2.44 32402
15 366.03 1127704 67.59 148260 7.86 5.40 65226 3.14 36638
16 — — 82.88 147708 18.03 12.40 123398 5.76 59959
17 — — 183.28 276533 68.32 50.48 381688 12.38 109134
18 — — 392.91 445572 101.31 74.19 500366 30.83 226933
19 — — — — 118.16 83.57 538742 65.66 395421
20 — — — — 384.99 293.43 1341157 124.45 606265∑

— — — — 709.16 526.94 3055685 247.13 1503378

Table 3.6: Unique solution performance results on the domino logic nonogram in-
stances using a VSIDS search strategy.

3.3.2 Nurse Scheduling

The second set of experiments uses nurse scheduling benchmarks from Section 6.2

of Brand et al. [2007], where nurses are rostered to day shifts, evening shifts, night

shifts and days off. In model 1, each nurse must work 1 or 2 night shifts in every 7

days, 1 or 2 evening shifts, 1 to 5 day shifts and 2 to 5 days off. In model 2, nurses

must work 1 or 2 night shifts every 7 days, and 1 or 2 days off every 5 days (which

makes day and evening shifts indistinguishable). In both models, a nurse cannot

work a second shift within 12 hours of the first. The constraints are encoded as

a single regular constraint per nurse and a global cardinality [Beldiceanu

et al., 2010] constraint per shift, converted to MDDs. We use the 50 instances of

28 day schedules used in Brand et al. [2007] for each model with a 5 minute time

limit, plus the next 50 instances from the N30 dataset, available at Vanhoucke and

Maenhout. Results for both GECODE and the non-learning solvers are omitted, as

they were unable to solve any instances in 5 minutes.

Tables 3.7 and 3.8 show the results on the nurse scheduling benchmarks using

sequential search (assigning each nurse for day 1, then each nurse for day 2, etc.),

first fail search (picking the nurse/day pair with the smallest remaining domain,

breaking ties according to the sequential search), and VSIDS search. The first line is
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for direct comparison: it gives the average time and fails for problems solved by all

solvers using the given search strategy. The second line gives number of problems

solved by each solver and the average solving time and average failures for these

solved problems. Comparing to the best results from Brand et al. [2007] (which

used first fail and a 100 second time limit) our base solver solves more instances

(24 versus 9, and 32 versus 8).3

Comparing base versus ip we see that incremental propagation is usually ben-

eficial. For the problems with more backtracking required on average we can see

that the incremental propagation can be substantially faster than non-incremental

propagation. Incremental explanation for these problems usually reduces the num-

ber of problems that can be solved.

The results show that weakening can be beneficial even with the very small

domains of this benchmark. Weakening improves on almost all examples for model

2, except first fail with incremental explanation. Although it requires more search

it is almost always faster and sometimes more robust.

On these problems, although the decompositions propagate slower than the

learning propagators, they solve approximately as many instances (and in some

cases, several more). This appears to be due to a lack of re-usable explanations

from the global cardinality coverage constraints; the intermediate variables

introduced by the Tseitin decomposition turn out to be critical to proving unsatis-

fiability of these instances.

Cardinality Constraints

As observed above, while for many of these constraints using the direct MDD

propagators is beneficial, they seem to perform quite poorly on cardinality and

global cardinality constraints. For a cardinality constraint, there is no order-

ing dependence amongst the variables.

To prove that
∑

i∈[0,n−1] xi ≥ k is unsatisfiable, we must prove that for any sub-

set of size k, at least one xi will be false. When using only external variables in ex-

planations, we must prove that each of the
(|X|
k

)
subsets is unsatisfiable separately.

3The experiments from Brand et al. [2007] are run on a Pentium 4 3.20GHz machine with 1Gb
RAM.
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Search dectse fails decdc fails

Seq 27.72 7320.72 1.64 80.33
37 / 29.06 7839.46 49 / 6.04 341.86

FF 18.59 8482.04 35.29 3510.08
45 / 28.30 9419.73 30 / 33.67 3160.20

VSIDS 48.04 32816.63 5.67 2479.00
29 / 47.54 46032.17 73 / 20.25 7364.01

Search base fails ip fails weak fails

Seq 0.63 330.64 0.45 330.75 0.53 435.36
49 / 7.52 6059.65 49 / 5.63 6449.96 49 / 6.70 7212.41

FF 3.00 4126.67 1.81 4090.25 11.76 13043.75
41 / 25.76 19191.93 41 / 12.68 19721.29 39 / 28.97 27757.59

VSIDS 2.15 1513.85 1.00 1941.26 0.96 1318.30
73 / 10.84 5981.86 71 / 5.10 4879.04 73 / 10.95 6858.56

Search ip+e fails ip+ew fails

Seq 0.45 527.89 0.55 664.97
47 / 1.21 1191.04 47 / 3.98 2134.45

FF 2.87 5493.79 10.88 6211.62
38 / 10.78 14856.13 37 / 18.59 16945.57

VSIDS 1.90 4681.74 2.23 4406.41
72 / 6.54 6647.18 73 / 7.10 6838.68

Table 3.7: Nurse sequencing, multi-sequence constraints, model 1.
Search dectse fails decdc fails

Seq 27.46 50336.09 0.67 85.32
47 / 27.46 50336.09 73 / 8.24 1757.15

FF 11.90 12347.71 18.79 5677.76
43 / 18.44 28476.44 32 / 21.49 5912.94

VSIDS 64.96 130351.85 1.93 2565.57
59 / 67.47 146394.32 86 / 9.49 9746.43

Search base fails ip fails ip+w fails

Seq 0.33 134.62 0.26 186.34 0.27 105.72
70 / 3.26 4956.57 70 / 1.85 5011.67 70 / 1.31 3021.19

FF 0.35 446.67 0.23 338.14 0.29 645.76
41 / 14.84 19189.46 41 / 6.98 15314.46 41 / 15.23 27240.39

VSIDS 0.52 512.09 0.39 652.13 0.33 462.50
86 / 4.44 3421.27 87 / 6.02 8687.74 87 / 4.10 5821.41

Search ip+e fails ip+ew fails

Seq 0.26 146.60 0.28 147.11
69 / 4.17 5669.68 69 / 5.70 10942.51

FF 0.26 487.05 0.35 869.48
37 / 0.54 1332.59 39 / 7.14 20791.82

VSIDS 0.63 1706.44 0.42 958.93
84 / 2.38 4574.18 85 / 0.65 1186.12

Table 3.8: Nurse sequencing, multi-sequence constraints, model 2

However, BDD-based decompositions will have O(|X|k) variables representing the

subformula xj,m ↔
∑

i∈[j,n−1] ≥ m.
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Search dectse fails decdc fails

Seq 11.80 5829.35 13.71 3312.96
53 / 14.84 6905.91 52 / 13.71 3312.96

FF 26.61 17069.40 41.62 13679.20
41 / 31.34 25962.78 31 / 46.30 18364.61

VSIDS 90.21 47841.00 6.88 4307.39
47 / 92.86 63109.64 87 / 15.45 9527.08

Search base fails ip fails ip+w fails

Seq 1.93 2569.54 0.78 2569.52 0.97 2867.52
59 / 11.49 15209.07 59 / 8.15 16476.14 58 / 8.25 12604.74

FF 15.37 19275.84 4.39 14776.28 3.62 11057.56
41 / 39.08 53043.24 40 / 17.37 46627.28 43 / 20.77 41139.37

VSIDS 2.79 8108.16 0.78 3595.05 1.69 6971.91
89 / 4.91 15260.85 88 / 2.95 11894.49 89 / 3.89 13432.61

Search ip+e fails ip+ew fails

Seq 0.83 2906.08 0.80 2746.98
58 / 4.61 11179.53 57 / 4.80 8355.67

FF 3.38 10949.88 2.99 9540.04
42 / 17.58 42307.26 45 / 15.57 40421.04

VSIDS 6.89 13072.77 2.69 7032.84
88 / 7.14 21284.11 88 / 2.31 8433.73

Table 3.9: Nurse sequencing, multi-sequence constraints with decomposed cardi-
nality, model 1.

An alternative approach to representing cardinality constraints is the decompo-

sition described in Abı́o et al. [2011]. As with the conventional Tseitin transforma-

tion, we first build the BDD, then introduce a fresh literal for each internal node

in the BDD. However, since cardinality constraints are monotone, for each node

n(v, t, f), we only need to introduce the following clauses:

¬ JtK→ ¬ JnK

¬ JfK ∧ ¬v → ¬ JnK

We constructed a hybrid model, where each MDD-based global cardinality

constraint was replaced with a set of these decomposed cardinality constraints. Ta-

bles 3.9 and 3.10 give results for this revised model for the nurse scheduling prob-

lem.

In all but one case, the model with decomposed cardinality constraints performs

at least as well as the pure MDD model. In many cases, and particularly those using

a VSIDS search strategy, the decomposed model solved at least 10 more instances

within the time limit than the original model.
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Search dectse fails decdc fails

Seq 2.27 6317.41 4.52 4426.08
67 / 3.39 9382.16 70 / 4.31 4215.79

FF 9.92 26579.59 18.34 15589.24
43 / 11.43 31169.86 31 / 28.16 26006.00

VSIDS 60.19 142594.46 2.55 6778.20
95 / 61.11 144397.73 97 / 3.86 9873.85

Search base fails ip fails ip+w fails

Seq
1.38 4600.08 0.76 4600.00 0.32 2709.27

74 / 7.02 12032.43 75 / 7.87 14762.08 79 / 7.93 14581.53

FF
18.01 24512.06 2.49 9614.76 2.32 8041.00

43 / 29.53 60819.26 46 / 25.41 62212.98 48 / 13.54 39973.25

VSIDS
0.64 4230.98 1.13 6850.29 0.44 4570.63

98 / 1.40 7862.24 97 / 1.17 7529.79 99 / 2.88 14351.43

Search ip+e fails ip+ew fails

Seq 0.66 4340.62 0.37 3028.14
72 / 4.33 9021.74 77 / 11.67 18447.27

FF 1.53 6223.18 2.02 7620.06
41 / 15.38 45446.54 54 / 29.92 74996.72

VSIDS 0.45 4112.98 0.36 3727.76
98 / 3.16 13384.15 99 / 0.81 7173.22

Table 3.10: Nurse sequencing, multi-sequence constraints with decomposed cardi-
nality, model 2.

Figure 3.11: A solution for the 6× 10 Pentomino problem.

3.3.3 Pentominoes

For another set of experiments we consider the pentomino problems, which involve

placing a set of 5-block shapes in such a way as to fill a given area. The most

common variant of the puzzle is to place 12 of these shapes, which may be rotated

or reflected, inside a rectangle with an area of 60 units (one of 3 × 20, 4 × 15, 5 ×
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Without learning With learning
Size gecode fails base ip fails dectse fails decdc fails
3x20 19.87 36K 33.64 7.63 36K 5.65 21K 103.99 11K
4x15 338.60 649K 546.86 131.41 651K 212.86 333K — —
5x12 — — — 519.81 2482K — — — —
6x10 — — — — — — — — —∑

— — — — — — — — —

With learning
Size base ip fails ip+w fails ip+e fails ip+ew fails
3x20 9.68 4.99 11K 4.02 10K 3.26 10K 2.57 9K
4x15 300.91 172.90 380K 165.41 382K 128.85 379K 97.58 353K
5x12 — 730.34 1571K 761.40 1657K 590.18 1656K 497.88 1586K
6x10 — — — — — — — — —∑

— — — — — — — — —

Table 3.11: Time to find all solutions for pentominoes, with FD model and no sym-
metry breaking.

12, 6 × 10). A model of the pentomino problems using the regular constraint is

described in Lagerkvist [2008].

Tables 3.11 to 3.14 compare the performance of our explaining MDD propaga-

tors with the conventional regular constraints of Lagerkvist [2008] (implemented

in GECODE 3.1.0). We tested both the finite domain and Boolean models of the pen-

tomino problems, using a time limit of 20 minutes. All approaches use the same

search strategy as in Lagerkvist and Pesant [2008] which is slightly different to the

default strategy in the Gecode model.

First incremental propagation is always better than non-incremental propaga-

tion, and indeed the difference without learning is quite substantial. Next, we

find that incremental explanations provide a significant improvement over non-

incremental explanations. On the finite-domain model, weak explanations provide

a significant improvement in propagation speed with relatively little increase in

search – the combination of the two techniques is on all instances the best algo-

rithm, and significantly outperforms the conventional regular constraints. While

the base solver is not as good as GECODE on the FD model, once we add learn-

ing and weakening our results are substantially better. The decompositions once

again perform uniformly worse than the incremental propagators. Note that all the

variants of the learning solver have very similar failure counts; the difference in

performance is due primarily to faster propagation and explanation algorithms.
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Without learning With learning
Size gecode fails base ip fails dectse fails decdc fails
3x20 5.22 9K 9.20 2.29 9K 3.50 14K 45.75 5K
4x15 131.78 239K 209.41 50.70 239K 115.30 193K — —
5x12 464.75 788K 653.59 173.04 789K 730.27 925K — —
6x10 — — — 447.97 1840K — — — —∑

— — — 674.00 2877223 — — — —

With learning
Size base ip fails ip+w fails ip+e fails ip+ew fails
3x20 4.84 2.62 4K 2.34 4K 1.58 4K 1.35 4K
4x15 106.60 62.70 128K 49.64 116K 45.23 129K 34.76 121K
5x12 379.78 233.76 465K 205.10 444K 183.23 481K 148.44 448K
6x10 949.09 558.72 1176K 511.00 1106K 480.99 1235K 390.51 1111K∑

1440.31 857.80 1774K 768.08 1670K 711.03 1850K 575.06 1684K

Table 3.12: Time to find all solutions for pentominoes, with FD model and symme-
tries removed.

a b l a t e
m a i d e n
a b s e n t
s e l l e r
s l e e t y

Figure 3.12: A solution to the 5 × 6 crossword problem with the lex dictionary,
used in [Cheng and Yap, 2010].

3.3.4 Other Problems

MDDs have previously been considered [Cheng and Yap, 2010] as a way of en-

coding table constraints. Where the constraints we have considered thus far con-

strain many variables with small domains, extensional tables are generally over few

variables with larger domains, and less sharing of nodes. We now discuss several

benchmarks commonly used for testing extensional table constraints.

Crossword

The crossword problems used in [Cheng and Yap, 2010] define an m × n grid

of variables, and each row and column is constrained to be an element of a spec-

ified dictionary. These problems are fairly pathological with respect to learning

MDD propagators; the produced MDDs are extremely wide – some propagators

have an average width of ∼2700 nodes, rather than 10–30 for most of the regular

constraints we have considered – and have very little sharing between nodes. As

such, explanation generation is very expensive, and explanations generated are
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Without learning With learning
Size gecode fails base ip fails dectse fails decdc fails
3x20 5.32 36K 2.66 1.82 36K 1.70 11K 2.52 7K
4x15 88.68 649K 47.67 32.50 651K 64.71 363518 110.71 202K
5x12 346.42 2478K 185.73 127.98 2482K 366.80 1931K 710.71 901K
6x10 907.59 5998K 477.58 325.84 6008K — — — —∑

1348.01 9161K 713.64 488.14 9176K — — — —

With learning
Size base ip fails ip+e fails
3x20 1.00 0.78 9K 0.72 9K
4x15 41.17 33.41 398K 28.27 424K
5x12 176.49 144.59 1677K 120.74 1749K
6x10 437.29 353.48 4089K 299.71 4277K∑

655.95 532.26 6173K 449.44 6460K

Table 3.13: Time to find all solutions for pentominoes, with Boolean model and no
symmetry breaking.

Without learning With learning
Size gecode fails base ip fails dectse fails decdc fails
3x20 1.39 874K 0.96 0.58 9K 0.86 6K 1.12 3K
4x15 33.77 239K 22.46 13.40 239K 30.33 157K 38.35 63K
5x12 113.62 788K 72.96 45.26 789K 138.09 677K 212.05 259K
6x10 288.91 1838K 179.21 112.14 1840K 430.94 1960K 748.13 703K∑

437.69 2873K 275.59 171.38 2877K 600.22 2800K 999.65 1028K

With learning
Size base ip fails ip+e fails
3x20 0.51 0.41 4K 0.33 4K
4x15 13.87 10.38 117K 9.65 129K
5x12 52.02 41.03 442K 36.14 462K
6x10 128.40 100.56 1088K 89.15 1136K∑

194.80 152.38 1651K 135.27 1730K

Table 3.14: Time to find all solutions for pentominoes, with Boolean model and
symmetries removed.

very large and not reusable – ∼1000 literals/nogood rather than 10–100 for other

problems in this chapter. Indeed, the number of backtracks for the learning solver

on these instances is identical to the solver without learning; none of the gener-

ated nogoods ever prunes the search space. Since maintaining these nogoods is

pure overhead, the learning solver is up to an order of magnitude slower than the

non-learning solver on some crossword instances.

Renault

The Renault–Megane car configuration problems [Amilhastre et al., 2002, van Don-

gen et al., 2008] are another benchmark commonly used to test extensional con-
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straint representations. While constraints in the renault instances have a large

extensional representation, they – in contrast to the crossword dictionaries – pro-

duce very compact MDD representations (the largest having ∼240 nodes). These

MDDs are small enough that the solver is driven immediately to a solution, in-

dependent of the choice of explanation algorithm. However, when run without

learning, the variable domains are large enough that the default sequential search

strategy takes more than 10 minutes on all instances.

3.4 Conclusion

In this chapter we have defined an MDD propagation with explanation. We in-

troduced an incremental propagation algorithm for MDDs using watch flags, and

an incremental approach to explaining propagation for MDD constraints. The in-

cremental propagation algorithm is significantly better than approaches starting

from the root, at least on the kind of MDDs with large arity and low width appear-

ing in the problems we study. Incremental explanation often improves on non-

incremental explanation particularly when using activity based search where the

non-minimality of the resulting explanations is not so critical. The resulting system

provides the state-of-the-art solution to nonogram puzzles.
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4
Decomposable Negation Normal Form

AS illustrated in chapters 2 and 3, MDDs can be used to construct prop-

agators for arbitrary finite-domain constraints. While MDDs can pro-

duce concise representations (and hence efficient propagators) for a va-

riety of useful constraints, for constraints without a convenient sequential structure

– such as the grammar constraint – the size of the MDD may be exponential in the

number of variables.

In these cases, we would like a method for representing constraints which can

concisely encode a larger class of functions, while still permitting efficient analysis.

In this chapter we consider Smooth, Decomposable Negation Normal Form (s-DNNF) [Dar-

wiche, 2001], which can produce polynomial encodings of a wider range of func-

tions (notably including context-free grammars, or grammar constraints) while still

permitting linear-time testing of satisfiability. Given the recent development of sen-

tential decision diagrams [Darwiche, 2011], which can be automatically constructed

in a similar fashion to BDDs, it seems likely that s-DNNF will be an increasingly

convenient constraint representation.

In this chapter we investigate how to construct explaining propagators for s-DNNF

circuits, and compare them with the only existing approach we are aware of for

handling such circuits in constraint programming systems, decomposing the cir-

cuits using a form of Tseitin transformation [Tseitin, 1968].

The remainder of this chapter is structured as follows. In Section 4.1, we de-

scribe the s-DNNF circuit representation for constraints. Then in Section 4.2, we

outline existing decomposition-based methods used for using s-DNNF constraints.
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In Section 4.3, we give algorithms for performing propagation on constraints ex-

pressed as s-DNNF circuits; then in Section 4.4, we describe both minimal and

greedy algorithms for explanation construction. In Section 4.6 we compare these

methods on GRAMMAR-based models for shift scheduling problems, as well as ran-

domly generated forklift scheduling problems. Finally, we conclude in Section 4.7.

4.1 Smooth Decomposable Negation Normal Form

A circuit in Negation Normal Form (NNF) is a propositional formula using connec-

tives {∧,∨,¬}, such that ¬ is only applied to variables. While NNF normally de-

fines functions over Boolean variables, it can be readily adapted to non-binary do-

mains by permitting leaves of the form Jxi = vjK for each value in D(xi). Hence

the Boolean variable b is represented by leaves Jb = 0K and Jb = 1K corresponding

directly to ¬b and b. As we are concerned with constraints over finite-domain vari-

ables, we consider circuits in this class of multi-valued NNF.

The rest of the presentation ignores bounds literals Jxi ≤ vjK. We can extend

the algorithms herein to directly support bounds literals Jxi ≤ vjK but it consider-

ably complicates their presentation. They (and their negations) can of course be

represented with disjunctive nodes e.g.
q
∨v′≤vj Jxi = v′K

y
.

We shall use vars to denote the set of variables involved in an NNF circuit, de-

fined as:

vars(Jxi = vjK) = {xi}

vars(J
∨
NK) =

⋃
n′∈N vars(n′)

vars(J
∧
NK) =

⋃
n′∈N vars(n′)

It is difficult to analyse NNF circuits in the general case – even determining

satisfiability is NP-hard. However, restricted subclasses of NNF, described in Dar-

wiche and Marquis [2002], permit more efficient analysis. In this chapter, we are

concerned with decomposability and smoothness.

Decomposability requires that for any node of the form φ = J
∧
NK, any two chil-

dren ni, nj must satisfy vars(ni) ∩ vars(nj) = ∅ – that is, children of a conjunction

cannot have any shared dependencies. Similarly, smoothness requires that for any

node φ = J
∨
NK, any two children ni, nj must satisfy vars(ni) = vars(nj).
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Figure 4.1: An example s-DNNF graph for b↔ x+ y ≤ 2
.

Smooth Decomposable Negation Normal Form (s-DNNF) is the set of circuits of the

form

φ → Jxi = vjK

| J
∨
NK iff ∀ni,nj∈N,ni 6=nj

vars(ni) = vars(nj)

| J
∧
NK iff ∀ni,nj∈N,ni 6=nj

vars(ni) ∩ vars(nj) = ∅

We represent a s-DNNF circuit as a graph G with literal leaves, and-nodes and

or-nodes with children their subformulae. We assume G.root is the root of the

graph and n.parents are the parent nodes of a node n.

Example 4.1. An s-DNNF for the constraint b ↔ x + y ≤ 2 where Dinit(b) = {0, 1}
and Dinit(x) = Dinit(y) = {0, 1, 2} is shown in Figure 4.1. Ignore the different styles of

edges for now. It is smooth, e.g. all of nodes 9,10,11,12,13 have vars = {x, y}, and it is

decomposable, e.g. for each such node the left child has vars = {x} and the right child has

vars = {y}. 2
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decomptt decompdc
〈1〉

1: ¬〈1〉 ∨ 〈2〉 ∨ 〈3〉 ∅
2: (¬〈2〉 ∨ Jb = 1K) ∧ (¬〈2〉 ∨ 〈6〉) ¬〈2〉 ∨ 〈1〉
3: (¬〈3〉 ∨ Jb = 0K) ∧ (¬〈3〉 ∨ 〈8〉) ¬〈3〉 ∨ 〈1〉
5: ∅ ¬ Jb = 1K ∨ 〈2〉
6: ¬〈6〉 ∨ 〈9〉 ∨ 〈10〉 ∨ 〈11〉 ¬〈6〉 ∨ 〈2〉
7: ∅ ¬ Jb = 0K ∨ 〈3〉
8: ¬〈6〉 ∨ 〈9〉 ∨ 〈10〉 ∨ 〈11〉 ¬〈6〉 ∨ 〈2〉

. . . . . .
18: ∅ ¬ Jx = 0K ∨ 〈9〉 ∨ 〈14〉

. . . . . .

Table 4.1: Clauses produced by the decomposition of the graph in Fig. 4.1

4.2 DNNF Decomposition

Previous methods for working with these constraints (implicitly in Quimper and

Walsh [2006] and explicitly in Jung et al. [2008]) transformed the circuit into a set of

clauses by introducing a new Boolean variable for each node.

For each node n = Jop NK, we introduce a new Boolean variable 〈n〉. We then

introduce the following clauses

J
∨
NK : ¬〈n〉 ∨

∨
ni∈N
〈ni〉

J
∧
NK :

∧
ni∈N

¬〈n〉 ∨ 〈ni〉

and set the variable 〈G.root〉 to true.

For the domain consistent encoding, we also introduce for n ∈ N \ {G.root}:

∨
ni∈n.parents

〈ni〉 ∨ ¬〈n〉

Example 4.2. Consider the graph shown in Figure 4.1. The clauses generated by the de-

composition of this constraint are shown in Table 4.1. decomptt gives the clauses generated

by the basic encoding. decompdc gives the additional clauses produced by the domain-

consistent encoding. 2
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dnnf propagate(G,X,D)
clear cache()
reachable := prop mark(D,G.root)
if(¬reachable) return false
supported := prop collect(G.root)
for(xi ∈ X)

for(vj ∈ D(xi))
if(Jxi = vjK /∈ supported )

infer(Jxi 6= vjK)
return true

4.3 DNNF Propagation

In this section, we describe algorithms for propagating constraints encoded as s-DNNF

circuits.

4.3.1 Propagation from the root

Consider an s-DNNF circuit G over variables X . dnnf propagate(G,X,D) enforces

domain consistency over G with domain D. It consists of three stages. First, it

determines which nodes may be both true and reachable from G.root under the

current partial assignment. If the root is not possibly true the propagator fails, there

are no solutions. Second it collects in supported which literals Jxi = vjK participate

in solutions by being part of nodes that are true and reachable. Third, it propagates

that any unsupported literals must be false.

Marking the reachable nodes (prop mark) simply traverses the s-DNNF circuit

marking which nodes are reachable, and storing in a cache whether they may be

true (alive) given the current domain D. Each node is visited at most once.

Collecting the literals (prop collect) that appear in solutions simply traverses the

s-DNNF circuit restricted to the nodes which are reachable and true, and returns all

literals encountered. Each true node is visited at most once.

Example 4.3. Imagine we are propagating the s-DNNF shown in Figure 4.1 whenD(b) =

{0} and D(x) = {2}. The marking stage marks nodes {5, 2, 18, 9, 19, 11} as dead and the

rest alive. The collection visits nodes 1, 3, 7, 8, 12, 13, 15, 17, 20, 22, 23 and collects b = 0,

x = 2, y = 1 and y = 2. Propagation determines that y 6= 0. 2
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prop mark(D,node)
c := lookup(node)
if(c 6= NOTFOUND) return c
switch(node)

case(Jxi = vjK)
alive := (vj ∈ D(xi))

case(J
∧
NK)

alive :=
∧

n′∈N prop mark(D,n′)
case(J

∨
NK)

alive :=
∨

n′∈N prop mark(D,n′)
cache(node, alive)
return alive

prop collect(node)
c := lookup(node)
if(c == true)

% Ensure the node is collected
% only once.
cache(node, false)
switch(node)

case(Jxi = vjK)
supported := {Jxi = vjK}

case(J op NK)
supported :=

⋃
n′∈N prop collect(n′)

else
return {}

4.3.2 Incremental propagation

Propagation from the root can be expensive; it must traverse the entire s-DNNF cir-

cuit each time the propagator executes. In many cases very little will have changed

since the last time the propagator was executed. We can instead keep track of which

nodes in the s-DNNF circuit are reachable and possibly true by just examining

the part of the circuit which may have changed starting from leaves which have

changed.

inc propagate(changes,G,X) propagates the s-DNNF circuit G over variables

X given change to domains changes which are literals Jxi = vjK that have become

false since the last propagation. The algorithm maintains for each node whether it

is dead: unreachable or false with the current domain, and for each node which par-

ents rely on it to keep them possibly true (node.watched parents) and for each node

which children rely on this node to keep them reachable (node.watched children).

In the first phase the algorithm visits a set of nodes kfb which are “killed from

below”, i.e. became false because of leaf information. And nodes are killed from

below if one of their children becomes killed, while or-nodes are killed from be-

low if all their children are killed. The first phase also records killed and-nodes in

kfa (“killed from above”) since we have to mark their other children as possibly

unreachable. If the root is killed from below the propagator returns failure.

The second phase visits nodes in kfa and determines if they kill child nodes

since they are the last alive parent, in which case the child node is added to kfa . A

killed literal node ensures that we propagate the negation of the literal.
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inc propagate(changes,G,X)
kfb := changes
kfa := {}
% Handle nodes that were killed due to dead children.
for(node ∈ kfb)

for(parent ∈ node.watched parents)
switch(parent)

case(J
∧
NK)

if(dead[parent]) continue
dead[parent] := true
parent.killing child := node % For greedy explanation.
kfb ∪: ={parent}
kfa := {parent}% Handle other children

case(J
∨
NK)

if(∃n′ ∈ N s.t. ¬dead[n′])
% A support still remains – update the watches.
node.watched parents \: ={parent}
n′.watched parents∪: ={parent}

else
% No supports – kill the node.
dead[parent] := true
parent.killed above := false
kfb ∪: ={parent}

if(G.root ∈ kfb) return false
% Downward pass.
for(node ∈ kfa)

switch(node)
case(Jxi = vjK)

infer(Jxi 6= vjK)
continue

for(child ∈ node.watched children)
if(∃n′ ∈ child.parents s.t ¬dead[n′])
node.watched children \: ={child}
n′.watched children∪: ={child}

else
dead[child] := true
kfa ∪: ={child}
child.killed above := true

return true

During propagator construction,watched parents andwatched children are ini-

tialised to ∅. For each node n, we then pick one parent p and add n to p.watched children

– p is now supporting n from above. For or-nodes, we then pick one child c, and

add n to c.watched parents – since n is satisfiable so long as any child is alive, it

must be satisfiable so long as c is not killed. In the case of an and-node, however,

we must add n to watched parents of each of its children, as n must be killed if any

children die.
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Example 4.4. Imagine we are propagating the s-DNNF graph of Figure 4.1. The policy

for initial watches is illustrated in Figure 4.1, where edges for initially watched parents are

solid or dotted, and edges for initially watched children are solid or dashed.

Suppose we set D(x) = {2}. The changes are Jx = 0K and Jx = 1K. Initially kfb =

{18, 19}. Then 9 is added to kfb and kfa with killing child 18, and similarly 11 is added to

kfb and kfa with killing child 19. Because 6 is a watched parent of 9, it is examined and the

watched parents of 10 is set to 6. In the second phase examining node 9 we set 16 as dead

and add it to kfa . Examining 11 we look at its child 22 and set node 16s watched children to

include 22. Examining node 16 we set 10s watched children to include 21, and 17s watched

children to include 22. No propagation occurs.

Now suppose we set D(b) = {0}. The changes are Jb = 1K. Initially kfb = {5} and

this causes 2 to be added to kfb and kfa and the killing child set to 5. Examining 2 causes

the watched parent of 3 to be set to 1. In the second phase examining 2 causes 6 to be added

to kfa , which causes 10 to be added to kfa , which causes 14 and 21 to be added to kfa .

Examining 14 adds 20 to the watched children on 15. Examining 21 we propagate that

y 6= 0. 2

4.4 Explaining DNNF Propagation

In this section, we describe several algorithms for computing explanations for s-DNNF

circuits. Given the computational cost of computing explanations for s-DNNF cir-

cuits, it is beneficial to both compute explanations lazily, and store computed ex-

planations in the clause database (so they can be re-used, rather than recomputed).

4.4.1 Minimal Explanation

The explanation algorithm is similar in concept to that used for BDDs and MDDs.

To explain Jx 6= vK we assume Jx = vK and hence make the s-DNNF unsatisfiable. A

correct explanation is (the negation of) all the values for other variables which are

currently false (varQ). We then progressively remove assignments (unfix literals)

from this explanation while ensuring the constraint as a whole remains unsatisfi-

able. We are guaranteed to create a minimal explanation
∧
l∈expln ¬l → Jx 6= vK since

removing any literal l′ from the explnwould meanG∧∧l∈expln−{l′} ¬l∧x = v is sat-

isfiable. This is essentially the same process used by the ROBUSTXPLAIN algorithm
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sdnnf explain(¬ Jx = vK , G,X,D)
for(xi ∈ X \ {x}, vj ∈ D(xi)) unlock(Jxi = vjK)
unlock(Jx = vK)
set binding(G.root)
expln := {}
varQ := {Jxi = vjK | xi ∈ X \ {x}, vj /∈ D(xi)}
for(Jxi = vjK ∈ varQ)

if(binding[Jxi = vjK]) expln∪: ={Jxi = vjK}
else unlock(node)

return expln

of Junker [2004]; however, the s-DNNF structure allows us to unfix assignments

directly rather than repeatedly reconstructing subproblems.

Unlike (B/M)DDs, s-DNNF circuits do not have a global variable ordering that

can be exploited. As such, we must update the reachability information as we pro-

gressively unfix leaf nodes. A node n is considered binding if n becoming satisfiable

would make the root r satisfiable. locks[n] denotes the number of dead children

holding n dead. And nodes J
∧
NK start with |N | locks while other nodes have 1.

If n is binding and locks[n] = 1, then making any children satisfiable will render r

satisfiable.

The sdnnf explain algorithm initialises locks and then unlocks all nodes which

are true for variables other than in the explained literal Jx = vK, and unlocks the

explained literal. This represents the state of the current domain D except that we

set D(x) = {v}. All nodes which may be true with the explained literal true will

have 0 locks. The algorithm then marks the root as binding using set binding. If the

locks on the node are 1, then set binding marks any locked children as also binding.

The algorithm then examines each literal in varQ. If the literal is binding then

clearly setting it to true will allow the root to become true, hence it must remain in

the explanation. If not it can be removed from the explanation. We unfix the literal

or equivalently unlock the node. We chain unlocking up as nodes reach zero locks,

we unlock their parent nodes. Any node with just one lock which is binding, then

makes its locked children binding.

Example 4.5. To create a minimal explanation for the propagation of y 6= 0 of Example 4.3

we initialize the locks using init locks which sets the locks to 2 for each and node, and 1 for

each other node. We unlock the literals which are in the current domain, for variables other

that y, that is b = 0 and x = 2. Unlocking b = 0 reduces the locks on 7 to 0, and hence

unlocks 3, reducing its locks to 1. Unlocking x = 2 reduces the locks on 13 to 1, and 14
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init locks(G)
for(node ∈ G)

switch(node)
case(J

∧
NK)

locks[node] := |N |
case(J

∨
NK)

locks[node] := 1
case(Jxi = vjK)
locks[node] := 1

unlock(node)
if(locks[node] == 0) return
locks[node] –= 1
if(locks[node] == 0)

for(parent ∈ node.parents)
unlock(parent)

else if(locks[node] == 1 ∧ binding[node])
for(n′ ∈ node.children s.t. locks[n′] > 0)

set binding(n′)

set binding(node)
if(binding[node]) return
switch(node)

case(J op NK)
for(n′ ∈ N s.t. locks[n′] > 0)

set binding(n′)

and 15 to 0. Unlocking 14 and 15 reduces the locks on 10 and 12 to 1. We then unlock the

propagated literal y = 0. This reduces the locks on 10 and 16 to 0. Unlocking 16 reduces

the locks on 9 to 1. Unlocking 10 causes 6 to unlock which reduces the locks on 2 to 1. We

now set the root as binding. Since it has 1 lock we set its children 2 and 3 as binding. Since

node 2 has one lock, binding it sets the child 5 as binding, but not 6 (since it has zero locks).

Binding 3 has no further effect. Finally traversing varQ = {Jb = 1K , Jx = 0K , Jx = 1K}
adds Jb = 1K to the explanation since it is binding. Since x = 0 is not binding it is unlocked,

which unlocks 9. Since x = 1 is not binding it is unlocked, which sets the locks of 11 to 1

but has no further effect. The explanation is b 6= 1→ y 6= 0 is minimal. 2

4.4.2 Greedy Explanation

Unfortunately, on large circuits, constructing a minimal explanation can be expen-

sive. For these cases, we present a greedy algorithm for constructing valid, but not

necessarily minimal, explanations.

This algorithm is shown as sdnnf greedy explain. It relies on additional informa-

tion recorded during execution of inc prop to record the cause of a node’s death,

and follows the chain of these actions to construct an explanation. node.killed above

indicates whether the node was killed by death of parents – if true, we add the

node’s parents to the set of nodes to be explained; otherwise, we add one (in the

case of conjunction) or all (for disjunction) children to the explanation queue. If a

node n is a conjunction that was killed due to the death of a child, n.killing child
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sdnnf greedy explain((x 6= v), G,X)
explQ := Jx = vK .parents
expln := {}
for(node ∈ explQ)

if(node.killed above)
explQ∪: =node.parents

else
switch(node)

case(Jxi = vjK)
expln∪: ={Jxi = vjK}

case(J
∧
NK)

explQ∪: ={node.killing child}
case(J

∨
NK)

explQ∪: ={N}
return expln

indicates the child that killed node n – upon explanation, we add this node to the

explanation queue.

Example 4.6. Explaining the propagation y 6= 0 of Example 4.4 proceeds as follows. Ini-

tially explQ = {10, 16}. Since 10 was killed from above we add 6 to explQ, similarly 16

adds 9. Examining 6 we add 2 since it was killed from above. Examining 9 we add x = 0

to expln as the killing child. Examining 2 we add b = 1 to expln as the killing child. The

explanation is b 6= 1 ∧ x 6= 0→ y 6= 0. This is clearly not minimal. 2.

4.4.3 Explanation Weakening

Explanations derived from s-DNNF circuits can often be very large. This causes

overhead in storage and propagation. It can be worthwhile to weaken the expla-

nation in order to make it shorter. This also can help direct propagation down the

same paths and hence give more reusable nogoods. Conversely the weaker nogood

may be less reusable since it is not as strong.

We can shorten an explanation ∧L → l as follows. Suppose there are at least

two literals {Jxi 6= vK , Jxi 6= v′K} ⊆ L. Suppose also that at the time of explanation

D(xi) = {v′′} (where clearly v′′ 6= v and v′′ 6= v′). We can replace all literals about xi

in L by the literal Jxi = v′′K. This shortens the explanation, but weakens it. This is

analogous to the MDD explanation weakening described in the previous chapter.

For greedy explanation, we perform weakening as a postprocess. However for

minimal explanation, weakening as a postprocess can result in explanations that

are far from minimal. Hence we need to adjust the explanation algorithm so that

for a variable xi, we first count the number of nodes Jxi = vjK that are binding. If
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in the current state D(xi) = {v′} and there are at least 2 binding nodes we add

Jxi = v′K to the explanation and progress to xi+1; otherwise, we process the nodes

as usual.

Example 4.7. Consider again the constraint given in Example 4.3. Assume we setD(b) =

{1} and D(x) = 2. This kills Jx = 0K, Jx = 1K and Jb = 0K – we then run inc propagate,

and discover that y 6= 1 and y 6= 2.

Suppose an explanation is requested for y 6= 1. We start running sdnnf explain, deter-

mining the set of binding and locked nodes. At this point, nodes 18 and 19 are both bind-

ing, so Jx 6= 0K and Jx 6= 1K are both added to the explanation, giving Jx 6= 0K∧ Jx 6= 1K∧
Jb 6= 0K→ Jy 6= 1K.

However, as D(x) = {2} at the time of explanation, we can instead replace Jx 6= 0K ∧
Jy 6= 1K with Jx = 2K, giving an explanation Jx = 2K ∧ Jb 6= 0K→ Jy 6= 1K. 2

4.5 Relationship between MDD and s-DNNF algorithms

The s-DNNF propagation algorithms are very similar to the corresponding algo-

rithms for MDDs. If an MDD is converted into a corresponding s-DNNF circuit (by

representing each edge (x, vi, s, d) explicitly as (Jx = viK ∧ d)) the non-incremental

propagation algorithm will behave exactly as for the MDD. The incremental propa-

gation algorithm also behaves similarly, however propagates slightly slower (as an

edge in an MDD has at most one parent; whereas and-nodes in a s-DNNF circuit

may have arbitrarily many).

Although it operates in a different fashion, the minimal explanation algorithm –

assuming it unfixes leaves in increasing order – will generate the same explanation

as the corresponding MDD algorithm, as it follows the same per-variable progres-

sive relaxation process. The minimal explanation algorithm given in this chapter is

more flexible, as variables can be unfixed in any order; however, what constitutes a

good ordering for constructing explanations (for either MDDs or s-DNNFs) remains

an open question.

The incremental explanation algorithm given in Chapter 3 operates level-by-

level to reduce the size of generated explanations; the greedy algorithm given in

this chapter does not have this additional information, and will often produce

larger explanations. It may be possible to take advantage of the decomposable
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nature of the s-DNNF to construct an algorithm that behaves similarly to the incre-

mental explanation for MDDs; however, we have not explored this in detail.

Explanation weakening operates in an identical fashion for both MDDs and

s-DNNFs; however, as mentioned above, the greedy algorithm does not keep track

of sufficient global information to perform inline weakening, so performs weaken-

ing as a postprocess.

4.6 Experimental Results

Experiments were conducted on a 3.00GHz Core2 Duo with 2 GB of RAM running

Ubuntu GNU/Linux 8.10. The propagators were implemented in CHUFFED, a state-

of-the-art lazy clause generation [Ohrimenko et al., 2009] solver. All experiments

were run with a 1 hour time limit.

We consider two problems that involve grammar constraints that can be ex-

pressed using s-DNNF circuits. For the experiments, decomp denotes propagation

using the domain consistent decomposition described in Section 4.2 (which was

slightly better than the simpler decomposition), base denotes propagation from

the root and minimal explanations, ip denotes incremental propagation and min-

imal explanations, +g denotes greedy explanations and +w denotes explanation

weakening.

4.6.1 Shift Scheduling

Shift scheduling, a problem introduced in Demassey et al. [2006], allocates n work-

ers to shifts such that (a) each of k activities has a minimum number of workers

scheduled at any given time, and (b) the overall cost of the schedule is minimized,

without violating any of the additional constraints:

• An employee must work on a task (Ai) for at least one hour, and cannot

switch tasks without a break (b).

• A part-time employee (P ) must work between 3 and 5.75 hours, plus a 15

minute break.

• A full-time employee (F ) must work between 6 and 8 hours, plus 1 hour for

lunch (L), and 15 minute breaks before and after.
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• An employee can only be rostered while the business is open.

These constraints can be formulated as a grammar constraint as follows:

S → RP [13,24]R | RF [30,38]R

F → PLP P → WbW

W → A
[4,...]
i Ai → aiAi | ai

L → llll R → rR | r

This grammar constraint can be converted into s-DNNF as described in Quim-

per and Walsh [2006]. Note that some of the productions for P , F and Ai are an-

notated with restricted intervals – while this is no longer strictly context-free, it can

be integrated into the graph construction with no additional cost.

The coverage constraints and objective function are implemented using the

monotone BDD decomposition described in Abı́o et al. [2011].

Table 4.2 compares our propagation algorithms versus the domain consistent

decomposition [Jung et al., 2008] on the shift scheduling examples of Quimper and

Walsh [2006]. Instances (2, 2, 10) and (2, 4, 11) are omitted, as no solvers proved the

optimum within the time limit. Generally any of the direct propagation approaches

require less search than a decomposition based approach. This is slightly surprising

since the decomposition has a richer language to learn nogoods on. But it accords

with earlier results for BDD propagation; the Tseitin literals tend to confuse activity

based search making it less effective. The non-incremental propagator base is too

expensive, but once we have incremental propagation (ip) all methods beat the de-

composition. Clearly incremental explanation is not so vital to the execution time

as incremental propagation, which makes sense since we only explain on demand,

so it is much less frequent than propagation. Both weakening and greedy explana-

tions increase the search space, but only weakening pays off in terms of execution

time.

4.6.2 Forklift Scheduling

As noted in Katsirelos et al. [2009], the shift scheduling problem can be more nat-

urally (and efficiently) represented as an NFA. However, for other grammar con-

straints, the corresponding NFA can (unsurprisingly) be exponential in size relative

to the arity.
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In order to evaluate these methods on grammars which do not admit a tractable

regular encoding, we present the forklift scheduling problem

A forklift scheduling problem is a tuple (N, I, C), whereN is the number of sta-

tions, I is a set of items andC is a cost for each action. Each item (i, source, dest) ∈ I
must be moved from station source to station dest. These objects must be moved

using a forklift. The possible actions are:

movej Move the forklift to station j.

loadi Shift item i from the current station onto the forklift tray.

unloadi Unload item i from the top of the forklift tray at the current station.

idle Do nothing.

Items may be loaded and unloaded at any number of intermediate stations, how-

ever they must be unloaded in a last-in first-out (LIFO) order.

The LIFO behaviour of the forklift can be modelled with the grammar:

S → W |WI

W → WW

| movej

| loadi W unloadi

I → idle I | idle
Note that this grammar does not prevent item i from being loaded multiple times,

or enforce that the item must be moved from source to dest. To enforce these con-

straints, we define a DFA for item (i, source, dest) with 3 states for each station:

qk,O Item at station k, forklift at another station.

qk,U Forklift and item both at station k, but not loaded.

qk,L Item on forklift, both at station k.

With start state qsource,O and accept states {qdest,O, qdest,U}. We define the transition

function as follows (where ⊥ represents an error state):

δ movek movej , j 6= k loadi loadj , j 6= i unloadi unloadj , j 6= i

qk,O qk,U qk,O ⊥ qk,O ⊥ qk,O

qk,U qk,U qk,O qk,L qk,U ⊥ qk,U

qk,L qk,L qj,L ⊥ qk,L qk,U qk,L
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A regular constraint (which is transformed into an MDD) is used to encode the

DFA for each item.

Experiments with forklift sequencing use randomly generated instances with

cost 1 for loadj and unloadj , and cost 3 for movej . The instance n-i-v has n sta-

tions and i items, with a planning horizon of v. The instances are available at

ww2.cs.mu.oz.au/∼ggange/forklift.

The results for forklift scheduling are shown in Table 4.3. They differ somewhat

for those for shift scheduling. Here the base propagator has no search advantage

over the decomposition and is always worse, presumably because the interaction

with the DFA side constraints is more complex, which gives more scope for the de-

composition to use its intermediate literals in learning. Incremental propagation ip

is similar in performance to the decomposition. It requires substantially less search

than base presumably because the order of propagation is more closely tied to

the structure of s-DNNF circuit, and this creates more reusable nogoods. For fork-

lift scheduling weakening both dramatically reduces search and time, and greedy

explanation has a synergistic effect with weakening. The best version ip+gw is

significantly better than the decomposition approach.

4.7 Conclusion

In this chapter we have defined an s-DNNF propagator with explanation. We de-

fine non-incremental and incremental propagation algorithms for s-DNNF circuits,

as well as minimal and greedy approaches to explaining the propagations. The

incremental propagation algorithm is significantly better than non-incremental ap-

proach on our example problems. Greedy explanation usually improves on non-

incremental explanation, and weakening explanations to make them shorter is usu-

ally worthwhile. The resulting system provides state-of-the-art solutions to prob-

lems encoded using grammar constraints.
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Part II

Combinatorial Optimization for

Document Composition and

Diagram Layout

A wide range of document layout problems involve arranging a set of

document elements on a (generally bounded) canvas, subject to vari-

ous constraints amongst elements, and between elements and the page.

While they differ in concrete constraints and the configuration space, they tend

to be highly combinatorial in nature, having a search space which grows rapidly

with the problem size. While some restricted problems admit polynomial-time al-

gorithms, many of these configuration problems are NP-hard. Even the problem

of selecting column widths to minimize the height of a table is NP-hard [Ander-

son and Sobti, 1999]. Given the modest size of most real-world layout problems,

many of these problems can readily be solved using conventional combinatorial

optimization techniques.

In Part II, we apply combinatorial optimization techniques to compute optimal

solutions for several document composition and diagram layout problems. We

present models for k-level graph layout, table layout and guillotine-based docu-

ment layout. We also present a set of techniques for handling complex disjunc-

tive constraints in cases where the layout is to be directly manipulated by the user,

rather than generated autonomously.
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5
k-level Graph Layout

A hierarchical network diagram is a representation of a graph, where each

vertex of the graph is assigned to one of a set of horizontal layers,

and edges connect nodes on different layers (preferably directed down-

wards). The MDDs presented in Chapter 3 are an ideal example – the nodes are

aligned in layers according to the tested variable, and each edge connects to a node

lower in the graph.

The standard approach for drawing hierarchical network diagrams is a three

phase approach due to Sugiyama et al. [1981] in which (a) nodes in the graph are

assigned levels producing a k-level graph; (b) nodes are assigned an order so as

to minimize edge crossings in the k-level graph; and (c) the edge routes and node

positions are computed. There has been considerable research into step (b) which

is called k-level crossing minimization. Unfortunately this step is NP-hard even for

two layers (k = 2) where the ordering on one layer is given [Garey and Johnson,

1983]. Thus, research has focussed on developing heuristics to solve it. In practice

a common approach is to iterate through the levels, re-ordering the nodes on each

level using heuristic techniques such as the barycentric method [Di Battista et al.,

1999], however other more global heuristics have been developed [Matuszewski

et al., 1999]. We consider instead the application of combinatorial optimization

techniques to find optimal solutions to the k-level crossing minimization problem.

An alternative to performing crossing minimization in phase (b) is k-level pla-

narization problem. This was introduced by Mutzel [1996] and is the problem of

finding the minimal set of edges that can be removed which allow the remain-
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CHAPTER 5. K-LEVEL GRAPH LAYOUT

Figure 5.1: Graphviz heuristic layout for the profile example graph.
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ing edges in the k-level graph to be drawn without any crossings. Mutzel gave

a motivating example where maximizing planar subset gave a layout which was

perceived as having fewer crossings than minimum crossing layout, despite actu-

ally having 41% more crossings. While in some sense simpler than k-level crossing

minimization (since the problem is tractable for k = 2 with one side fixed) it is still

NP-hard for k > 2 (by reduction from HAMILTONIAN-PATH) [Eades and White-

sides, 1994]. A disadvantage of k-level planarization is that it does not take into

account the number of crossings that the non-planar edges generate and so a poor

choice of which edges to remove can give rise to unnecessary edge crossings.

Here we introduce a combination of the two approaches we call k-level planariza-

tion and crossing minimization. This minimizes the weighted sum of the number

of crossings and the number of edges that need to be removed to give a planar

drawing. We believe that this can give rise to nicer drawings than either k-level

planarization or k-level crossing minimization while providing a natural general-

ization of both.

As some evidence for this consider the drawings shown in Figures 5.1 and Fig-

ure 5.2 of the example graph profile from the GraphViz gallery [Gansner and

North, 2000]. Figure 5.1 shows the layout from GraphViz using its heuristic for

edge crossing minimization. It has 54 edge crossings and requires removal of 17

edges to become planar.
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CHAPTER 5. K-LEVEL GRAPH LAYOUT

The layout resulting from minimizing edge crossings is shown in Figure 5.2(a).

It has 38 crossings, significantly less than the heuristic layout, and requires 13 edge

deletions. The layout resulting from maximizing the planar subgraph is shown in

Figure 5.2(b) with deleted edges dotted. It requires only 9 edges to be deleted but

has 81 crossings. The layout clearly shows that maximizing the planar subgraph in

isolation is not enough, leading to many unnecessary crossings.

The combined model allows us to minimize both crossings and edge deletions

for planarity simultaneously. Figure 5.2(c) shows the result of minimizing cross-

ings and then maximizing the planar subset. It yields 38 crossings and 11 edge

deletions. Figure 5.2(d) shows the results of of maximizing the planar subset and

the minimize crossings. It yields 9 edge deletions and 57 edge crossings, a substan-

tial improvement over the maximal planar subgraph layout of Figure 5.2(b).

We believe these combined layouts illustrate that some combination of minimal

edge crossing and minimal edge deletions for planarity can in some cases lead to

better layout than either individually. However, this cannot be evaluated in general

without some method for computing suitable layouts. Particularly for complex, hy-

brid objective functions of this kind, it is not obvious how to design an algorithm to

generate these layouts; and it is not ideal to expend considerable effort designing a

heuristic before knowing whether the given aesthetic criterion is sensible. It seems

worthwhile, then, to develop generic techniques that allow easier exploration of

different objectives.

Apart from introducing these combined layouts, this chapter has two main tech-

nical contributions. The first is to give a binary program for the combined k-level

planarization and crossing minimization problem. By appropriate choice of the

weighting factor this model reduces to either k-level planarization or k-level cross-

ing minimization. Our basic model is reasonably straightforward but we use some

tricks to reduce symmetries, handle leaf nodes in trees and improve bounds for

edge cycles.

Our second technical contribution is to evaluate performance of the binary pro-

gram using both a generic MIP solver and a generic SAT solver. While MIP tech-

niques are not uncommon in graph drawing the use of SAT techniques is quite

unusual. Our reason for considering MIP is that MIP is well suited to combinato-

rial optimization problems in which the linear relaxation of the problem is close to
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the original problem. However this does not seem true for k-level planarization

and/or k-level crossing minimization. Hence it is worth investigating the use of

other generic optimization techniques.

We find that modern SAT solving with learning, and modern MIP solvers (which

now have special routines to handle SAT style models) are able to handle the k-level

planarization and crossing minimization problems and their combination for quite

large k, meaning that we can solve step (b) to optimality. They are fast enough to

find the optimal ordering of nodes on all layers for graphs with hundreds of nodes

in a few seconds, so long as the graph is reasonably narrow (less than 10 nodes on

each level) and for larger graphs they find reasonable solutions within one minute.

The significance of our research is twofold. First it provides a benchmark for

measuring the quality of heuristic methods for solving k-level crossing minimiza-

tion and/or k-level planarization. Second, the method is practical for small to

medium graphs and leads to significantly fewer edge crossings involving fewer

edges than is obtained with the standard heuristic approaches. As computers in-

crease in speed and SAT solving and MIP solving techniques continue to improve

we predict that optimal solution techniques based on MIP and SAT will replace the

use of heuristics for step (b) in layout of hierarchical networks.

Furthermore, our research provides support for the use of generic optimization

techniques for exploring different aesthetic criteria. The use of generic techniques

allows easy experimentation with, for instance, our hybrid objective function. As

another example rather than k-level planarization we might wish to minimize the

total number of edges involved in crossings. This is simple to do with generic op-

timization. Another advantage of generic optimization techniques is that they also

readily handle additional constraints on the layout, such as placing some nodes on

the outside or clustering nodes together.

The most closely related work is on the use of MIP and branch-and-bound tech-

niques for solving k-level crossing minimization. Jünger and Mutzel [1997] com-

pared heuristic methods for two layer crossing minimization with a MIP encoding

solved using a specialized branch-and-cut algorithm to solve to optimality. They

found that the MIP encoding for the case when one layer is fixed is practical for

reasonably sized graphs. In another paper, Jünger et al. [1997] gave a 0-1 model for

k-level crossing minimization and solved it using a generic MIP solver. They found
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CHAPTER 5. K-LEVEL GRAPH LAYOUT

that at that time MIP techniques were impractical except for quite small graphs.

We differ from this in considering planarization as well and in investigating SAT

solvers. Randerath et al. [2001] gave a partial-MAXSAT model of crossing mini-

mization, however did not provide any experiments. We show that SAT solving

with learning, and more recent MIP solvers (which now have special routines to

handle SAT style models) are now practical for reasonably sized graphs.

Also related is Mutzel [1996] which describes the results of using a MIP en-

coding with branch-and-cut for the 2-level planarization problem. Here we give a

binary program model for k-level planarization and show that SAT with learning

and modern MIP solvers can solve the k-level planarization problem for quite large

k. We use a similar model to that of Jünger and Mutzel but examine both MIP and

SAT techniques for solving it.

The chapter is organized as follows. In the next section we give our model for

combined planarity and crossing minimization. In Section 5.2 we show how to

improve the model by taking into account graph properties. In Section 5.3 we give

results of experiments comparing the different measures, and finally in Section 5.4

we conclude.

5.1 Model

A general framework for generating layouts of hierarchical data was presented by

Sugiyama et al. [1981]. This proceeds in three stages. First, the vertices of the graph

are partitioned into horizontal layers. Then, the ordering of vertices within these

horizontal layers is permuted to reduce the number of edge crossings. Finally, these

layers are positioned to straighten long edges and minimize edge length. Our focus

is on the second stage of this process – permuting the vertices on each layer.

Consider a graph with nodes divided into k layers, with edges restricted to

adjacent layers, ie. edges from layer i to i+ 1. Denote the nodes in the k − th layer

by nodes[k], and the edges from layer k to layer k + 1 by edges[k]. For a given edge

e, denote the start and end nodes by e.s and e.d respectively.
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5.1. MODEL

The combined model for maximal planar subgraph and crossing minimization

is defined by the binary program:

min
∑

k∈levelsC
∑

e,f∈edges[k] c(e,f) + P
∑

e∈edges[k] re (5.1)

s.t. ∧
k∈levels

∧
i,j,k∈nodes[k] l(i,j) ∧ l(j,k) → l(i,k) (5.2)∧

k∈levels
∧
e,f∈edges[k] c(e,f) ↔ l(e.s,f.s) ⊕ l(e.d,f.d) (5.3)∧

k∈levels
∧
e,f∈edges[k] re ∨ rf ∨ ¬c(e.f) (5.4)

The operation x⊕y denotes the operator XOR, and is equivalent to (x∨y)∧(¬x∨¬y).

The variable l(i,j) indicates node i is before j in the level ordering. The variable c(e,f)

indicates that edge e crosses edge f . The variable re indicates that edge e is deleted

to make the graph planar. The constants C and P define the relative weights of

crossing minimization and edge deletion for planarity. The 3-cycle constraints of

Equation 5.2 ensures that the order variables are assigned to a consistent ordering.

Equation 5.3 defines the edge crossings variables in terms of the ordering: the edges

cross if the relative order of the start and end nodes are reversed. It is encoded in

clauses as

c(e,f) ∨ l(e.s,f.s) ∨ ¬l(e.d,f.d), c(e,f) ∨ ¬l(e.s,f.s) ∨ l(e.d,f.d),

¬c(e,f) ∨ l(e.s,f.s) ∨ l(e.d,f.d), ¬c(e,f) ∨ ¬l(e.s,f.s) ∨ ¬l(e.d,f.d).

The planarity requirement is encoded in Equation 5.4 which states that for each pair

either one is removed, or they don’t cross. The combined model usesO(k.(e2 +n2))

Boolean variables and is O(k.(n3 + e2)) in size. As mentioned in Chapter 2, the

SAT model handles optimization problems by solving a sequence of satisfiability

problems with progressively restricted objective values. Sorting networks provide

a convenient interface for this; if the current solution of a minimization problem

has value k, we can search for a better solution by asserting ¬ok (where ok is the kth

output of the sorting network) and re-solving.

We can convert this clausal model to a MIP binary program by converting each

clause b1∨· · · bl∨¬bl+1∨· · ·∨¬bm to the linear constraint b1+· · ·+bl−bl−1−· · ·−bm ≥
m− l + 1.
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CHAPTER 5. K-LEVEL GRAPH LAYOUT

Long edges are handled by adding intermediate nodes in the levels that the long

edges cross and breaking the edge into components. For crossing minimization

each of these new edges is treated like an original edge. For the minimal deletion

of edges each component edge in a long edge e is encoded using the same deletion

variable re.

By adjusting the relative weights for crossing C, and planarization P , we can

create and evaluate new measures of clarity of the graph. WithC = 1+
∑

k∈levels |edges[k]|
and P = 1 we first minimize crossings, then minimize edge deletions for planarity.

WithC = 1 and P =
∑

k∈levels |edges[k]|2 we first minimize edge deletions and then

crossings. While we limit our evaluation to lexicographic orderings, other choices

of C and P can be used to express different combined objectives.

5.2 Additional Constraints

While the basic model described in Section 5.1 is sufficient to ensure correctness,

finding the optimum still requires a great deal of search. We can modify the model

to significantly improve performance.

First note that we add symmetry breaking by fixing the order of the first two

nodes appearing on the same level. If the graph to be layed out has more symme-

tries than this left-to-right symmetry we could use this to fix more variables (al-

though we don’t do this in the experiments). Next, we can improve edge crossing

minimization by using as an upper bound the number of crossings in a heuristic

layout. We could also use heuristic solutions to bound planarity but doing so re-

quires computing how many edges need deletion, which is non-trivial.

5.2.1 Cycle Parity

Healy and Kuusik introduced the vertex-exchange graph [Healy and Kuusik, 1999]

for analyzing layered graphs. Each edge in the vertex-exchange graph corresponds

to a potential crossing in the initial graph; each node corresponds to a pair of nodes

within a level.

Consider the graph shown in Figure 5.3(a), its vertex-exchange graph is shown

in Figure 5.3(b). Note there are two edges (ab, de) corresponding to the two pairs
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5.2. ADDITIONAL CONSTRAINTS

a

d

b c

e f

ab ac bc

de df ef

(a) (b)

Figure 5.3: (a) A graph, with an initial ordering (b) The corresponding vertex-
exchange graph.

((a, d), (b, e)) and ((a, e), (b, d)). Edges corresponding to crossings in Figure 5.3(a)

are shown as solid, the rest are dashed.

For any given cycle in the vertex exchange graph, permuting nodes within a

layer will maintain parity in the number of crossings in the cycle. For cycles with

an odd number of crossings, this means that at least one of the pairs of edges in the

cycle will be crossing. This can be represented by the clause
∨

(e,f)∈cycle c(e,f). When

finding the maximal planar subgraph, we then know that at least one edge involved

in the cycle must be removed from the subgraph. Similarly since the cycle is even

in length we know that not all edges can cross, represented by
∨

(e,f)∈cycle ¬c(e,f).

Both these constraints can be added to the model.

A special case of cycle parity is the K2,2 subgraph. This subgraph always pro-

duces exactly one crossing, irrespective of the relative orderings of the nodes in the

subgraph. When minimizing crossings, the corresponding c(e,f) variables need not

be included in the objective function, which considerably simplifies the problem

structure. Note that, for example, a K3,3 subgraph contains 9 K2,2 subgraphs, and

each of the 9 ce,f variables arising can be omitted from the problem. For the exper-

iments we add constraints for cycles of length 6 or less, since the larger cycles did

not improve performance.

5.2.2 Leaves

It is not difficult to prove that if a node on layer k has m child leaf nodes (uncon-

nected to any other node) on layer k+ 1, then all of these leaf nodes can be ordered

together.

Consider the partial layout illustrated in Figure 5.4, where each node 1,2,3 and

4 is a leaf node with no outgoing arcs. If we place a node f in between nodes 1,2,3

and 4 (as illustrated) there is always at least as good a crossing solution by placing
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0

4321

a b c d e

f

g h

Figure 5.4: A partial layout with respect to some leaf nodes 1,2,3,4

f either before or after all of them. Here since there are 2 parents before 0 and 3

after, f should be placed after 4, leading to 8 crossings rather than the 9 illustrated.

Similarly maximizing planarity always requires that all edges to siblings left of

f be removed or all edges from parents before 0, and all edges to siblings right of

f or all edges from parents after 0. An optimal solution always results by either

deleting all edges to leaf nodes (which makes the leaf positions irrelevant), or or-

dering f after all leaves and deleting all edges from parents before 0, or ordering f

before all leaves and deleting all edges from parents after 0.

Since there is no benefit in splitting leaf siblings we can treat them as a single

node, but note we must appropriately weight the edge resulting, since it represents

multiple crossings and multiple edge deletions.

Let N be a set of m leaf nodes from a single parent node i. We replace N by

a new node j′, and replace all edges {(i, j) | j ∈ N} by the single edge (i, j′). We

replace each m terms c((i,j),f), j ∈ N in the objective function by one term m ×
c((i,j′),f) and replace the set of m terms r(i,j), j ∈ N in the objective by the term

m× r(i,j′).

5.3 Experimental Results

We tested the binary model on a variety of graphs, using the pseudo-Boolean con-

straint solver MiniSAT+[Eén and Sörensson, 2006], and the Mixed Integer Program-

ming solver CPLEX12.0. All experiments were performed on a 3.0GHz Xeon X5472

with 32 GB of RAM running Debian GNU/Linux 4.0. We ran for a maximum of

60s, and all times are given in seconds.

We compared 4 different objective functions:

• crossing minimization: C = 1, P = 0;

• maximal planar subgraph C = 0, P = 1;
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5.3. EXPERIMENTAL RESULTS

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT
cross/plan best solved best solved best solved best solved

crazy 3 / 1 2 0.04 2 0.01 1 0.03 1 0.01
datastruct 2 / 2 2 0.00 2 0.00 1 0.02 1 0.00
fsm 0 / 0 0 0.00 0 0.00 0 0.00 0 0.00
lion share 7 / 3 4 0.04 4 0.11 2 0.05 2 0.02
profile 54 / 17 38 6.81 54 — 12 — 9 5.39
switch 20 / 17 20 0.75 20 0.64 17 — 17 34.49
traffic lights 0 / 0 0 0.00 0 0.00 0 0.00 0 0.00
unix 3 / 1 2 0.05 2 0.01 1 0.04 1 0.02
world 50 / 16 46 — 50 — 15 — 13 —

Table 5.1: Time to find and prove the minimal crossing layout and maximal planar
subgraph for Graphviz examples using MIP and SAT.

• crossing minimization then maximal planar subgraphC = 1+
∑

k∈levels |edges[k]|,
P = 1; and

• maximal planar subgraph then minimize crossingsC = 1, P =
∑

k∈levels |edges[k]|2.

To compare speed and effectiveness of the model we ran it on two sets of graphs.

The first set of graphs are all the hierarchical network diagrams appearing in the

GraphViz gallery [Gansner and North, 2000]. The second set of graphs are random

graphs of k-levels with n nodes per level and a fixed edge density of 20% (that is

each node is connected on average to 20% of the nodes on the next layer); these do

not include any long edges. Problem class gk n is a suite of 10 randomly generated

instances with k levels and n nodes per level.

Table 5.1 shows the results of minimizing edge crossings and maximizing pla-

nar subgraphs with MIP and SAT solvers, as well as the crossings resulting in the

Graphviz heuristic layout for graphs from the GraphViz gallery. We use the best

variation of our model for each solver: for the MIP solver this is with all improve-

ments described in the previous section, while for the SAT solver we omit the leaf

optimization since it slows down the solver. For each solver we show the solution,

with least edge crossings or minimal number of edges deleted for planarity, found

in 60s and the time to prove optimality or ‘—’ if it was not proved optimal. The

results show that for realistic graphs we can find better solutions than the heuris-

tic method, even when there are very few crossings. The best found crossing and

edges deleted for planarization and instances solved to optimality/time combina-

tion are highlighted in bold. We can find optimal crossing solutions for 9 out of

103



CHAPTER 5. K-LEVEL GRAPH LAYOUT

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT
best best solved best solved best solved best solved

g3 7 41 / 29 35 10 / 0.00 35 10 / 0.02 18 10 / 0.01 18 10 / 0.02
g3 8 103 / 59 86 10 / 0.03 86 10 / 0.10 31 10 / 0.15 31 10 / 0.04
g3 9 204 / 87 195 10 / 0.07 195 10 / 6.67 63 10 / 4.60 63 10 / 0.12
g3 10 399 / 126 373 10 / 0.97 380 8 / 14.44 91 5 / 15.53 91 10 / 3.37
g4 7 70 / 44 55 10 / 0.01 55 10 / 0.04 32 10 / 0.11 32 10 / 0.04
g4 8 187 / 93 169 10 / 0.09 169 10 / 0.68 61 10 / 3.83 61 10 / 0.16
g4 9 351 / 130 342 10 / 0.89 345 8 / 13.69 94 6 / 26.85 94 10 / 2.82
g4 10 703 / 209 681 9 / 2.37 — — 161 — 152 —
g5 7 101 / 61 95 10 / 0.03 95 10 / 0.11 47 10 / 0.43 47 10 / 0.08
g5 8 284 / 125 245 10 / 0.32 245 10 / 4.01 93 10 / 25.46 93 10 / 2.78
g5 9 474 / 192 450 10 / 0.99 — 5 / 30.47 139 1 / 35.37 138 3 / 47.46
g6 7 141 / 82 131 10 / 0.03 131 10 / 0.18 57 10 / 1.51 57 10 / 0.18
g6 8 357 / 154 324 10 / 0.53 324 10 / 13.34 112 4 / 11.64 111 10 / 28.81
g6 9 684 / 252 637 10 / 3.28 — — 190 — 197 —
g7 7 159 / 91 148 10 / 0.08 148 10 / 0.58 67 10 / 3.91 67 10 / 0.78
g7 8 390 / 183 366 10 / 0.72 372 6 / 12.35 134 1 / 47.75 140 —
g7 9 813 / 293 786 9 / 12.54 — — 238 — 233 —
g8 7 249 / 131 235 10 / 0.16 235 10 / 4.06 92 8 / 13.38 92 10 / 4.91
g8 8 466 / 224 431 10 / 1.51 — 1 / 10.73 154 — 165 —
g9 7 269 / 150 238 10 / 0.30 238 10 / 2.60 108 7 / 17.72 108 8 / 15.18
g9 8 572 / 259 541 10 / 2.95 — 3 / 28.71 197 — 200 —
g10 7 334 / 172 304 10 / 0.27 304 10 / 9.67 119 8 / 24.05 121 4 / 19.39
g10 8 733 / 302 661 10 / 10.68 — — 216 — 225 —

Table 5.2: Time to find and prove the minimal crossing layout and maximal planar
subgraph, using MIP and SAT for random examples.

ten examples, and maximal planar subgraph solutions for 7 out of 10 examples.

The MIP approach is clearly superior for minimizing edge crossings, while SAT is

superior for maximizing planarity.

Table 5.2 shows the results of crossing minimization and maximal planar sub-

graph for the second data set of random graphs using the MIP and SAT solver.

The table shows: the total number of crossings when the graphs are laid out using

GraphViz then for each solver: the total number of crossings or edge deletions in

the best solutions found in 60s for the suite (a ‘—’ indicates that for at least one

instance the method found no solution better than the Graphviz bound in 60s) and

the number of instances where optimal solutions were found and proved and the

average time to prove optimality.

The results are in accord with those for the first dataset and show that the MIP

solver can almost always find optimal minimal crossing solutions within this time

bound (only two instances failed). The Graphviz solutions can be substantially

improved, the best solutions found have 10-20% fewer crossings.
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5.3. EXPERIMENTAL RESULTS

Problem
Crossing then planarization Planarization then crossing

MIP SAT MIP SAT
best solved best solved best solved best solved

crazy (2, 1) 0.07 (2, 1) 10.51 (1, 2) 0.08 (1, 2) 0.31
datastruct (2, 1) 0.02 (2, 1) 0.26 (1, 2) 0.03 (1, 2) 0.23
fsm (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00
lion share (4, 3) 0.15 (4, 3) 3.55 (2, 5) 0.52 (2, 5) 0.60
profile (38, 11) 29.96 (281, 34) — (12, 66) — (13, 145) —
switch (20, 17) 1.36 (20, 17) 3.61 (17, 20) — (17, 20) —
traffic lights (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.01
unix (2, 1) 0.07 (2, 1) 10.52 (1, 2) 0.09 (1, 2) 0.32
world (47, 14) — (108, 19) — (18, 79) — (15, 106) —

Table 5.3: Time to find and prove optimal mixed objective solutions for Graphviz
examples using MIP and SAT.

Problem
Crossing then planarization Planarization then crossing

MIP SAT MIP SAT
best solved best solved best solved best solved

g3 7 (35, 22) 10 / 0.01 (35, 22) 10 / 0.04 (18, 39) 10 / 0.02 (18, 39) 10 / 0.04
g3 8 (86, 41) 10 / 0.13 (86, 41) 10 / 0.37 (31, 102) 10 / 0.31 (31, 102) 10 / 0.21
g3 9 (195, 78) 10 / 0.48 (195, 78) 10 / 3.09 (63, 231) 9 / 10.31 (63, 231) 10 / 1.04
g3 10 (373, 115) 10 / 2.67 (564, 166) 2 / 40.99 (91, 444) 2 / 13.84 (91, 419) 9 / 10.64
g4 7 (55, 35) 10 / 0.05 (55, 35) 10 / 0.23 (32, 58) 10 / 0.21 (32, 58) 10 / 0.23
g4 8 (169, 76) 10 / 0.57 (169, 76) 10 / 1.58 (61, 223) 10 / 6.66 (61, 223) 10 / 1.91
g4 9 (342, 116) 10 / 1.66 (418, 162) 5 / 33.21 (94, 386) 3 / 31.03 (95, 382) 8 / 14.76
g4 10 (681, 195) 9 / 8.17 (1249, 338) — (158, 933) — (160, 928) —
g5 7 (95, 55) 10 / 0.08 (95, 55) 10 / 0.35 (47, 104) 10 / 0.76 (47, 104) 10 / 0.53
g5 8 (245, 108) 10 / 0.66 (245, 108) 10 / 8.38 (95, 269) 4 / 29.48 (94, 290) 8 / 25.24
g5 9 (450, 174) 10 / 3.83 (694, 210) 1 / 42.43 (142, 612) — (146, 656) —
g6 7 (131, 64) 10 / 0.25 (131, 64) 10 / 1.98 (57, 153) 10 / 2.74 (57, 153) 10 / 2.32
g6 8 (324, 136) 10 / 1.16 (357, 150) 6 / 22.50 (112, 419) 2 / 22.62 (117, 413) 2 / 31.29
g6 9 (637, 228) 10 / 8.15 (1353, 513) — (192, 881) — (212, 967) —
g7 7 (148, 83) 10 / 0.34 (148, 83) 10 / 23.94 (67, 168) 10 / 10.66 (67, 168) 10 / 10.59
g7 8 (366, 159) 10 / 3.00 (454, 236) 2 / 20.16 (136, 472) — (148, 500) —
g7 9 (778, 255) 8 / 18.96 (1372, 481) — (236, 1031) — (258, 1303) —
g8 7 (235, 116) 10 / 0.50 (235, 116) 10 / 14.06 (92, 272) 5 / 15.54 (93, 277) 8 / 22.09
g8 8 (431, 195) 10 / 5.06 (641, 345) 1 / 33.37 (154, 552) — (182, 639) —
g9 7 (238, 123) 10 / 0.77 (241, 126) 9 / 25.00 (108, 260) 6 / 16.29 (112, 283) 2 / 57.22
g9 8 (541, 229) 10 / 6.17 (981, 464) — (198, 757) — (216, 871) —
g10 7 (304, 144) 10 / 1.59 (329, 201) 7 / 33.19 (119, 362) 4 / 32.01 (126, 415) 1 / 58.29
g10 8 (661, 256) 9 / 15.15 (1216, 546) — (199, 832) — (224, 987) —

Table 5.4: Time to find and prove optimal mixed objective solutions for random
examples using MIP and SAT.

For maximal planar subgraph, in contrast to edge crossings, the SAT solver is

better than the MIP solver, although as the number of levels increases the advan-

tage decreases.

Tables 5.3 and 5.4 show the results for the mixed objective functions: minimiz-

ing crossings then maximizing planar subgraph and the reverse. For minimizing
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crossings first MIP dominates as before, and again is able to solve almost all prob-

lems optimally within 60s. For the reverse objective SAT is better for the small in-

stances, but suffers as the instances get larger. This problem is significantly harder

than the minimizing crossings first.

Results not presented demonstrate that the improvements presented in the pre-

vious section make a substantial difference. The elimination ofK2,2 cycles is highly

beneficial to both solvers. Constraints for larger cycles can have significant benefit

for the MIP solver but rarely benefit the SAT solver. The leaf optimization is good

for the MIP solver, but simply slows down the SAT solver. We believe this is be-

cause it complicates the MiniSAT+ translation of the objective function to clauses.

Overall the optimizations improve speed by around 2-5×. They allow 6 more in-

stances to find optimal solutions for minimizing crossing, 5 for maximal planar

subgraph, 19 for crossing minimization then maximal planar subgraph, and 9 for

maximal planar subgraph then crossing minimization.

It is also possible to solve these combined objectives using a staged optimiza-

tion procedure; for example, first minimizing crossings, then maximizing the pla-

nar subset subject to the minimum number of crossings. On the instances we tested,

the performance of MIP was similar for either the combined or staged objectives.

Surprisingly, the SAT solver performed considerably worse using the staged pro-

cedure than with the combined objective. Indeed, one instance took 3s to solve

the combined objective problem, but the staged procedure took 127s to solve just

the second stage. The reason for this dramatic difference is unclear, and would be

worth investigating.

5.4 Conclusion

This chapter demonstrates that maximizing clarity of heirarchical network dia-

grams by edge crossing minimization or maximal planar subgraph or their com-

bination can be solved optimally for reasonable sized graphs using modern SAT

and MIP software. Using this generic solving technology allows us to experiment

with other notions of clarity combining or modifying these notions. It also gives us

the ability to accurately measure the effectiveness of heuristic methods for solving

these problems.
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6
Table Layout

TABLES are provided in virtually all document formatting systems and are

one of the most powerful and useful design elements in current web

document standards such as (X)HTML [HTML Working Group, 2002],

CSS [Bos et al., 1998] and XSL [Clark and Deach, 1998]. For on-line presentation it

is not practical to require the author to specify table column widths at document

authoring time since the layout needs to adjust to different width viewing environ-

ments and to different sized text since, for instance, the viewer may choose a larger

font. Dynamic content is another reason that it can be impossible for the author

to fully specify table column widths. This is an issue for web pages and also for

variable-data printing (VDP) in which improvements in printer technology now

allow companies to cheaply print material which is customized to a particular re-

cipient. Good automatic layout of tables is therefore needed for both on-line and

VDP applications and is useful in many other document processing applications

since it reduces the burden on the author of formatting tables.

However, automatic layout of tables that contain text is computationally expen-

sive. Anderson and Sobti [1999] have shown that table layout with text is NP-hard.

The reason is that if a cell contains text then this implicitly constrains the cell to

take one of a discrete number of possible configurations corresponding to different

numbers of lines of text. It is a difficult combinatorial optimization problem to find

which combination of these discrete configurations best satisfies reasonable layout

requirements such as minimizing table height for a given width.
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Figure 6.1: Example table comparing layout using the Mozilla layout engine, Gecko
(on the left) with the minimal height layout (on the right).

Table layout research is reviewed by Hurst, Li and Marriott [Hurst et al., 2009].

Starting with Beach [1985], a number of authors have investigated automatic table

layout from a constrained optimization viewpoint and a variety of approaches for

table layout have been developed. Almost all approaches use heuristics and are not

guaranteed to find the optimal solution. They include methods that use a desired

width for each column and scale this to the actual table width [Raggett et al., 1999,

Borning et al., 2000, Badros et al., 1999], methods that use a continuous linear or

non-linear approximation to the constraint that a cell is large enough to contain its

contents [Anderson and Sobti, 1999, Beaumont, 2004, Hurst et al., 2005, 2006a, Lin,

2006], a greedy approach [Hurst et al., 2005] and an approach based on finding a

minimum cut in a flow graph [Anderson and Sobti, 1999].

In this chapter we are concerned with complete techniques that are guaran-

teed to find the optimal solution. While these are necessarily non-polynomial in

the worst case (unless P=NP) we are interested in finding out if they are practi-

cal for small and medium sized table layout. Even if the complete techniques are

too slow for normal use, it is still worthwhile to develop complete methods because

these provide a benchmark with which to compare the quality of layout of heuristic

techniques. For example, while Gecko (the layout engine used by the Firefox web

browser) is the most sophisticated of the HTML/CSS user agents whose source

code we’ve seen, the generated layouts can be considerably suboptimal even for

small tables. Figure 6.1 shows a 3 by 3 table laid out using the Mozilla layout en-

gine, and the corresponding minimum height layout. Notice that the top-left and

bottom-right cells span two rows, and the top-right cell spans two columns.

We know of only three other papers that have looked at complete methods for

table layout with breakable text. The first is a branch-and-bound algorithm de-

scribed in Wang and Wood [1997], which finds a layout satisfying linear designer

constraints on the column widths and row heights. However it is only complete
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in the sense that it will find a feasible layout if one exists and is not guaranteed to

find an optimal layout that, say, minimizes table height.1 The second is detailed in

a recent paper by Bilauca and Healy [2010]. They give two MIP based branch-and-

bound based complete search methods for simple tables. Bilauca and Healy have

also presented an updated model [Bilauca and Healy, 2011], which was developed

after the material in this chapter was published.

The first contribution of this chapter is to present three new techniques for find-

ing a minimal height table layout for a fixed width. All three are based on generic

approaches for solving combinatorial optimization problems that have proven to

be useful in a wide variety of practical applications.

The first approach uses an A? based approach (see, e.g., Russell and Norvig

[2002]) that chooses a width for each column in turn. Efficiency of the A? algo-

rithm crucially depends on having a good lower bound for estimating the mini-

mum height for any full table layout that extends the current layout. We use a

heuristic that treats the remaining unfixed columns in the layout as if they are a

single merged column each of whose cells must be large enough to contain the con-

tents of the unfixed cells on that row. The other key to efficiency is to prune layouts

that are not column-minimal in a sense that it is possible to reduce one of the fixed

column widths without violating a cell containment constraint while keeping the

same row heights.

The second and third approaches are both constraint programming models. The

second is a fairly direct encoding of the problem, introducing width and height

variables for each cell; we evaluate this model with both a conventional finite-

domain constraint solver, and a lazy clause generation solver. The third is a mod-

ified lazy clause generation model which avoids introducing cell variables, con-

straining pairs of row and column variables directly.

The second contribution of this chapter is to provide an extensive empirical

evaluation of these three approaches as well as the two MIP-based approaches of

Bilauca and Healy [2010]. We first compare the approaches on a large body of

tables collected from the web. This comprised more than 2000 tables that were hard

to solve in the sense that the standard HTML table layout algorithm did not find

the minimal height layout. Most methods performed well on this set of examples
1One could minimize table height by repeatedly searching for a feasible solution with a table

height less than the best solution so far.
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and solved almost all problems in less than 1 second. We then stress-tested the

algorithms on some large artificial table layout examples.

The rest of this chapter is organized as follows. In Section 6.1 we give a formal

definition of the problem. In Section 6.2, we describe an A? method for table layout.

In Sections 6.3 and 6.4 we give an initial constraint programming model, and a

revised model to take advantage of lazy clause generation solvers. In Section 6.5,

we describe existing integer programming models for the problem, and in Section

6.6 we give an empirical evaluation of the described methods. Finally, in Section

6.7 we conclude.

6.1 Background

We assume throughout this chapter that the table of interest has n columns and m

rows. A layout (w, h) for a table is an assignment of widths, w, to the columns and

heights, h, to the rows where wc is the width of column c and hr the height of row

r. We make use of the width and height functions:

wdc1,c2(w) =
∑c2

c=c1
wc, wd(w) = wd1,n(w),

htr1,r2(h) =
∑r2

r=r1
hr, ht(h) = ht1,m(h)

where ht and wd give the overall table height and width respectively.

The designer specifies how the grid elements of the table are partitioned into

logical elements or cells. We call this the table structure. A simple cell spans a single

row and column of the table while a compound cell consists of multiple grid elements

forming a rectangle, i.e. the grid elements span contiguous rows and columns.

If d is a cell we define rows(d) to be the rows in which d occurs and cols(d) to

be the set of columns spanned by d. We let

bot(d) = max rows(d), top(d) = min rows(d),

left(d) = min cols(d), right(d) = max cols(d).
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Figure 6.2: Example minimal text configurations.

and, letting Cells be the set of cells in the table, for each row r and column c we

define
rcellsc = {d ∈ Cells | right(d) = c},
cellsc = {d ∈ Cells | c ∈ cols(d)},

bcellsr = {d ∈ Cells | bottom(d) = r}

cellsc is the set of cells spanning column c. rcellsc is the set of cells with column-

spans ending ending at column c; similarly, bcellsr is the set of cells with row-spans

ending at row r.

Each cell d has a minimum width, minw(d), which is typically the length of the

longest word in the cell, and a minimum height minh(d), which is typically the

height of the text in the cell.

The table’s structural constraints are that each cell is big enough to contain its

content and at least as wide as its minimum width and as high as its minimum

height.

The minimum-height table layout problem [Anderson and Sobti, 1999] is, given

a table structure, content for the table cells and a maximum width W , to find an

assignment to the column widths and row heights such that the structural con-

straints are satisfied, the overall width is no greater than W , and the overall height

is minimized.

For simplicity, we assume that the minimum table width is wide enough to

allow the structural constraints to be satisfied. Furthermore, we do not consider

nested tables nor do we consider designer constraints such as columns having fixed

ratio constraints between them.

6.1.1 Minimum configurations

The main decision in table layout is how to break the lines of text in each cell.

Different choices give rise to different width/height cell configurations. Cells have
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a number of minimal configurations where a minimal configuration is a pair (w, h)

s.t. the text in the cell can be laid out in a rectangle with width w and height h

but there is no smaller rectangle for which this is true. That is, for all w′ ≤ w and

h′ ≤ h either h = h′ and w = w′, or the text does not fit in a rectangle with width w′

and height h′. These minimum configurations are anti-monotonic in the sense that

if the width increases then the height will never increase. For text with uniform

height with W words (or more exactly, W possible line breaks) there are up to W

minimal configurations, each of which has a different number of lines. In the case of

non-uniform height text there can be no more than O(W 2) minimal configurations.

Figure 6.2 illustrates the minimal configurations for a cell containing the text “The

cat is on the mat”.

A number of algorithms have been developed for computing the minimum con-

figurations of the text in a cell [Hurst et al., 2009]. Here we assume that these are

pre-computed and that

configsd = [(w1, h1), ..., (wNd
, hNd

)]

gives the width/height pairs for the minimal configurations of cell d sorted in in-

creasing order of width. We will make use of the function minheight(d,w) which

gives the minimum height h ≥ minh(d) that allows the cell contents to fit in a

rectangle of width w ≥ minw(d). This can be readily computed from the list of

configurations. The variable cwd (resp. chd) represents the selected width (height)

for cell d.

The mathematical model of the table layout problem can be formalized as:

find w and h that minimize ht(h) subject to

∀d ∈ Cells. (cwd, chd) ∈ configsd ∧ (1)

∀d ∈ Cells. wdleft(d),right(d)(w) ≥ cwd ∧ (2)

∀d ∈ Cells. httop(d),bot(d)(h) ≥ chd ∧ (3)

wd(w) ≤W (4)

In essence, automatic table layout is the problem of finding minimal configura-

tions for a table: i.e. minimal width / height combinations in which the table can be

laid out. One obvious necessary condition for a table layout (w, h) to be a minimal
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configuration is that it is impossible to reduce the width of any column cwhile leav-

ing the other row and column dimensions unchanged and still satisfy the structural

constraints. We call a layout satisfying this condition column-minimal.

We now detail three algorithms for solving the table layout problem. All are

guaranteed to find an optimal solution but in the worst case may take exponential

time.

6.2 A? Algorithm

The first approach uses an A? based approach [Russell and Norvig, 2002] that

chooses a width for each column in turn. A partial layout (w, c) for a table is a

width w for the first c−1 columns. The algorithm starts from the empty partial lay-

out (c = 1) and repeatedly chooses a partial layout to extend by choosing possible

widths for the next column.

Partial layouts also have a penalty p, which is a lower bound on the height for

any full table layout that extends the current partial layout. The partial layouts

are kept in a priority queue and at each stage a partial layout with the smallest

penalty p is chosen for expansion. The algorithm has found a minimum height lay-

out when the chosen minimal-penalty partial layout has c = n+ 1 (and is therefore

a total layout). The code is given in function complete-A?-search(W ) where W is

the maximum allowed table width. For simplicity we assume W is greater than the

minimum table width. (The minimum table width can be determined by assign-

ing each column its minc width from possible-col-widths, or can equivalently be

derived from the corresponding maximum positions also used in that function.)

Given widths w for columns 1, . . . , c − 1 and maximum table width of W , the

function possible-col-widths(c,w,W ) returns the possible widths for column c that

correspond to the width of a minimal configuration for a cell in c and which satisfy

the minimum width requirements for all the cells in d and still satisfy the minimum

width requirements for columns c+ 1, . . . , n and allow the table to have width W .

Efficiency of an A? algorithm usually depends strongly on how tight the lower

bound on penalty is, i.e., how often (and how early) the heuristic informs us that we

can discard a partial solution because all full table layouts that extend that partial
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layout will either have a height greater than the optimal height, or have height

greater or equal to some other layout that isn’t discarded.

We use a heuristic that treats the remaining unfixed columns in the layout as

if they are a single merged column each of whose cells must be large enough to

contain the contents of the unfixed cells on that row. We approximate the contents

by a lower bound of their area. The function compute-approx-row-heights(w,h,c,W )

does this, returning the estimated (lower bound) row heights after laying out the

area of the contents of columns c+ 1, . . . , n in a single column whose width brings

the table width to W . Compound cells that span multiple rows, and positions in

the table grid that have no cell, use a very simple lower bound of zero.

A? methods often store the set of previously expanded nodes, to avoid repeat-

edly expanding the same partial solutions. In this case the cost of maintaining this

set is relatively expensive, as the encoding of a partial solution must keep track

of the minimum height of each row as well as the start position of certain column

spans. Given that isomorphic states are encountered infrequently in these prob-

lems, we avoid storing this set of closed nodes.

We instead present the following method for discarding partial solutions. Par-

tial layouts which must lead to a full layout which is not column minimal are not

considered. If the table has no compound cells spanning multiple rows then any

partial layout that is not column minimal for the columns that have been fixed can

be discarded because row heights can only increase in the future and so the lay-

out can never lead to a column-minimal layout. This no longer holds if the table

contains cells spanning multiple rows as row heights can decrease and so a partial

layout that is not column minimal can be extended to one that is column mini-

mal. However, it is true that if the cells spanning multiple rows are ignored, i.e.

assumed to have zero content, when determining if the partial layout is column

minimal then partial layouts that are not column minimal can be safely discarded.

The function weakly-column-minimal(w,c) does this by checking that none of the

columns 1, . . . , c can be narrowed without increasing the height of a row, ignoring

compound cells spanning multiple rows.

In our implementation of complete-A*-search, the iteration over possible widths

works from maximum v downwards, stopping once the new partial solution is ei-

ther known not to be column minimal or (optionally) once the penalty exceeds
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a certain maximum penalty which should be an upper bound on the minimum

height. Our implementation computes a maximum penalty at the start, by using a

heuristic search based on [Hurst et al., 2005].

Creating a new partial layout is relatively expensive (see below), so this early

termination is more valuable than one might otherwise expect. However, the cost

of this choice is that this test must be done before considering the height lower

bounds for future cells (the remaining-area penalty), since the future penalty is at

its highest for maximum v.

For the implementation of compute-approx-row-heights, note thatDfree and arear

don’t depend onw or h0, and hence may be precalculated; whilew may be stored in

cumulative form, and W −w1,c is independent of r constant ; so that the loop body

can run in constant time, plus the cost of a single call to minheight (this can be

made constant with O(W ) space overhead, or O(log(|configsd|)) otherwise). hfix

denotes the height of any newly introduced cells terminating at the current (r, c)

position; note that there is at most one such cell. hfree denotes the computed lower

bound for the unfixed cells in the row. The lower bound for a row r is then the

maximum of h0r, the height of previously fixed cells, any newly fixed cells, and the

lower bound for the as-yet unfixed cells in the row.

6.3 A CP model for table layout

A Zinc [Marriott et al., 2008] model is given below. Each cell d has a configuration

variable f [d] which chooses the configuration (cw, ch) from an array of tuples cf [d]

of (width, height) configurations defining configsd. Note that t.1 and t.2 return the

first and second element of a tuple respectively. The important variables are: w, the

width of each column, and h, the height of each row. These are constrained to fit

each cell, and so that the maximum width is not violated.

int: n; % number of columns
int: m; % number of rows
int: W; % maximal width
set of int: Cells; % numbered cells
array[Cells] of 1..m: top;
array[Cells] of 1..m: bot;
array[Cells] of 1..n: left;
array[Cells] of 1..n: right;
array[Cells] of array[int] of tuple(int,int): cf;
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possible-col-widths(c,w,W )
minc := max

d∈rcellsc
{minw(d)− wdleft(d),c−1(w)}

for(c′ := n down to c+ 1)
wc′ := max

d∈lcellsc′
{minw(d)− wdc′+1,right(d)(w)}

maxc := W − wd1,c−1(w)− wdc+1,n(w)
for(d ∈ rcellsd)
widthsd := {wk − wdleft(d),c−1(w)|(wk, hk) ∈ configsd}
widthsd := {v ∈ widthsd | minc ≤ v ≤ maxc}

return (
⋃

d∈rcellsd widthsd)

weakly-column-minimal(w,c)
for(r := 1 to m)
Dr := {d ∈ Cells | right(d) ≤ c and rows(d) = {r}}
hr := max

d∈Dr

{
minheight(d,wdleft(d),right(d)(w))

}
for(c′ ∈ {1, . . . , c})
cm := false
for(d ∈ rcellsc′ s.t. |rows(d)| = 1)

if(minheight(d,wdleft(d),c′(w)− ε) > hbot(d))
cm := true
break

if(¬cm) return false
return true

compute-approx-row-heights(w,h0,c,W )
for(r ∈ {1, . . . ,m})
Dfix := {d ∈ Cells | right(d) = c and bot(d) = r}
if(Dfix = ∅) h1 := 0
else hfix := max

d∈Dfix

{ minheight(d,wdleft(d),right(d)(w))

− httop(d),r−1(h) }
Dfree := {d ∈ Cells | c < right(d) and rows(d) = {r}}
arear :=

∑
d∈Dfree

area(d)

if(arear = 0) hfree := 0
else arear/(W − wd1,c)
h := h[hr 7→ max{h0r, hfix , hfree}]

return h

complete-A?-search(W )
create a new priority-queue q
add (0,−1, [c 7→ 0 | c = 1..n], [r 7→ 0 | r = 1..m]) to q
while(true)

remove lowest priority state (p,−c, w, h) from q
if(c = n+ 1) return (w, h)
widthsc := possible-col-widths(c, w,W )
for(v ∈ widthsc s.t. weakly-column-minimal(w[c 7→ v], c))
w′ := w[c 7→ v]
h′ := compute-approx-row-heights(w,h,c,W )
add (ht(h′),−(c+ 1), w′, h′) to q

Figure 6.3: An A? algorithm for table layout.
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array[Cells] of var int: f; % cell configurations
array[1..n] of var int: w; % column widths
array[1..m] of var int: h; % row heights

constraint forall(d in Cells)(
% constraint (2)

sum(c in left[d]..right[d])(w[c])>=cf[d][f[d]].1
/\ % constraint (3)
sum(r in top[d]..bot[d])(h[r])>=cf[d][f[d]].2

);
% constraint (4)

constraint sum(c in 1..n)(w[c]) <= W;
solve minimize sum(r in 1..m)(h[r]);

The Zinc model does not enforce column minimality of the solutions, but solutions

will be column minimal because of the optimality condition.

The reason that we thought that lazy clause generation might be so effective

for the table layout problem is the small number of key decisions that need to be

made. While there may be O(nm) cells each of which needs to have an appropriate

configuration determined for it, there are only n widths and m heights to decide.

These variables define all communication between the cells. Hence if we learn

nogoods about combinations of column widths and row heights there are only a

few variables involved, and these nogoods are likely to be highly reusable. We

can see the benefit of nogood learning by comparing the constraint programming

model, with and without learning.

Example 6.1. Consider laying out a table of the form

aa aa

aa aa aa

aa aa

aa aa

aa aa

aa aa
where each aa entry can have two configurations: wide two characters wide and one line

high, or high one character wide and two lines high (so cf[d] = [(2,1),(1,2)]).

Assume the remaining cells have unique configuration (1,1), and there is a maximal table

width of 9, and a maximal table height of 9. Choosing the configuration of cell (1,1) as

wide (f[(1,1)] = 1) makes w1 ≥ 2, similarly if cell (1,3) is wide then w3 ≥ 2. The
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effect of each decision in terms of propagation is illustrated in the implication graph in

Figure 6.4 Now choosing the configuration of cell (2,2) as wide makes w2 ≥ 2 and then

propagation on the sum of column widths forces each of the remaining columns to be at

most width 1: w4 ≤ 1, w5 ≤ 1, w6 ≤ 1. Then w4 ≤ 1 means h2 ≥ 2, h3 ≥ 2, h4 ≥ 2

and h6 ≥ 2 since we must pick the second configuration for each of the cells in column

4. These height constraints together violate the maximal height constraint. Finite domain

propagation backtracks undoing the last decision and sets the configuration of (2,2) as high

(f[(2,2)] = 2), forcing h2 ≥ 2. Choosing the configuration of (2,5) as wide makes

w5 ≥ 2 and then propagation on the sum of column widths forces each of the remaining

columns to be at most width 1: w2 ≤ 1, w4 ≤ 1, w5 ≤ 1. Againw4 ≤ 1 means the maximal

height constraint is violated. So search undoes the last decision and sets the configuration

of (2,5) as high.

Let’s contrast this with lazy clause generation. After making the first three decisions

the implication graph is shown in Figure 6.4. The double boxed decisions reflect making

the cells (1,1), (1,3) and (2,2) wide. The consequences of the last decision are shown in

dashed boxes. Lazy clause generation starts from the nogood h2 ≥ 2 ∧ h3 ≥ 2 ∧ h4 ≥
2 ∧ h6 ≥ 2 → false and replaces h6 ≥ 2 using its explanation f [(6, 4)] = 2 → h6 ≥ 2 to

obtain h2 ≥ 2 ∧ h3 ≥ 2 ∧ h4 ≥ 2 ∧ f [(6, 4)] = 2 → false . This process continues until

it arrives at the nogood w4 ≤ 1 → false which only has one literal from the last decision

level. This is the 1UIP nogood. It will immediately backjump to the start of the search (since

the nogood does not depend on any other literals at higher decision levels) and enforce that

w4 ≥ 2. Search will again make cell (1,1) wide, and on making cell (1,3) wide it will

determine w3 ≥ 2 and consequently that w2 ≤ 1, w5 ≤ 1 and w6 ≤ 1 which again causes

violation of the maximal height constraint. The 1UIP nogood is w1 ≥ 2 ∧ w3 ≥ 2→ fail,

so backjumping removes the last choice and infers that w3 ≤ 1 which makes h1 ≥ 2 and

h3 ≥ 2.

Note that the lazy clause generation completely avoids considering the set of choices

(1,1), (1,3) and (2,5) wide since it already fails on setting (1,1) and (1,3) wide. This il-

lustrates how lazy clause generation can reduce search. Also notice that in the implication

graph the consequences of a configuration choice only propagate through width and height

variables, and hence configuration choices never appear in nogoods. 2
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Figure 6.4: An implication graph for searching the layout problem of Example 6.1

6.4 Cell-free CP model

The CP model described in the previous section introduces O(mn) configuration

variables in order to represent cell shapes; in practice, the solver spends a signifi-

cant percentage of runtime updating these variables.

However, we don’t necessarily need to explicitly represent each cell in the model.

Consider a cell spanning a single row r and single column c with a set of con-

figurations C = {(w1, h1), . . . , (wk, hk)}, the configurations ordered according to

increasing width (or, equivalently, decreasing height). Consider two adjacent con-

figurations, (wi, hi) and (wi+1, hi+1).

If the cell is in a configuration c ≤ i, then h[r] ≥ hi. If the cell is in a configuration

c ≥ i + 1, then w[c] ≥ wi+1. By introducing these constraints for each pair of

configurations, we can avoid the need to introduce configuration variables for each

cell. The revised model is given below.

constraint forall(d in Cells)(
% minimum height
sum(c in left[d]..right[d])(w[c]) >= cf[d][0].1

/\ forall(i in 2..length(cf[d]))(
% boundary between pairs of configurations
sum(c in left[d]..right[d])(w[c]) >= cf[d][i].1

\/ sum(r in top[d]..bot[d])(h[r]) >= cf[d][i-1].2
)
% minimum width

/\ sum(r in top[d]..bot[d])(h[r]) >= cf[d][length(cf[d])].2
);

In the case of non-compound tables, this is simplified to:

constraint forall(d in Cells)(
% minimum height
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w[left[d]] >= cf[d][0].1
/\ forall(i in 2..length(cf[d]))(

% boundary between pairs of configurations
w[left[d]] >= cf[d][i].1

\/ h[top[d]] >= cf[d][i-1].2
)
% minimum width

/\ h[top[d]] >= cf[d][length(cf[d])].2
);

As lazy clause generation solvers introduce literals for variable bounds, each of

these constraints becomes a single propositional clause. This can be handled effi-

ciently by the underlying SAT solver, and avoids the cost of constantly updating

the domains of the (now non-existent) cell variables.

Example 6.2. Consider the aa cell described in Example 6.1, which has configurations

{(1, 2), (2, 1)}, spanning the single column c and single row r. The constraints generated

for the cell are

w[r] >= 1
/\ (w[c] >= 2 \/ h[r] >= 2)
/\ h[c] >= 1

2

6.5 Mixed Integer Programming

Bilauca and Healy [2010] consider using mixed integer programming (MIP) to model

the table layout problem. They consider two models for the simple table layout

problem and do not consider compound cells, i.e. row and column spans. Their

basic model BMIP uses 0–1 variables (cellSel) for each possible configuration, to

model the integer configuration choice f used in the CP model. This basic model

can be straightforwardly extended to handle compound cells.

Their improved model adds redundant constraints on the column widths to

substantially improve MIP solving times for harder examples. They compute the

minimum width (minW) for each column as the maximum of the minimum widths

of the cells in the column, and the minimum height (minH) for each row analo-

gously. They then compute the set of possible column widths (colWSet) for each

column from those configurations in the column which have at least width minW

and height minH. Note this improvement relies on the fact that there are no column
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spans. While in practice this usually does provide the set of possible widths in any

column-minimal layout, in general the “improved model” is incorrect.

Example 6.3. Consider laying out a 2× 2 table with cell configurations {(1, 3), (3, 1)} for

the top left cell, and {(2, 2)} for the remaining cells, with a width limit of 5. The minimal

height of the first row is 2. The minimal width of the first column is 2. Hence none of

the configurations of the top left cell are both greater than the minimal height and minimal

width. The possible column widths for column 1 are then computed as {2}. The only layout

is then choosing configuration (1, 3) for the top left cell, giving a total height of 5. Choosing

the other configuration leads to a total table height of 4.

We can fix this model by including in the possible column widths the smallest

width configuration for each cell in that column which is less than the minimum

row height. For the example above this means the possible columns widths become

{2, 3}. Bilauca and Healy [2010] give an OPL model of their “improved model”, to

contrast it with the CP model above we give a corresponding corrected Zinc model

MIP.

int: m; % number of rows
int: n; % number of columns
int: W; % maximal width
array[1..m,1..n] of set of tuple(int,int): cf;

array[1..n] of int: minW = [ max(r in 1..m)
(min(t in cf[r,c])(t.1)) | c in 1..n ];

array[1..m] of int: minH = [ max(c in 1..n)
(min(t in cf[r,c])(t.2)) | r in 1..m ];

array[1..n] of set of int: colWset =
[ { t.1 | r in 1..m, t in cf[r,c] where

t.1 >= minW[c] /\ (t.2 >= minH[r] \/
t.1 == min({ u.1 | u in cf[r,c] %FIX

where u.2 < minH[r] })) }
| c in 1..n];

array[1..n] of array[int] of var 0..1: colSel =
[ [ d:_ | d in colWset[c] ] | c in 1..n ];

array[1..n,1..m] of array[int,int] of var 0..1:
cellSel =
array2d(1..n,1..m,[ [ t:_ | t in cf[r,c] ]

| r in 1..m, c in 1..n ]);
array[1..n] of var int: w;
array[1..m] of var int: h;

constraint forall(r in 1..m, c in 1..n)(
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sum(t in cf[r,c])(cellSel[r,c][t]) = 1 /\
sum(t in cf[r,c])(cellSel[r,c][t] * t.1) <= w[c] /\
sum(t in cf[r,c])(cellSel[r,c][t] * t.2) <= h[r]);

constraint forall(c in 1..n)(
sum(d in colWset[c])(colSel[c][d]) = 1 /\
w[c] = sum(d in colWset[c])(colSel[c][d] * d));

constraint sum(c in 1..n)(w[c]) <= W;
solve minimize sum(r in 1..m)(h[r]);

Note that Bilauca and Healy also consider a CP model of the problem, but this

is effectively equivalent to the MIP model because they do not make use of vari-

able array indices (element constraints) that FD solvers support and which allow

stronger propagation than that of the 0–1 encoding.

6.6 Evaluation

We compare different approaches to optimal table layout: the A* algorithm of Sec-

tion 6.2; the two constraint programming models of Section 6.3, namely the basic

CP implementation without learning (CP-W), the model using lazy clause genera-

tion to provide learning (CP) and the cell-free model eliminating separate cell vari-

ables (CPcf ); and BMIP the basic MIP model of Bilauca and Healy [2010], and MIP the

(corrected) improved model of Bilauca and Healy [2010] described in Section 6.5.

For the CP approaches, both CP-W and CPseq use a sequential search that chooses

a cell that has the smallest height configuration remaining of all unfixed cells and

tries to set it to that minimal height. For the lazy clause generation solver CPvsids

and CPcf both use the default activity based search.

The A? algorithm is written in the high-level declarative programming lan-

guage Mercury [Somogyi et al., 1996]. Notes in Section 6.2 give some idea of what

optimizations have or haven’t been applied to the source code of the implementa-

tion shown in these timings.

For the constraint programming approaches we used the CHUFFED lazy clause

generation solver (which can also be run without nogood generation). CHUFFED

is a state-of-the-art CP solver, which scored the most points in all categories of the

2010 MiniZinc Challenge2 which compares CP solvers. Since CHUFFED does not

2http://www.g12.csse.unimelb.edu.au/minizinc/challenge2010/results2010.
html
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currently support Zinc, we created the model using the C++ modelling capabilities

of CHUFFED. The resulting constraints are identical to that shown in the model.

For the MIP approach, we used a script to construct a mixed integer program-

ming model for each table, identical to that created by the Zinc model (and the

(corrected) original OPL model of Bilauca and Healy), which was solved using

CPLEX 12.1.

We first evaluated the various approaches using a large corpus of real-world

tables. This was obtained by collecting more than 10,000 web pages using a web

crawler, extracting non-nested tables (since we have not considered how to han-

dle nested tables efficiently), resulting in over 50,000 tables. To choose the goal

width for each table, we laid out each web page for three viewport widths (760px,

1000px and 1250px) intended to correspond to common window widths. Some of

the resulting table layout problems are trivial to find solutions for; we retained only

those problems that our A? implementation took at least a certain amount of time

to solve. (Thus, the choice may be slightly biased against our A? solver, insofar

as some other solver might find different examples to be hard.) This left 2063 ta-

ble layout problems in the corpus. We split the corpus into web-compound and

web-simple based on whether the table contained compound cells or not.

Table 6.1 shows the results of the different methods on the web-simple exam-

ples. The table shows the number of tables laid out optimally for various time lim-

its up to 10 seconds. Note that the last row indicates the number of instances not

solved within the time-limit. They show that in practice for simple tables all of the

methods are very good, and able to optimally layout almost all tables very quickly.

The worst method is CP-W and the evaluation clearly shows the advantage of

learning for constraint programming. We find, like Bilauca and Healy [2010], that

the improved MIP model MIP while initially slower is more robust than basic model

BMIP. Overall CPcf is the most robust approach never requiring more than 0.1 sec-

ond on any example. However, the performance of the A? method is surprisingly

good given the relative simplicity of the approach in comparison to the sophisti-

cated CPLEX and CHUFFED implementations and the use of Mercury rather than C

or C++.

Table 6.2 shows the results of the different methods on the web-compound ex-

amples. We compare all the previous algorithms except for MIP since it is not ap-
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time (s) CP-W CPseq CPvsids CPcf BMIP MIP A?

≤ 0.01 1018 1183 1097 1264 1009 774 961
≤ 0.10 1064 1267 1217 1271 1160 1076 1162
≤ 1.00 1103 1271 1260 1271 1221 1223 1259
≤ 10.00 1120 1271 1271 1271 1261 1270 1269
> 10.00 151 0 0 0 10 1 2

Table 6.1: Number of instances from the web-simple data-set solved within each
time limit.

time (s) CP-W CPseq CPvsids CPcf BMIP A?

≤ 0.01 708 738 695 749 702 630
≤ 0.10 721 767 760 771 760 751
≤ 1.00 734 775 774 778 787 787
≤ 10.00 742 778 780 782 790 792
> 10.00 50 14 12 10 2 0

Table 6.2: Number of instances from the web-compound data-set solved within
each time limit.

plicable when there are compound cells. The results are somewhat different to the

simple tables. While CPcf is still fastest for the easier tables, all the CP approaches

have difficulty with some of the harder compound tables. The A?method appears

to be the most robust method on these instances. The poor performance of the CP

approaches appears to be due to the large number of symmetric solutions in cases

where the height of a set of rows is dominated by a row-span (or equivalently width

of a set of columns).

Given the relatively similar performance of the approaches on the real-world

tables we decided to “stress-test” the approaches on some harder artificially con-

structed examples. We only used simple tables so that we could compare with MIP.

Table 6.3 shows the results. We created tables of size m × n each with k configu-

rations by taking text from the Gutenberg project edition of The Trial [Kafka, 1925,

2005] k words at a time, and assigning to a cell all the layouts for that k words using

fixed width fonts. For the experiments we used k = 6. We compare different ver-

sions of the layout problem by computing the minimum widthminw of the table as

the sum of the minimal column widths, and the maximal width maxw of the table

as the sum of the column widths resulting when we choose the minimal height for

each row. The squeeze s for table is defines as (W −minw)/maxW . We compare the

table layout for 5 different values of squeeze. Obviously with a squeeze of 0.0 or

1.0 the problem is easy, the interesting cases are in the middle.
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s CPseq CPvsids CPcf BMIP MIP A?

10×10

0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.25 3.29 0.02 0.00 0.16 0.97 0.07
0.50 0.3 0.01 0.00 0.22 0.56 0.04
0.75 0.07 0.02 0.00 0.55 1.18 0.08
1.00 0.00 0.00 0.00 0.01 0.01 0.00

20×20

0.00 0.02 0.01 0.00 0.01 0.04 0.19
0.25 — 0.86 0.05 27.18 28.65 36.15
0.50 — 0.07 0.00 188.27 163.86 10.76
0.75 — 0.28 0.01 43.83 40.07 58.75
1.00 0.02 0.01 0.00 0.04 0.08 0.00

30×30

0.00 0.04 0.03 0.00 0.04 0.07 1.53
0.25 — 254.47 8.07 — 253.08 —
0.50 — 0.38 0.02 — — —
0.75 — 9.4 0.2 — — —
1.00 0.04 0.04 0.00 0.10 0.18 0.01

40×40

0.00 0.09 0.06 0.01 0.07 0.20 3.78
0.25 — — — — — —
0.50 — 1.11 0.02 — — —
0.75 — 216.67 3.4 — — —
1.00 0.09 0.05 0.01 0.19 0.34 0.02

Table 6.3: Results for artificially constructed tables. Times are in seconds.

The harder artificial tables illustrate the advantages of the conflict directed search

of CPvsids and CPcf . On the simple and artificial instances, CPcf is uniformly the

best method, generally 1–2 orders of magnitude faster than CPvsids, and up to 4

orders of magnitude faster than other methods.

The difference in behavior between the real-world and artificial tables may be

due to differences in the table structure. The tables in the web-simple and web-

compound corpora tend to be narrow and tall, with very few configurations per

cell – the widest table has 27 columns, compared with 589 rows, and many cells

have only one configuration. On these tables, the greedy approach of picking the

widest (and shortest) configuration tends to quickly eliminate tall layouts. The arti-

ficial corpus, having more columns and more configurations (but without the sym-

metries of the compound instances), requires significantly more search to prove

optimality; in these cases, the learning and conflict-directed search of CPvsids and

CPcf provides a significant advantage.
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6.7 Conclusion

Treating table layout as a constrained optimization problem allows us to use pow-

erful generic approaches to combinatorial optimization to tackle these problems.

We have given three new techniques for finding a minimal height table layout for

a fixed width: the first uses an A? based approach while the second approach uses

pure constraint programming (CP) and the third uses lazy clause generation, a hy-

brid CP/SAT approach. We have compared these with two MIP models previously

proposed by Bilauca and Healy.

An empirical evaluation against the most challenging of over 50,000 HTML ta-

bles collected from the Web showed that all methods can produce optimal layout

quickly.

The A?-based algorithm is more targeted than the constraint-programming ap-

proaches: while the A? algorithm did well on the web-page-like tables for which

it was designed, we would expect that more generic constraint-programming ap-

proaches would be a safer choice for other types of large tables. This turned out

to be the case for the large artificially constructed tables we tested, where the ap-

proach using lazy clause generation was significantly more effective than the other

approaches; however, the lazy clause generation approach performed poorly in

cases with many overlapping row- or column-spans.

All approaches can be easily extended to handle constraints on table widths

such as enforcing a fixed size or that two columns must have the same width. Han-

dling nested tables, especially in the case cell size depends in a non-trivial way on

the size of tables inside it (for example when floats are involved) is more difficult,

and is something we plan to pursue.
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7
Guillotine-based Text Layout

GUILLOTINE-BASED page layout is a method for document layout, com-

monly used by newspapers and magazines, where each region of the

page either contains a single article, or is recursively split either verti-

cally or horizontally. The newspaper page shown in Figure 7.1(a) is an example

of a guillotine-based layout where Figure 7.1(b) shows the series of cuts used to

construct this layout.

(a) (b)

Figure 7.1: (a) Front page of The Boston Globe, together with (b) the series of cuts
used in laying out the page. Note how the layout uses fixed width columns.
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Surprisingly, there appears to have been relatively little research into algorithms

for automatic guillotine-based document layout. We assume that we are given a

sequence of articles A1, A2, . . . , An to layout. The precise problem depends upon

the page layout model [Hurst et al., 2009].

• The first model is vertical scroll layout in which layout is performed on a

single page of fixed width but unbounded height: this is the standard model

for viewing HTML and most web documents. Here the layout problem is to

find guillotine layout for the articles which minimizes the height for a fixed

width.

• The second model is horizontal scroll layout in which there is a single page

of fixed height but unbounded width. This model is well suited to multicol-

umn layout on electronic media. Here the layout problem is to find guillotine

layout for the articles which minimizes the width for a fixed height.

• The final model is layout for a sequence of articles in fixed height and width

pages. Here the problem is to find a guillotine layout which maximises the

prefix of the sequence of articles A1, A2, . . . , Ak that fit on the (first) page (and

then subsequently for the second, third, . . . page).

We are interested in two variants of these problems. The easier variant is fixed-cut

guillotine layout. Here we are given a guillotining of the page and an assignment

of articles to the rectangular regions on the page. The problem is to determine

how to best layout each article so as to minimize the overall height or width. The

much harder variant is free guillotine layout. In this case we need to determine the

guillotining, article assignment and the layout for each article so as to minimize

overall height or width.

The main contribution of this chapter is to give polynomial-time algorithms for

optimally solving the fixed-cut guillotine layout problem and a dynamic program-

ming based algorithm for optimally solving the free guillotine layout. While our

algorithm for free guillotine layout is exponential (which is probably unavoidable

since the free guillotine layout problem is NP-Hard (see Section 7.1), it can layout

up to 13 articles in a few seconds (up to 18 if the articles must use columns of a

fixed width).
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Our automatic layout algorithms support a novel interaction model for viewing

documents such as newspapers or magazines on electronic media. In this model we

use free guillotine layout to determine the initial layout. We can fine tune this lay-

out using fixed-cut guillotine layout in response to user interaction such as chang-

ing the font size or viewing window size. Using the same choice of guillotining en-

sures the basic relative position of articles remains the same and so the layout does

not change unnecessarily and disorient the reader. An example of this is shown

in Figure 7.2. However, if at some point the choice of guillotining leads to a very

bad layout, such as articles that are too wide or narrow or too much wasted space,

then we can find a new guillotining that is close to the original guillotining, and

re-layout using this new choice.

Guillotine-based constructions have been considered for a variety of document

composition problems. Photo album composition approaches [Atkins, 2008] have

a fixed document size, and must construct an aesthetically pleasing layout while

maintaining the aspect ratio of images to be composed.

A number of heuristics have been developed for automated newspaper compo-

sition [González et al., 1999, Strecker and Hennig, 2009] which also focus on con-

structing layouts for a fixed page-width. The first approach [González et al., 1999]

considers only a single one column configuration per article, and lays out all articles

to minimize height in a fixed number of columns. The second approach [Strecker

and Hennig, 2009] breaks the page into a grid and considers up to 8 configurations

on grid boundaries per article, It focuses on choosing which articles to place in a

fixed page size, using a complex objective based on coverage. Both approaches

make use of local search and do not find optimal solutions.

Hurst [2009] suggested solving the fixed-cut guillotine layout problem by solv-

ing a sequence of one-dimensional minimisation problems to determine a good

layout recursively. This approach was fast but not guaranteed to find an optimal

layout.

A closely related problem to these is the guillotine stock-cutting problem. Given

an initial rectangle, and a (multi-)set S of smaller rectangles with associated values,

the objective is to find a cutting pattern which gives the set S′ ⊆ S with maximum

value. This in some sense a harder form of the third model we discuss above. A

number of exact [Christofides and Whitlock, 1977, Christofides and Hadjiconstanti-
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nou, 1995] and heuristic [Alvarez-Valdés et al., 2002] methods have been proposed

for the guillotine stock-cutting problem. This differs from the guillotine layout

problem in that each leaf region has a single configuration, rather than a (possi-

bly large sized) disjoint set of possible configurations. It does not appear that these

approaches scale to the size of problem we consider.

The remainder of this chapter is structured as follows. In Section 7.1, we give

a formal definition of the guillotine layout problem. Then, in Section 7.2 we give

bottom-up and top-down algorithms for solving the fixed guillotine layout prob-

lem, and in Section 7.3 for the free guillotine layout problem. In Section 7.4 we

describe an algorithm for updating layouts. In Section 7.5 we present an experi-

mental evaluation of the described algorithms, and in Section 7.6 we conclude.

7.1 Problem Statement

In the rest of the chapter will focus on finding a guillotine layout which minimizes

the height for a fixed width. It is straightforward to modify our algorithms to find

a guillotine layout which minimizes the width for a fixed height: we simply swap

height and widths in the input to the algorithms.

We can also use algorithms for minimising height to find a guillotine layout

maximising the number of articles in a fixed size page. For a particular subsequence

A1, .., Ak we can use the algorithm to compute the minimum height hk for laying

them out in the page width. We simply perform a linear or binary search to find

the maximum k for which hk is less than the fixed page height. We can use the area

of the articles’ content to provide an initial upper bound on k.

The main decision in the fixed-cut guillotine layout is how to break the lines

of text in each article. Different choices give rise to different width/height con-

figurations. Each article has a number of minimal configurations where a minimal

configuration is a pair (w, h) such that the content in the article can be laid out in a

rectangle with width w and height h but there is no smaller rectangle for which this

is true. That is, for all w′ ≤ w and h′ ≤ h either h = h′ and w = w′, or the content

does not fit in a rectangle with width w′ and height h′.

Typically we would like the article to be laid out with multiple columns. One

way of doing this is to allow the configuration to take any width and to compute the
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number of columns and their width based on the width of the configuration. We

call this article dependent column layout. In this case for text with uniform height

with W words (or more exactly, W − 1 possible line breaks), there are up to W

minimal configurations, each of which has a different number of lines. In the case of

non-uniform height text, there can be no more thanO(W 2) minimal configurations.

The other way of computing the columns is to compute the width and number

of columns based on the page width and then each article is laid out in a configura-

tion of one, two, three etc column widths. This is, for instance, the approach used

in Figure 7.1. We call this page dependent column layout. In this case the number of

different configurations is much less and is simply the number of columns on the

page.

We assume the minimal configurations for an article A are given as a discrete

list of allowed configurations C(A) = [ (w0, h0), . . . , (wk, hk) ], ordered by increas-

ing width (and decreasing height). In the algorithms described in the following

sections, we refer to the ith entry of an ordered list L with L[i] (adopting the con-

vention that indices start at 0), and concatenate lists with ++. For a configuration c,

we use w(c) to indicate the width, and h(c) for the height. Note that we can choose

to exclude configurations that are too narrow or too wide.

A guillotine cut is represented by a tree of cuts, where each node has a given

height/width configuration. A leaf node CELL(A) in the tree holds an article A.

An internal node is either: VERT(X,Y ), where X and Y are its child nodes, repre-

senting a vertical split with articles in X to the left and articles in Y to the right; or

HORIZ(X,Y ), representing a horizontal split with articles in X above and articles

in Y below. Given a chosen configuration for each leaf node we can determine the

configuration of each internal nodes as follows:

If c(X) = (wx, hx) is the chosen configuration for X and c(Y ) = (wy, hy) is the

chosen configuration for Y , then define

vert((wx, hx), (wy, hy)) = (wx + wy,max(hx, hy))

horiz((wx, hx), (wy, hy)) = (max(wx, wy), hx + hy)
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and let

c(VERT(X,Y )) = vert(c(X), c(Y ))

c(HORIZ(X,Y )) = horiz(c(X), c(Y )).

The fixed-cut guillotine layout problem for fixed width w is given a fixed tree T ,

determine the configuration of leaf nodes (and internal nodes) such that c(T ) =

(wr, hr) where wr < w and hr is minimized.

The free guillotine layout problem for fixed width w is given a set of articles S

determine the guillotine cut T for S and configurations of leaf nodes (and internal

nodes) such that c(T ) = (wr, hr) where wr < w and hr is minimized.

We note that the free guillotine layout problem is NP-hard.

Theorem 1. The decision problem for FREE-GUILLOTINE is NP-complete

Proof. Consider an instance 〈{n1, . . . , nk}, d〉 of BIN-PACKING [Garey and Johnson,

1979]. We construct a free guillotine layout instance withw = d, and leavesL1 . . . Ln

with configurations C(Lk) = {(nk, 1)}.

Assume there is a solution to this guillotine instance with height h. Compute

the y-coordinate of each leaf node. For each node Lj at y-coordinate i, we allocate

nj to bin i. As leaves cannot overlap, the sum of leaf widths for a given y-value is

at most d; therefore, this constructs a valid bin-packing solution with h bins.

Assume there is a bin-packing solution {{n1,1, n1,2, . . .}, . . . , {nh,1, nh,2, . . .}}.
We can construct a guillotine layout with tree:

horiz(vert(L1,1, vert(L1,2, . . .)),horiz(. . . , vert(Lh,1, vert(Lh,2, . . .))))

Each horizontal layer has width at most d, and there are exactly h layers. Therefore

the instance of BIN-PACKING has a solution with h bins iff the instance of FREE-

GUILLOTINE has a solution of height h. As BIN-PACKING is strongly NP-complete,

FREE-GUILLOTINE layout must also be strongly NP-hard. Given a fixed tree of cuts

and (w, h) for each leaf, we can check that the layout is valid and has height at

most h by making a linear walk through the tree; therefore, FREE-GUILLOTINE is

in NP. As FREE-GUILLOTINE is in NP, and is NP-hard, FREE-GUILLOTINE is NP-

complete.
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(a) (b)

Figure 7.2: Example of (a) a possible guillotine layout, and (b) the same layout
adapted to a narrower display width.

7.2 Fixed-cut Guillotine Layout

We will first look at solving the fixed-cut guillotine layout problem. This is a re-

stricted form of guillotine layout, where the tree of cuts is specified, and the algo-

rithm must pick a configuration for each article which leads to the minimum height

layout. Fixed-cut guillotine layout is useful in circumstances such as online news-

papers, where the layout should remain consistent, but must adapt to changes in

display area. An example of this is given in Figure 7.2. It might also be useful in

semi-automatic document authoring tools that support guillotine layout.

7.2.1 Bottom-up construction

Dynamic programming is a natural approach to tackle minimum height guillotine

layout problems since each sub problem of the guillotine layout is again a (smaller)

minimum height guillotine layout problem. The only real choices that arise in

fixed-cut layout are where to place the vertical split between X and Y in a ver-

tical cut VERT(X,Y ) in order to obtain the minimal height. Rather than searching

for a best vertical cut, we solve this problem in the bottom-up construction by com-

puting the list of minimal configurations, C(X) for each subtree X of T .

Consider a node VERT(X,Y ), where C(X) is the list of minimal configurations

for X and C(Y ) is the list of minimal configurations for Y . To construct the list of

minimal configurations for VERT(X,Y ) we iterate across the configurations C(X)

and C(Y ). Given a minimal configuration vert(C(X)[i], C(Y )[j]), we can find the

next next minimal configuration that is wider (and shorter). If C(X)[i] is taller than
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join vert(CX ,CY ,w)
C := ∅
i := 0
j := 0
while (i ≤ |CX| ∧ j ≤ |CY |)

(wx, hx) := CX[i]
(wy, hy) := CY [j]
if(wx + wy > w) break
C := C ++[ vert(CX[i], CY [j]) ]
if(hx > hy) i := i+ 1
else if(hx < hy) j := j + 1
else
i := i+ 1
j := j + 1

return C

Figure 7.3: Algorithm for constructing minimal configurations for a vertical split
from minimal configurations for the child nodes.

X

Y

Z

V0

H1

X Y

Z

Figure 7.4: Cut-tree for Example 7.1.

C(Y )[j], we can only construct a shorter configuration by picking a shorter con-

figuration for X . In fact, since any narrower configuration for Y will be strictly

taller than C(X)[i] (otherwise vert(C(X)[i], C(Y )[j]) would not be minimal), and

any shorter configuration will be strictly wider, the next minimal configuration is

exactly vert(C(X)[i+1], C(Y )[j]). We can use similar reasoning for the cases where

C(X)[i] is shorter thanC(Y )[j]. Since VERT(C(X)[0], C(Y )[0]) is the narrowest min-

imal configuration, we can construct all minimal configurations by performing a

linear scan over C(X) and C(Y ). Pseudo-code for this is given in Figure 7.3.

Example 7.1. Consider a problem with 3 articles {X,Y, Z} having configurationsC(X) =

C(Y ) = [ (1, 2), (2, 1) ], C(Z) = [ (1, 3), (2, 2), (3, 1) ], and the tree of cuts shown in Fig-

ure 7.4.

Consider finding the optimal layout for w = 3. First we must construct the minimal

configurations for the node marked H1. We start by picking the narrowest configurations

for X and Y , giving C(H1) = [ (1, 4) ]. We then need to select the next narrowest con-
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A

B

(a)

A

B

(b)

Figure 7.5: (a) In this case, the initial configurations of A and B do not form a
minimal configuration. (b) Even though A has no further configurations, we can
construct additional minimal configurations by picking a shorter configuration for
B.

figuration from either X or Y . Since both have the same width, we then join both (2, 1)

configurations, to give C(H1) = [ (1, 4), (2, 2) ].

We then construct the configurations for V0. We again select the narrowest config-

urations, C(H1)[0] and C(Z)[0], giving C(V0) = [ (2, 4) ]. Since C(H1)[0] is taller,

we select the next configuration from H1. Combining C(H1)[1] with C(Z)[0] gives us

C(V0) = [ (2, 4), (3, 3) ]. Since w = 3, we can terminate at this point, giving (3, 3) as the

minimal configuration. If w were instead 4, we would combine C(H1)[1] with C(Z)[1],

giving the new configuration (4, 2). 2

Constructing the minimal configurations for HORIZ(X,Y ) is exactly the dual

of the vertical case. From a minimal configuration constructed from C(X)[i] and

C(Y )[j], we can construct a new minimal configuration by picking the narrow-

est of C(X)[i + 1] and C(Y )[j + 1]. The only additional complexity is that (a)

HORIZ(C(X)[0], C(Y )[0]) is not guaranteed to be a minimal configuration, and (b)

we must keep producing configurations until both children have no more succes-

sors, rather than just one. These cases are illustrated in Figure 7.5. Pseudo-code for

this is given in Figure 7.6, and the overall algorithm is in Figure 7.7.

Consider a cut VERT(X,Y ) with children X and Y . Given C(X) and C(Y ), the

algorithm described in Figures 7.3 to 7.7 computes the configurations forC(VERT(X,Y ))

in O(|C(X)|+ |C(Y )|), yielding at most |C(X)|+ |C(Y )| configurations (and simi-

larly for HORIZ(X,Y )). Given a set of leaf nodes S, we construct at most
∑

A∈S |C(A)|
configurations at any node. As we perform this step |S|−1 times, this gives a worst-

case time complexity of O(|S|∑A∈S |C(A)|) for the bottom-up construction.

An advantage of the bottom-up construction method is that, if we record the

lists of constructed configurations, we can update the layout for a new width in
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join horiz(CX ,CY ,w)
C := ∅
minW := max(w(CX[0]),w(CY [0]))
i := arg maxi′ w(CX[i′]) s.t. w(CX[i′]) ≤ minW
j := arg maxj′ w(CY [j′]) s.t. w(CY [j′]) ≤ minW
while (i ≤ |CX| ∨ j ≤ |CY |)
C := C ++[ horiz(CX[i], CY [j]) ]
(wx, hx) := CX[i+ 1]
(wy, hy) := CY [j + 1]
if(j + 1 = |CY | ∨ wx > wy) i := i+ 1
else if(i+ 1 = |CX| ∨ wx < wy) j := j + 1
else
i := i+ 1
j := j + 1

return C

Figure 7.6: Algorithm for producing minimal configurations for a horizontal split
from child configurations. While the maximum width is included as an argument
for consistency, we don’t need to test any of the generated configurations, since the
width of the node is bounded by the width of the input configurations.

fixguil BU(T ,w)
switch (T )

case CELL(A):
return C(A)

case VERT(T1, T2):
return join vert(fixguil BU(T1, w),

fixguil BU(T2, w), w))
case HORIZ(T1, T2):

return join horiz(fixguil BU(T1, w),
fixguil BU(T2, w), w))

Figure 7.7: Algorithm for constructing the list of minimal configurations for a fixed
set of cuts.
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O(log |C| + |T |) time by performing a binary search on configurations of the root

node using the new width, then follow the tree of child configurations (or O(|T |)
time if we use O(w) space to construct a lookup table).

7.2.2 Top-down dynamic programming

We also consider a top-down dynamic programming approach, where subprob-

lems are expanded only when required for computing the optimal solution. Con-

sider a subproblem layout(HORIZ(X , Y ), w). Using a top-down method, we need

only to calculate subproblems layout(X , w) and layout(Y ,w), rather than all config-

urations for the current node. The difficulty is in the case of vertical cuts, as we

cannot determine directly how much of the available width should be allocated to

X or Y . As such, we must compute layout(X , w′) and layout(Y , w − w′) for the set

of possible cut positions w′.

A top down dynamic programming solution is almost a direct statement of the

Bellman equations as a functional program, with caching to avoid repeated com-

putation. The main difficulty is the requirement to examine every possible width

when determining the best vertical split. Psuedo-code is given in Figure 7.8, where

lookup(T,w) looks in the cache to see if there is an entry (T,w) 7→ c and returns c if

so, or NOTFOUND if not; and cache(T,w, c) adds an entry (T,w) 7→ c to the cache.

This algorithm is outlined in Figure 7.8. Note that for simplicity we ignore the

case where there is no layout of tree T with width ≤ w. This can be easily avoided

by adding an artificial configuration (0,∞) to the start of the list of configurations

for each article A.

While the algorithm finds the optimal solutions quite quickly for fixed trees,

there are a number of improvements to this basic algorithm which will also be

useful for the free layout problem (Section 7.3).

Restricting vertical split positions

The algorithm given in Figure 7.8, on a vertical split, must iterate over all possi-

ble values of w′ to find the optimal cut position. Let wTmin indicate the narrowest

possible configuration for T . Since we are only interested in feasible layouts, for

a node VERT(T1, T2) we need only consider cut positions in [wT1min, w − wT2min]. We
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fixguil TD(T ,w)
c := lookup(T ,w)
if c 6= NOTFOUND return c
switch (T )

case CELL(A):
c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w

case HORIZ(T1, T2):
c := horiz(fixguil TD(T1, w), fixguil TD(T2, w))

case VERT(T1, T2):
c := (0,∞)
for w′ = 0..w
c′ := vert(fixguil TD(T1, w

′), fixguil TD(T2, w − w′))
if (h(c′) < h(c)) c := c′

cache(T ,w,c)
return c

Figure 7.8: Pseudo-code for the basic top-down dynamic programming approach,
returning the minimal height configuration c = (wr, hr) for tree T such thatwr ≤ w.

low high

A
B

w′

(a)

low high

A
B

(b)

low high

A
B

(c)

Figure 7.9: Illustration of using a binary chop to improve search for the optimal
cut position. If hw

′
A > hw−w

′

B as shown in (a), we cannot improve the solution by
moving the cut to the left. Hence we can update (b) low = w′. Since B will retain
the same configuration until the cut position exceeds w − ww−w

′

B , we can (c) set
low = w − ww−w′

B .

low high

A
B

w′

(a)

low high

A B

ww′

A
w′

(b)

low high

A B

(c)

Figure 7.10: If the optimal layout for fixguil TD(A, w′) has width smaller than w′,
then we may lay out B in all the available space, using w−ww′

A , rather than w−w′.
If B is still taller than A, we know the cut must be moved to the left of ww

′
A to find

a better solution.
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can improve this by using a binary cut to eliminate regions that cannot contain the

optimal solution, keeping track of the range low..high where the optimal cut is.

Consider the cut shown in Figure 7.9(a). Let hw
′

A = fixguil TD(A,w′) and hw−w
′

B =

fixguil TD(B,w − w′). In this case, hw
′

A > hw−w
′

B . As the resulting configuration

has height max(hw
′

A , h
w−w′

B ), the only way we can reduce the overall height is by

adopting a shorter configuration for A – by moving w′ further to the right. Nor-

mally we would set low = w′ as shown in Figure 7.9(b). In fact, we can move

low to max(w′, w−ww−w′

B ) as shown in Figure 7.9(c), since moving w′ right cannot

increase the overall height until B shifts to a narrower configuration.

We can improve this further by observing that, if configurations are sparse, we

may end up trying multiple cuts corresponding to the same configuration. If we

construct a layout for A with cut position w′, but A does not fill all the available

space (so ww
′

A < w′), we can use that additional space to lay out B. If B is still taller

than A (as shown in Figure 7.10), we know that the cut can be shifted to the left of

ww
′

A , rather than just w′.

The case for VERT(T1, T2) in Figure 7.8 can then be replaced with the following:
c := (0,∞)

low := wT1
min

high := w − wT2
min

while (low ≤ high)

w′ :=
⌊
low+high

2

⌋
c1 := fixguil TD(T1,w′)

c2 := fixguil TD(T2,w − w(c1))

c′ := vert(c1, c2)

if (h(c′) < h(c)) c := c′

if (h(c1) ≤ h(c2)) high := w(c1)− 1

if (h(c1) ≥ h(c2)) low := max(w′ + 1, w − w(c2))

Example 7.2. Consider again the problem described in Example 7.1. The root node is a

vertical cut, so we must pick a cut position. Since wH1
min = wZmin = 1, the cut must be in

the range [1, 2].

We choose the initial cut as w′ = 1. The sequence of calls made is as follows:

f(V0, 3)

w′ = 1
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f(H1, 1)

f(X, 1)

→ (1, 2)

f(Y, 1)

→ (1, 2)

→ (1, 4)

f(Z, 2)

→ (2, 2)

→ (3, 4)

The best solution found so far is (3, 4). Since the height of H1 is greater than the height of

Z, we know an improved solution can only be to the right of the current cut. We update

low := 2, and continue:

w′ = 2

f(H1, 2)

f(X, 2)

→ (2, 1)

f(Y, 2)

→ (2, 1)

→ (2, 2)

f(Z, 1)

→ (1, 3)

→ (3, 3)

→ (3, 3)

Finding the optimal solution at w′ = 2, giving configuration (3, 3). 2

7.3 Free Guillotine Layout

In this section we consider the more difficult problem of free guillotine layout.

Given a set of leaves (say, newspaper articles), we want to construct the optimal

tree of cuts such that all leaves are used, and the overall height is minimized. Both

the top-down and bottom-up construction methods given in the last section for

fixed-cut guillotine layout can be readily adapted to solving the free layout prob-

lem.
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The structure of the bottom-up algorithm remains largely the same. To compute

the minimal configurations for a set S′, we try all binary partitionings of S′ into

S′′ and S′ \ S′′. We then generate the configurations for VERT(S′ \ S′′, S′′) and

HORIZ(S′ \ S′′, S′′) as for the fixed problem. However, we must then eliminate

any non-minimal configurations that have been generated. This is done by merge,

which merges two sets of minimal configurations. Pseudo-code for this process is

given in Figure 7.11. As we need to generate all configurations for all 2|S| subsets

of S, we construct the results for subsets in order of increasing size.

For the top-down method, at each node we want to find the optimal layout for

a given set S and width w. To construct the solution, we try all binary partitions

of S. Consider a partitioning into sets S′ and S′′. As there are a large number of

symmetric partitionings, we enforce that the minimal element of S must be in S′.

We then try laying out both VERT(S′, S′′) and HORIZ(S′, S′′), picking the best result.

Pseudo-code for the top-down dynamic programming approach is given in Fig-

ure 7.12. The structure of the algorithm is very similar to that for the fixed layout

problem, except it now includes additional branching to choose binary partitions

of S and try both cut directions. As before, wSmin indicates the narrowest feasible

width for laying out S. This is calculated by taking the the widest minimum con-

figuration width for any node in S.

7.3.1 Bounding

The dynamic program as formulated has a very large search space. We would like

to reduce this by avoiding exploring branches containing strictly inferior solutions.

We can improve this if we can calculate a lower bounds lb(S,w) on the height of any

configuration for S in width w. If hmax is the best height so far and lb(S,w) ≥ hmax,

we know the current state cannot be part of any improved optimal solution, so we

can simply cut-off search early with the current bound. This is a form of bounded

dynamic programming [Puchinger and Stuckey, 2008].

For the minimum-height guillotine layout problem, we compute the minimum

area used by some configuration of each leaf. This allows us to determine a lower

bound on the area required for laying out the set of articles S. Since any valid

layout must occupy at least area(S), a layout with a fixed width of w will have a

height of at least
⌈
area(S)
w

⌉
.
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freeguil BU(S,w)
for(c ∈ {2, . . . , |S|})

for(S′ ⊆ S, |S′| = c)
C(S) := ∅
e := min i ∈ S′
for(S′′ ⊂ S′ \ {e})
C(S′) := merge(C(S′),

join horiz(C(S′ \ S′′), C(S′′), w))
C(S′) := merge(C(S′),

join vert(C(S′ \ S′′), C(S′′), w))
return C(S)[|C(S)| − 1]

merge(CX , CY )
C := []
i := 0
j := 0
while (i ≤ |CX| ∧ j ≤ |CY |)

(wx, hx) := CX[i]
(wy, hy) := CY [j]
if(wx < wy)

if(hx > hy)
C := C ++[ CX[i] ]
i := i+ 1

else j := j + 1
else if(wx > wy)

if(hx < hy)
C := C ++[ CY [j] ]
j := j + 1

else i := i+ 1
else % wx = wy

if(hx ≤ hy) j := j + 1
else i := i+ 1

while (i ≤ |CX|)
C := C ++[ CX[i] ]
i := i+ 1

while (j ≤ |CY |)
C := C ++[ CY [j] ]
j := j + 1

return C

Figure 7.11: Pseudo-code for a bottom-up construction approach for the free
guillotine-layout problem for articles S. The configurations C(S′) for S′ ⊆ S are
constructed from those of C(S′\S′′) and C(S′′) where S′\S′′ and S′′ are non empty
and the first set is lexicographically smaller than the second.
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freeguil TD(S,w)
c := lookup(S,w)
if c 6= NOTFOUND return c
if (S = {A})
c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w

else
e := min(S)
c := (0,∞)
for S′ ⊂ S \ {e}
L := {e} ∪ S′
R := S \ L
% Try a horizontal split
c′ := horiz(freeguil TD(L,w), freeguil TD(R,w))
if(h(c′) ≤ h(c)) c := c′

% Find the optimal vertical split
low := wL

min

high := w − wR
min

while(low ≤ high)
w′ :=

⌊
low+high

2

⌋
cl := freeguil TD(L,w′)
cr = freeguil TD(R,w − w(cl))
c′ := vert(cl, cr)
if(h(c′) ≤ h(c)) c := c′

if(h(cl) ≤ h(cr)) high := w(cl)− 1
if(h(cl) ≥ h(cr))
low := max(w′ + 1, w − w(cr))

cache(S,w,c)
return c

Figure 7.12: Basic top-down dynamic programming for the free guillotine layout
problem.
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We can also use the area approximation to reduce the set of vertical splits that

must be explored. If we have a current best height hmax, any cut for VERT(X,Y )

where w′ ≤
⌈
area(X)
hmax

⌉
or w′ ≥ w −

⌈
area(Y )
hmax

⌉
cannot give an improved solution.

Pseudo-code for the bounded dynamic programming approach is given in Fig-

ure 7.13. Note that configurations are now given as a triple (wi, hi, ei), where

ei ∈ {true, false} indicates whether the configuration is exact (ei = true), or a lower

bound (ei = false). We use e(c) to extract the third component of a configuration.

The algorithm is structured similarly to the previous top-down algorithm given in

Figure 7.12; but whenever we select a new partitioning or cut, we first use the area

approximation to test if the selected subproblem could produce an improved solu-

tion. If the current subproblem requires more area than is available, we terminate

immediately. For the horizontal cut at (1), we adjust the maximum height for L ac-

cording to the minimum height forR (since, if hL+hR ≤ hmax then hL ≤ hmax−hR).

We apply similar reasoning at (2) to check if a vertical cut is feasible. At (3), we es-

tablish bounds on the vertical cut positions as described above. Note that, at (4), if

the left subproblem exceeds the available height, we don’t compute the optimum

for the right subproblem, and take the area approximation instead. A final opti-

mization is to note that if we find a configuration c which has height equal to the

lower bound
(

h(c) =
⌈
area(S)
w

⌉)
we can immediately return this solution.

7.4 Updating Layouts

In the interaction model proposed in the introduction, we suggested using a fixed-

cut layout to re-layout an article during user interaction, until the current fixed-cut

leads to a very bad layout. A layout can be considered bad for two reasons. The

first reason is that current choice of guillotining does not allow a layout for the

desired width while a different choice of guillotining will. The second reason is

that the choice of guillotine leads to a non-compact layout and so to a page height

that is unnecessarily large. In the case that the current fixed-cut leads to bad layout

we wish to modify the guillotining to give a layout close to the current layout.

First, we must determine how bad a layout can be before we re-layout the doc-

ument.
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freeguil bTD(S,w,hmax)
c := lookup(S,w)
if(c 6= NOTFOUND)

if(e(c) ∨ h(c) ≥ hmax) return c
% If the bound is greater than
% hmax, we can stop early
if (
⌈
area(S)

w

⌉
≥ hmax) c := (w,

⌈
area(S)

w

⌉
, false)

if (S = {A})
i := maximal i′ s.t. w(C(A)[i′]) ≤ w
c := (w(c′),h(c′),h(c′) ≤ hmax) where c′ = C(A)[i]

else
e := min(S)
c := (0,∞)
for S′ ⊂ S \ {e}
L := {e} ∪ S′
R := S \ L
Al := area(L)
Ar := area(R)
% Try a horizontal split (1)
cl := freeguil bTD(L,w, hmax −

⌈
Ar

w

⌉
)

cr := freeguil bTD(R,w, hmax − h(cl))
if(h(cl) + h(cr) ≤ h(c))
c := (max(w(cl),w(cr)),h(cl) + h(cr),e(cl) ∧ e(cr))

if(h(c) =
⌈
area(S)

w

⌉
) break

% Ensure a vertical split is feasible (2)
if(wL

min + wR
min > w) continue

hvertmin := max(
⌈

Al

w−wR
min

⌉
,
⌈

Ar

w−wL
min

⌉
)

if(hvertmin > hmax)
if (hvertmin < hc) c := (w, hvertmin, false)
continue

% Find the optimal vertical split (3)
low := max(wL

min,
⌈

Al

hmax

⌉
)

high := w −max(wR
min,

⌈
Ar

hmax

⌉
) + 1

while(low < high)
w′ :=

⌊
low+high

2

⌋
cl := freeguil bTD(L,w′, hmax)
if(h(cl) ≥ hmax) (4)
cr := (w − w(cl),

⌈
Ar

w−w(cl)

⌉
, false)

else
cr := freeguil bTD(R,w − w(cl), hmax)

if(max(h(cl),h(cr)) ≤ h(c))
c := (w(cl) + w(cr),max(h(cl),h(cr)),e(cl) ∧ e(cr))
if(h(c) ≤ hmax) hmax := h(c)

if(h(cl) ≤ h(cr)) high := h(cl)− 1
if(h(cl) ≥ h(cr)) low := max(w′ + 1, w − w(cr))

if(h(c) =
⌈
area(S)

w

⌉
) break for

cache(S,w,c)
return c

Figure 7.13: Pseudo-code for the bounded top-down dynamic programming ap-
proach. Note that while bounding generally reduces search, if a previously ex-
panded state is called again with a more relaxed bound, we may end up partially
expanding a state multiple times.
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CHAPTER 7. GUILLOTINE-BASED TEXT LAYOUT

Given a set of articles S, we can precompute the optimal layout for a set of given

widthsW using freeguil BU or freeguil TD. We can then build a piecewise lin-

ear approximation approx height(S,w) to the minimal height for free layout of S for

width w for all possible widths. However, as illustrated in Figure 7.15, the optimal

layout is generally very close to the area bound for the documents we have been

considering. As such, we can use the simpler approximation approx height(S,w) =⌈
area(S)
w

⌉
. We use this function to determine when to change guillotine cuts dur-

ing user interaction. Assume the current layout of S is T , then if layout(T,w) >

α × approx height(S,w) we know that the fixed-cut is giving poor layout. We use

α = 1.1.

When we are generating a new guillotine cut for S, we want to ensure that the

new layout is “close” to the current cut T . Our approach is to try and change the

guillotining only at the bottom of the current cut T . Define the tree height of a tree

T as follows:

theight(CELL(A)) = 0

theight(VERT(T1, T2)) = max(theight(T1), theight(T1)) + 1

theight(HORIZ(T1, T2)) = max(theight(T1), theight(T1)) + 1

We first try to modify only subtrees with tree height 1 (that is parents of leaf nodes).

If that fails to improve the current layout enough we modify subtrees of tree height

2, etc. Psuedo-code for the interactive layout problem is given in Figure 7.14.

7.5 Experimental Results

To evaluate the methods described in Sections 7.2 to 7.3, we required a set of docu-

ments suitable for guillotine layout. To construct this data-set, we randomly select

a set of n of articles from the REUTERS-21578 news corpus [reu], then use a modi-

fied version of the binary search described in Hurst et al. [2006b] to determine the

set of available configurations for each article. All times are given in seconds, and

all experiments are run with a time limit of 600 seconds. Times given are averages

over 10 instances of each problem size.
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interact(T ,w)
c := layout(T ,w)
S := articles in T
k := 1
while(h(c) > α× approx height(S,w))
c := relayout(T ,w,k)
k := k + 1

return c

relayout(T ,w,k)
c := lookup(T ,w)
if(c 6= NOTFOUND) return c
if(theight(T ) ≤ k)
S := set of articles appearing in T
return freeguil TD(S,w)

switch (T )
case CELL(A):
c := C(A)[i] where i is maximal s.t. w(C(A)[i]) ≤ w

case HORIZ(T1, T2):
c := horiz(relayout(T1, w, k), relayout(T2, w, k))

case VERT(T1, T2):
c := (0,∞)
for(w′ = 0..w)
c′ := vert(relayout(T1, w′, k), relayout(T2, w − w′, k))
if (h(c′) < h(c)) c := c′

cache(T ,w,c)
return c

Figure 7.14: Pseudo-code for the basic top-down dynamic programming re-layout,
where we can change configuration for subtrees with tree height less than or equal
to k.
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n td td+b bu
10 0.00 0.00 0.00
20 0.00 0.00 0.00
30 0.02 0.01 0.00
40 0.03 0.02 0.00
50 0.06 0.05 0.00
60 0.13 0.10 0.00
70 0.18 0.14 0.00
80 0.29 0.22 0.00
90 0.41 0.33 0.00

(a)

n td td+b bu
10 0.00 0.00 0.00
20 0.00 0.00 0.00
30 0.01 0.00 0.00
40 0.01 0.00 0.00
50 0.02 0.01 0.00
60 0.03 0.01 0.00
70 0.03 0.01 0.00
80 0.04 0.01 0.00
90 0.05 0.02 0.00

(b)

Table 7.1: Results for the fixed-cut minimum-height guillotine layout problem with
(a) w = wmin + 0.1(wmax − wmin), and (b) w = wmin + 300.

For convenience in generating the dataset, we assume the use of a fixed-width

font. While A-series page sizes have a 1 :
√

2 aspect ratio, fixed-width fonts fit

approximately equal number of lines as characters per line.

All experiments were conducted on a 3.00Ghz Core2 Duo with 2 GB of RAM

running Ubuntu GNU/Linux 8.10. td denotes the top-down dynamic program-

ming approach, and td+b is top-down dynamic programming with bounding. bu

denotes bottom-up construction.

7.5.1 Fixed-Cut Layout

Instances for fixed-cut guillotine layout were constructed with a random tree of

cuts, selecting horizontal and vertical cuts with equal probability. Initially, we se-

lected the instance width as a linear combination of the minimum and maximum

width configurations for the instance. Results given in Table 7.1(a) are constructed

with w = wmin + 0.1(wmax − wmin), where wmin is the overall width when every

article takes the narrowest feasible configuration (and similarly for wmax). Clearly,

the top-down methods degrade quite rapidly compared to the bottom-up method.

This appears to be due more to the rapidly increasing width than the increasing

number of articles; the instances with 90 articles are laid out on a page that is 3000

to 5000 characters wide. This is illustrated in Table 7.1(b), where we calculated

w = wmin + 300. Although the top-down methods are still distinctly slower than

the bottom-up approach, they now scale far more gracefully.
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n td td+b bu
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 0.01 0.00 0.00
7 0.03 0.00 0.01
8 0.12 0.01 0.04
9 0.42 0.03 0.15
10 1.62 0.11 0.50
11 5.81 0.41 1.64
12 22.33 1.50 5.02
13 106.46 6.09 17.51
14 413.63 24.43 53.11
15 — 74.84 143.83

Table 7.2: Results for the free minimum-height guillotine layout problem. Times
(in seconds) are averages of 10 randomly generated instances with n articles.

7.5.2 Free Layout

For the free layout problem, we constructed instances for each size between 4 and

15. The instance width was selected as
⌈√

(1 + α)area(S)
⌉

, to approximate a lay-

out on an A-series style page with α additional space. For these experiments, we

selected α = 0.2. Times given in Table 7.2 denote the average time for solving the

10 instances of the indicated size.

As before, td performs significantly worse than the other methods. Unlike the

fixed layout problem, these instances have much narrower page widths, and the

search space arises largely from the selection of binary partitions. As a result,

bounding provides a substantial improvement – td+b is consistently around twice

as fast as bu on these instances.

In this first experiment we did not use column-based layout. However, in prac-

tice column-based layout is preferable so as to avoid long text measures. We gen-

erated test data for page dependent column-based layouts in a similar manner to

the other guillotine layouts; having selected a column width, we calculate the num-

ber of lines required for the article body, and use this to determine the dimensions

given a varying number of columns. This is combined with the layout for the article

title (calculated as before).

We select a column width of 38 characters, chosen as being typical of print news-

papers. Page width is selected as before, then rounded up to the nearest number of

columns. Results for this dataset are given in Table 7.3. The results for this case dif-
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n td td+b bu
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 0.00 0.00 0.00
7 0.00 0.00 0.00
8 0.00 0.00 0.00
9 0.01 0.00 0.01
10 0.04 0.00 0.05
11 0.12 0.00 0.16
12 0.39 0.01 0.47
13 1.23 0.04 1.53
14 3.85 0.10 4.38
15 13.10 0.37 15.50
16 41.65 0.50 48.32
17 168.19 1.17 157.96
18 590.76 3.80 442.19

Table 7.3: Results for the free minimum-height guillotine layout problem using
page dependent column-based layout. Times (in seconds) are averages of 10 ran-
domly generated instances with n articles.

fer substantially from those for the non column-based instances – since the number

of possible vertical cuts is much smaller (even the large instances generally have

only 4 columns) fewer subproblems need to be expanded at each node during the

execution of the dynamic programming approaches. In this case, td slightly outper-

forms bu on small instances, but degrades more rapidly; td+b is considerably faster

than either method.

7.5.3 Updating Layouts

In practice, for non page dependent column-based layouts, a fixed optimal cutting

remains near-optimal over a wide range of width values. To illustrate this, we took

a document with 13 articles from the set used in Section 7.5, and computed the

optimal cutting for w = 200. Figure 7.15 shows the height given by laying out this

fixed cutting using layout with widths between 40 and 200. We compare this with

the height given by the area bound and the optimal layout for each width. While

the fixed layout is quite close to the optimal height over a wide range of values, it

begins to deviate as we decrease the viewport width. For widths 40 and 50, this

fixed layout is infeasible, and we are forced to compute a new tree of cuts.
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Figure 7.15: Layout heights for a 13-article document used in Section 7.5. LB is
the lower bound at the given width, and OPT is the minimum height given by
freeguil bTD. For FIX, we computed the optimal layout for w = 200, and adjusted
the layout to the desired with using layout.
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To test the performance of the re-layout algorithm, we consider again the set of

13-article documents used in the previous experiment. We computed the optimal

layout for page widths between 40 and 200 characters, in 5 character intervals. We

compared this with adapting the fixed layout computed for w = 40, and progres-

sively used relayout at each width. relayout was implemented with the bounded

top-down methods for both the fixed and free components.

The average runtime for freeguil bTD over the varying documents and widths

was 7.48s. Runtime for layout was less than 0.01s in all cases, but deviated from

the minimal height by up to 40%. Average runtime for relayout (with α = 1.1)

was 0.02s, and deviated from the minimal height by at most 10%. Results for page

dependent column-based layout are similar. For documents with 16 articles, layout

generated layouts up to 32% taller than the optimum; freeguil bTD took 0.48s on

average, compared to less than 0.01 for relayout (and α = 1.1).

7.6 Conclusion

Guillotine-based layouts are widely used in newspaper and magazine layout. We

have given algorithms to solve two variants of the automatic guillotine layout prob-

lem: the fixed cut guillotine layout problem in which the choice of guillotine cuts

is fixed and the free guillotine layout problem in which the algorithm must choose

the guillotining. We have shown that the fixed guillotine layout problem is solvable

in polynomial time while the free guillotine layout problem is NP-Hard.

We have presented bottom-up and top-down methods for the minimum-height

guillotine layout problem. For fixed-cut guillotine layout, the bottom-up method is

far superior, as complexity is dependent only on the number of leaf configurations,

rather than the page width; the bottom-up method can optimally layout reasonably

sized graphs in real-time.

For the free guillotine layout problem, which has smaller width and larger

search space, the bounded top-down method was substantially faster than the other

methods. On instances with arbitrary cut positions, the bounded top-down method

could solve instances with up to 13 articles in a few seconds; when restricted to

page dependent column-based layouts, we can quickly produce layouts for at least

18 articles.
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We did not, however, consider CP or MIP-based approaches for this problem.

CP and MIP are both best suited for problems which are in some sense flat, in that

the structure of the solution is already known; in the case of table layout, for exam-

ple, the set of rows and columns is fixed, and the problem is merely to assign values

to each. It is difficult to use these methods to model problems (such as guillotine

layout) where the solution requires recursively constructing a tree structure. Also,

in cases where dynamic programming methods are applicable, they can be quite

difficult to beat using other techniques.

We have also suggested a novel interaction model for viewing on-line docu-

ments with a guillotine-based layout in which we solve the free guillotine layout

problem to find an initial layout and then use the fixed cut guillotine layout to

adjust the layout in response to user interaction such as changing the font size or

viewing window size.

Currently our implementation only handles text. Future work will be to incor-

porate images.
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8
Smooth Linear Approximation of

Geometric Constraints

CONSTRAINT-BASED graphics originated with Sketchpad [Sutherland, 1964],

one of the earliest interactive graphics applications. This was a forerun-

ner of modern CAD software and allowed the user to set up persistent

geometric constraints on objects such as fixing the length of a line or the angle

between two lines which were maintained by an underlying constraint solver dur-

ing subsequent user manipulation. In the almost fifty years since then, constraint-

based graphics has proven useful in a number of application areas.

• Geometric constraint solving is provided in most modern CAD applications,

such as Pro/ENGINEER. Such applications allow parametric modelling in

which the designer can specify the design in terms of geometric constraints

such as having a common endpoint or lines being parallel rather than in

terms of individual object placement and dimensions. Importantly, this al-

lows parametric re-use of components in a design.

• Constraint-based graphics is also provided in several generic diagram au-

thoring tools, for example MicroSoft Visio or Dunnart [Dwyer et al., 2008].

Such tools often provide semi-automatic layout such as connector routing,

persistent object alignment or distribution relationships, and some provide

automatic layout of networks and trees.

• A final application area has been adaptive layout, in particular for GUIs. Ex-

ample tools include Amulet, Madeus [Jourdan et al., 1998] and the widget
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layout manager in OS X 10.7 (Lion). Here geometric constraints are used to

specify the relative position and relationship of objects in the layout, allowing

the precise placement to adapt to different size viewports or fonts etc.

In all of these applications, constraint solving allows the application to preserve

design aesthetics, such as alignment and distribution, and structural constraints,

such as containment, during manipulation of the graphic objects or during adapta-

tion of a layout to a new context.

Unfortunately, geometric constraint solving is, in general, computationally ex-

pensive. This difficulty is compounded by the desire for real-time updating of the

layout during user interaction. Thus, a wide variety of specialized constraint solv-

ing algorithms have been developed for different applications. While the algo-

rithms are usually quite efficient this is because they are typically quite restricted

in the kinds of geometric constraints that can be handled. In particular, few algo-

rithms handle the important geometric constraint of non-overlap between objects.

This is, perhaps, unsurprising, since solving non-overlap constraints is NP-hard.

There is still a need for more generic geometric constraint solving algorithms that

are efficient enough for interactive graphical applications.

We present a new approach to geometric constraint solving in interactive graph-

ical applications. The approach is generic, supporting a wide variety of differ-

ent geometric constraints including alignment, distribution, containment and non-

overlap.

Our starting point is the set of efficient linear constraint solving techniques de-

veloped for graphical applications [Borning et al., 1997b, Marriott and Chok, 2002,

Badros et al., 2001]. These minimize a linear (or sometimes a convex quadratic)

objective function subject to a conjunction of linear equality and inequality con-

straints. They efficiently handle those geometric constraints, such as alignment,

distribution and containment within a convex shape, which can be modelled as a

conjunction of linear constraints. These are increasingly used in applications in-

cluding widget layout in OS X 10.7 (Lion), the diagramming tool Dunnart, mul-

timedia authoring tool Madeus and the Scwm window manager. Unfortunately,

geometric constraints such as non-overlap or containment in a non-convex shape

are inherently non-linear and so are currently not supported by these constraint

solving techniques.
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(b) (c)(a)

A

B

Figure 8.1: Smooth linear approximation of non-overlap between two boxes. Sat-
isfaction of any of the constraints: left-of, above, below and right-of is sufficient to
ensure non-overlap. Initially (a) the left-of constraint is satisfied. As the left rectan-
gle is moved (b), it passes through a state where both the left-of and above constraint
are satisfied. When the left-of constraint stops the movement right, the approxima-
tion is updated to above and (c) motion can continue.

The key to our approach is to use a linear approximation of these more diffi-

cult geometric constraints which ensures that the original geometric constraint will

hold. As the solution changes the linear approximation is smoothly modified. Thus

we call the technique smooth linear approximation (SLA). The approach is exempli-

fied in Figure 8.1. It is worth pointing out that SLA is not designed to find a new

solution from scratch, rather it takes an existing solution and continuously updates

this to find a new locally optimal solution. This is why the approach is tractable

and also well suited to interaction since, if the user does not like the local optimum

the system has found, then they can use direct manipulation to escape the local

optimum.

This chapter has four main contributions.

• The first contribution is a generic algorithm for SLA. We also give a variant of

the algorithm which is lazy in the sense that it does not use a linear approxi-

mation for the complex geometric constraints until they are about to become

violated. (Section 8.3)

• We show how SLA can be used to straightforwardly model a variety of non-

linear geometric constraints: non-overlap of two boxes, minimum Euclidean

distance, placement of a point on a piecewise-linear curve and containment in

a non-convex polygon. We also demonstrate that SLA can model text-boxes

that can vary their height and width but are always large enough to contain

their textual content. (Section 8.4)
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• We then explore in more detail how SLA can be used to model non-overlap

of polygons. We first consider non-overlap of two convex polygons. We

then investigate how to efficiently handle non-overlap of non-convex poly-

gons which is significantly more difficult. One approach is to decompose each

non-convex polygon into a collection of convex polygons joined by equal-

ity constraints. Unfortunately, this leads to a large number of non-overlap

constraints. In our second approach, we invert the problem and, in essence,

model non-overlap of polygons A and B by the constraint that A is contained

in the region that is the complement of B. In practice this leads to substan-

tially fewer constraints.

However, naive use of SLA to model non-overlap of many polygons leads

to a quadratic increase in the number of linear constraints since a constraint

is generated between each pair of objects. This is impractical for larger dia-

grams. By using the Lazy SLA Algorithm together with efficient incremental

object collision detection techniques developed for computer graphics [Lin

et al., 1996]1 we give an approach which can scale up to larger diagrams.

(Section 8.5)

• Finally, we provide a detailed empirical evaluation of these different algo-

rithms in Section 8.6. We focus on non-overlap of multiple non-convex poly-

gons because in practice this is most difficult class of problem to handle effi-

ciently. (Section 8.6)

We believe the algorithms described here provide the first viable approach to

handling a wide variety of non-linear geometric constraints including non-overlap

of (possibly non-convex) polygons in combination with linear constraints in inter-

active constraint-based graphical applications. We have integrated the algorithms

into the constraint based diagramming tool Dunnart. An example of using the tool

to construct and modify a network diagram is shown in Figure 8.2.

1It is perhaps worth emphasizing that collision-detection algorithms by themselves are not enough
to solve our problem. We are not just interested in detecting overlap: rather, we must ensure that
objects do not overlap while still satisfying other design and structural constraints and placing objects
as close as possible to the user’s desired location.

158



8.1. RELATED WORK

Alice: Sender

Bob: Recipient

Alice:
Sender

Bob:
Recipient

(a) (b)

Figure 8.2: An example of using SLA to modify a complex constrained diagram of
a communications network. Elements of the diagram are convex and non-convex
objects constrained to not overlap. The mid point of the cloud and top centre of the
switch objects are all constrained to lie on boundary of the rectangle (to enforce the
“ring” layout). The computer to the left is horizontally aligned with the top of its
switch. The tablet to the right is horizontally aligned with its switch and vertically
aligned with its user and the text box. The telephone is vertically aligned with
its switch and horizontally aligned with its user. The telephone user is vertically
aligned with its text box. The figure illustrates two layouts (a) the original layout,
and (b) a modified layout where the diagram has been shrunk horizontally and
vertically. Notice how the constraints are maintained, the non-overlap constraints
have become active, and text boxes have resized to have narrower width.

8.1 Related Work

Starting with Sutherland [1964], there has been considerable work on develop-

ing constraint solving algorithms for supporting direct manipulation in interactive

graphical applications. These approaches fall into four main classes: propagation

based (e.g. [Vander Zanden, 1996, Vander Zanden et al., 2001]); linear arithmetic

solver based (e.g. [Borning et al., 1997b, Marriott and Chok, 2002, Badros et al.,

2001]); geometric solver-based (e.g. [Kramer, 1992, Bouma et al., 1995, Fudos and

Hoffmann, 1997, Joan-Arinyo and Soto-Riera, 1999]); and general non-linear opti-

mization methods such as Newton-Raphson iteration (e.g. [Nelson, 1985]). How-

ever, none of these techniques support non-overlap and the other complex geomet-

ric constraints we consider here.

Hosobe [2001] describes a general purpose constraint solving architecture that

handles non-overlap constraints and other non-linear constraints. The system uses

variable elimination to handle linear equalities and a combination of non-linear

optimization and genetic algorithms to handle the other constraints. Our approach

addresses the same issue but is technically quite different, and we believe much
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faster – our method doesn’t require expensive non-linear optimization methods,

and takes advantage of information from the solver to select configurations for dis-

junctive constraints, rather than requiring a separate local search phase.

Enforcement of object non-overlap has been a concern for physically-based mod-

elling in computer graphics. The standard problem is modelling of non-penetrating

freely rotating rigid bodies. Here equality constraints model joints and other con-

nections between objects, objects have external forces working upon them (such as

gravity, friction or forces imposed by the user) and objects cannot penetrate each

other. The basic approach is to compute the objects’ positions at successive discrete

times. At each time step the simulation computes the forces on an object, computes

the object velocity and then appropriately moves the objects by the small time in-

crement to get their new position. However it may be that in the new position some

of the objects collide. Fast object collision detection is used to detect this and the

time step is decreased until the time at which the objects first touch is found. Re-

pulsive forces between the touching objects are added and their force is carefully

computed to ensure that the object’s will not penetrate each other. Baraff [1994,

1996] has developed fast methods to compute the repulsive forces.

SLA, in particular the lazy algorithm, is quite similar to this basic approach—in

some senses we are generalizing the lazy enforcement of non-overlap to other kinds

of geometric constraints. What is different is that typically in physics simulation the

constraints and variables model object velocities and forces, while in our approach

they model object positions and dimensions. Thus, in physics simulation the user

controls an object’s position by applying a force to it while in our context they

directly control the position and re-layout is driven by the user changing object

positions. Modelling the problem at the level of object position and dimensions is,

we believe, more natural for interactive diagramming and GUI applications.

We note Harada, Witkin, and Baraff [Harada et al., 1995] have investigated how

to allow the continuous model of the standard physically-based modelling to al-

low discrete changes, such as allowing an object to pass through another object, in

response to user interaction. This is something that we might consider in our work.

SLA is also similar to standard approaches in non-linear optimization in which

non-linear constraints are approximated by linear constraints [Nocedal and Wright,
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A B

B′

(x̂A, ŷA)

(x̂B, ŷB)

Figure 8.3: A diagram with two objects, A and B, which are constrained to be
horizontally aligned. The object B is being moved to B′. The desired positions of
{xA, yA, xB, yB} are shown.

1999]. The main innovation in what we are doing is the use of a smooth transition

between approximations.

8.2 Interactive Constraint-based Layout

As a variety of spatial constraints, such as alignment and distribution, can be con-

veniently represented as linear constraints, a number of efficient techniques have

been developed for handling incremental updating of linear programs for use in

graphical applications [Borning et al., 1997b, Badros et al., 2001].

Consider a diagram with a set of objects with positionsP = {(x1, y1) . . . , (xn, yn)},
and a set of linear constraints C over the object positions. If an object p is being

directly manipulated, its variables (xp, yp) are said to be edit variables. We shall use

E to denote the set of edit variables. Let (x̂p, ŷp) denote the new user-specified posi-

tion for p. If p is not being directly manipulated, we define (x̂p, ŷp) to be the current

position of p. The value v̂ is said to be the desired value of v. The goal, then, is to

find a solution that moves all the variables as close as possible to their respective

desired values, while satisfying all the constraints C.

Example 8.1. Consider the diagram shown in Figure 8.3. The rectangles A and B are

horizontally aligned. When the user attempts to moveB to the position markedB′, we want

to move (xB, yB) to the specified position, while keeping (xA, yA) as close to the current

position as possible. The edit variables are {xB, yB}, which the solver wants to move to

(xB′ , yB′). The stay variables {xA, yA} are to be kept close to their current location. 2

To find the desired solution, we need to introduce error terms δ+
v and δ−v to rep-

resent how far above and below v̂ the current assignment is. We then minimize the
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error terms to find the optimal solution. We must keep δ+
v and δ−v separate because

we want to minimize |δv| rather than the value δv. However, not all differences are

equally important. If variable v is being directly manipulated, it is more important

to move v towards v̂ than to keep v′ /∈ E close to v̂′. As such, we have an ordering

over our objectives:

1. Satisfy all constraints c ∈ C.

2. Move all edit variables v ∈ E towards v̂.

3. Keep all non-edit variables v′ /∈ E close to v̂′.

While we could perform a multi-stage optimization, the easiest solution is to add

weights to the error terms. Let we be the weight assigned to error terms for edit

variables, and ws be the weight assigned to other error variables. Generally we

want we � ws. With this, we can formulate the problem as a linear program:

min
∑
vi∈E

we(δ
+
vi + δ−vi) +

∑
vi /∈E

ws(δ
+
vi + δ−vi)

s.t. C

v1 = v̂1 + δ+
v1 − δ−v1

v2 = v̂2 + δ+
v2 − δ−v2

· · ·

vn = v̂n + δ+
vn − δ−vn

When the desired value for an edit variable v is changed, we simply need to up-

date the constant v̂ then find the updated optimum. If the tableau remains feasible

with the updated constants, we can use θ as the initial basic feasible solution. If the

updated tableau is no longer feasible, we now have an optimal solution that must

be made feasible. This is the dual of the normal optimization problem (moving from

a feasible solution to an optimal one), and can be solved by starting from θ (which is

feasible in the dual problem) and then optimizing the dual problem [Borning et al.,

1997a].

One complication is the addition of constraints. When a new constraint c′ is

added, the current solution θ is likely to no longer be a feasible solution to the hard

constraints C ′. If this is the case, we must re-run Phase I of the simplex algorithm
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to find a new feasible solution. However, θ is a basic solution which satisfies all

constraints except c′. Once we introduce the artificial variable ac′ for c′, we can use

we can use θ as our initial basic feasible solution to the revised solution, rather than

discarding the current solution and re-running Phase I from scratch. Once we have

restored feasibility, we then re-optimize as usual (although with E = ∅, as we want

to keep all the objects at their current positions).

Example 8.2. Consider the linear program from Example 2.1. We want to move the point

(x, y) from (1, 0) to (4, 1) without violating any of the existing constraints. We introduce

error terms for x and y, constructing the linear program:

min weδ
+
x + weδ

−
x + weδ

+
y + weδ

−
y

s.t.
1

2
x+ y ≤ 3

x+
2

3
y ≤ 4

y ≤ 2

x ≥ 1

x = 4 + δ+
x − δ−x

y = 1 + δ+
y − δ−y

x, y, δ+
x , δ

−
x , δ

+
y , δ

−
y ≥ 0

Converted to standard form, this becomes:

min weδ
+
x + weδ

−
x + weδ

+
y + weδ

−
y

s.t.
1

2
x+ y + s1 = 3

x+
2

3
y + s2 = 4

y + s3 = 2

x− s4 = 1

x = 4 + δ+
x − δ−x

y = 1 + δ+
y − δ−y

x, y, s1, s2, s3, s4, δ
+
x , δ

−
x , δ

+
y , δ

−
y ≥ 0
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The initial solution for (x, y) = (1, 0) gives us the basis {x, s1, s2, s3, δ
−
x , δ

−
y }. Assuming

we = 1, applying substitutions for this basis gives us the tableau:

s1 =
5

2
− 1

2
s4 − y

s2 = 3− s4 −
2

3
y

s3 = 2− y

x = 1 + s4

δ−x = 3− s4 + δ+
x

δ−y = 1− y + δ+
y

f = 4− y − s4 + 2δ+
x + 2δ+

y

If we pivot on y, the tableau becomes:

s1 =
3

2
− 1

2
s4 + δ−y − δ+

y

s2 =
7

3
− s4 +

2

3
δ−y −

2

3
δ+
y

s3 = 1 + δ−y − δ+
y

x = 1 + s4

δ−x = 3− s4 + δ+
x

y = 1− δ−y + δ+
y

f = 3− s4 + 2δ+
x + δ−y + δ+

y

We then pivot on s4:

s1 =
1

3
+

1

2
s2 +

1

3
δ−y −

4

3
δ+
y

s4 =
7

3
− s2 +

2

3
δ−y −

2

3
δ+
y

s3 = 1 + δ−y − δ+
y

x =
10

3
− s2 +

2

3
δ−y −

2

3
δ+
y

δ−x =
2

3
+ s2 + δ+

x −
2

3
δ−y +

2

3
δ+
y

y = 1− δ−y + δ+
y

f =
2

3
+ s2 + 2δ+

x +
1

3
δ−y +

1

3
δ+
y
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As there are no negative coefficients in the objective row, we terminate. This tableau corre-

sponds to the solution (x, y) = (10
3 , 1), which is the nearest feasible solution to (4, 1).

2

8.3 The SLA Algorithm

In this section we present the basic SLA algorithm and a variant which is lazy in

the enforcement of constraints. We first review linear constraint solving.

8.3.1 Linear constraint solving

Typical geometric constraints provided in many constraint-based graphics applica-

tions are:

• horizontal and vertical alignment

• horizontal and vertical distribution

• horizontal and vertical ordering that keeps objects a minimum distance apart hor-

izontally or vertically while preserving their relative ordering

• a fixed value for the position or size of an object.

Each of the above geometric relationships can be modelled as a linear constraint

over variables representing the position of the objects in the diagram. For this rea-

son, a common approach in constraint-based graphics applications is to use a con-

straint solver that can support linear constraints. Details of these methods are given

in Chapter 2.

8.3.2 The Basic SLA Algorithm

However, not all geometric constraints are linear. The approach presented here,

smooth linear approximation (SLA), locally approximates each non-linear constraint

by a conjunction of linear constraints. As the solution changes the linear approxi-

mation is smoothly modified.

A linear approximation of a complex constraint c is a (possibly infinite) disjunctive

set of linear configurations {F0, F1, . . . }where each configuration Fi is a conjunction

of linear constraints. We require that the linear approximation is sound in the sense

that each linear configuration implies the complex constraint and complete in the

sense that each solution of c is a solution of one of the linear configurations.
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sla(C, o)
finished := false
while(¬finished )
θ := minimize o subject to

∧
c∈C c.config

finished := update configs(C, θ)
return θ

update configs(C, θ)
ret := true
for(c ∈ C)
F := c.config
c.update(θ)
if(F 6= c.config) ret := false

return ret

Figure 8.4: Basic SLA Algorithm for solving sets of non-linear constraints using
smooth linear approximations.

Example 8.3. Consider the non-overlap constraint of the two boxes in Figure 8.1. To

ensure that boxes A and B do not overlap, we must ensure that the boxes are separated

along some axis. Equivalently, we must ensure that box A is to the left of, to the right of,

above or below box B.

Assume we want to ensure that A is to the left of B. Given that the variable (xA, yA)

denotes the centre of A, we can enforce this with the linear constraint:

xA +
wA
2
≤ xB −

wB
2

2

SLA works by moving from one configuration for a constraint to another, re-

quiring that both configurations are satisfied at the point of change. This smoothness

criteria reduces the difficulty of the problem substantially since we need to consider

only configurations that are satisfied with the present state of the diagram. It also

fits well with continuous updating of the diagram during direct manipulation.

The Basic SLA Algorithm is very simple and is given in Figure 8.4. In the al-

gorithm we represent a complex constraint by an object c that has a current con-

figuration c.config and a method c.update(θ) that, given a solution θ to the current

configuration, updates the configuration if necessary. To ensure smoothness, the

solution θ is required to be a solution of the new configuration.

Given a set of complex constraints C and an objective function o to be mini-

mized, the algorithm uses a linear constraint solver to find a minimal solution θ us-
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ing the current configuration for each complex constraint. It then calls update configs

to update the current configuration for each complex constraint. If the configura-

tion for all of the constraints remains unchanged, the algorithm terminates.

One choice in the algorithm is whether to resolve whenever a configuration is

updated or to update all constraint configurations before resolving. Our current

implementation and the algorithm given in Figure 8.4 uses the second approach.

In practice we found little difference between the two approaches.

The algorithm is generic in:

• The choice and technique for generating the linear configurations for the com-

plex constraint.

• How to determine if an alternative linear configuration might improve the

solution.

In the next two sections we describe various choices for these operations for mod-

elling various kinds of non-linear geometric constraints.

Assuming that the linear approximation for each complex constraint is sound,

it is clear that if the Basic SLA Algorithm terminates, it will return a solution that

satisfies all of the complex constraints. Proof of termination depends on how con-

figuration updating is performed—one needs to ensure that the configurations do

not cycle without actually improving the solution. By only updating configurations

when the objective can be improved, we can guarantee that cycling cannot occur.

If each constraint has a finite set of configurations, this is sufficient to ensure ter-

mination. Otherwise, care must be taken to ensure that there cannot be an infinite

sequence of configurations with infinitesimally improving objective values.

One might hope that the solution returned by the Basic SLA Algorithm is a

global optimum in the sense that it is a solution to the complex constraints that min-

imizes the objective function. However, in general this is unrealistic since for the

kinds of non-linear geometric constraints we are considering it is typically NP-hard

to find a global optimum, and so in any algorithm fast enough for practical use the

best that one can hope for is that the solution is a local optimum. A reasonable

choice of configuration update will provide this. In practice, local optimization is

preferable for direct manipulation, as the solver will respond more predictably to
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A

B

C D

(a)

A

B

C D

(b)

A

B

C D

(c)

Figure 8.5: (a) A set of non-overlapping squares. A is to be moved to the dashed
square. (b) The local optimum computed from the initial configurations. (c) A
global optimum.

user input – as illustrated in Figure 8.5, moving to the global solution may result in

sudden structural rearrangements to the diagram.

8.3.3 The Lazy SLA Algorithm

Our experience with the Basic SLA algorithm shows that if there are a large number

of complex constraints it may become slow because of the large number of linear

constraints in the linear solver. We now give a variant of the algorithm which is lazy

in the sense that it does not use a linear approximation for the complex geometric

constraints until they are about to become violated. This can significantly improve

efficiency because it reduces the number of constraints in the linear solver.

In the lazy algorithm a complex constraint c need not be currently enforced by

any linear approximation and so c.config returns the “empty” linear approxima-

tion. Constraints which are being enforced by a linear approximation are said to be

enforced. The algorithm relies on the object c representing a complex constraint hav-

ing three additional methods: c.enforced which returns the status of whether or not

the constraint is currently enforced, c.safe(θ) checks whether or not the constraint

c can be safely left unenforced with the solution θ since θ satisfies it, c.enforce(θ)

which enforces c and sets c.config to a configuration that satisfies θ and c.unenforce

which stops enforcing c and sets c.config to the empty configuration. Note that

c.safe(θ) is a pre-condition for c.enforce(θ).
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lazy sla(C, o, θ)
finished := false
while(¬finished )
θ′ := minimize o subject to

∧
c ∈ C s.t. c.enforced c.config

finished := update enforced(C, θ, θ′)
if(finished )
θ := θ′

finished := update configs(C, θ′)
return θ′

update enforced(C,θ, θ′)
for(c ∈ C s.t. not c.enforced )

if(¬c.safe(θ′))
c.enforce(θ)
return false

return true

update configs(C, θ)
ret := true
for(c ∈ C s.t. c.enforced )
F := c.config
c.update(θ)
if(F 6= c.config) ret := false
else if(c.safe(θ)) c.unenforce()

endfor
return ret

Figure 8.6: Lazy SLA Algorithm for solving sets of non-linear constraints using
smooth linear approximations.

The Lazy SLA Algorithm is given in Figure 8.6. The Lazy SLA Algorithm takes

an additional input argument, θ, which is the current solution and which must

satisfy all of the complex constraints including those that are unenforced. It is an

invariant of the algorithm that θ remains set to such a solution. The procedure

update enforced ensures that the proposed solution θ′ to the enforced constraints

also satisfies the unenforced constraints: if it does not, an unsatisfied unenforced

constraint has its status changed to enforced and the main loop is executed again.

The procedure update configs is similar to that in the Basic SLA Algorithm, and

updates the current configuration in all enforced constraints. It also changes the

status of enforced constraints to unenforced if θ′ allows this.

Termination and correctness of the Lazy SLA Algorithm is the same as for the

Basic SLA Algorithm: it will always return a solution satisfying all of the con-

straints and for appropriate choices of complex constraint methods will terminate

and return a locally optimal solution.
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update(θ)
let left-of ≡ x1 + w1

2 ≤ x2 − w2

2
let right-of ≡ x1 − w1

2 ≥ x2 + w2

2

let above ≡ y1 − h1

2 ≥ y2 + h2

2

let below ≡ y1 + h1

2 ≤ y2 − h2

2
switch(config)

case(left-of )
if(active(left-of, θ))

if(val(above, θ) and better(left-of, above, θ))
config := above

else if(val(below, θ) and better(left-of, below, θ))
config := below

return
case(above)

if(active(above, θ))
if(val(right-of, θ) and better(above, right-of, θ))

config := right-of
else if(val(left-of, θ) and better(above, left-of, θ))

config := left-of
return

case(right-of )
if(active(right-of, θ))

if(val(below, θ) and better(right-of, below, θ))
config := below

else if(val(above, θ) and better(right-of, above, θ))
config := above

return
case(below)

if(active(below, θ))
if(val(left-of, θ) and better(below, left-of, θ))

config := left-of
else if(val(right-of, θ) and better(below, right-of, θ))

config := right-of
return

Figure 8.7: Configuration update method for non-overlapping boxes.

8.4 Examples of SLA

In this section we give a number of simple examples illustrating the power of SLA.

8.4.1 Non-overlapping boxes

We start with a very simple example: non-overlap of two boxes, i.e. axis-parallel

rectangles. Conceptually the approach is straightforward: we model non-overlap

of boxes R1 and R2 by enforcing “R1 left-of R2,” “R1 right-of R2,” “R1 above R2”

or “R1 below R2.” It should be clear that this is a sound and complete approxima-
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tion to the non-overlap constraint. Figure 8.1 illustrates how SLA works with this

example.

Figure 8.7 gives the configuration update method. It assumes that the rectangle

Ri has variables (xi, yi) giving its center and wi and hi giving its width and height

respectively. It is worth emphasizing that the size and height of the rectangles are

not required to be fixed: they can be true variables whose value is computed by the

solver. The update method calls the function val(e, θ) which returns the value of

an expression e which may contain variables under the current solution θ. In the

case e is a constraint, it tests if θ satisfies the constraint c, returning true or false

appropriately. It also uses the Boolean function active(c, θ) which tests whether the

linear constraint c is active at the current solution.

Intuitively a linear inequality constraint c ≡∑n
i=1 aixi ≤ b is active if removing

that constraint could lead to a better optimum solution. If
∑n

i=1 aixi < b the con-

straint is not active since it is not binding the current solution. Thus one possible

definition of active is that an inequality constraint is active whenever it is tight in

the sense that
∑n

i=1 aixi = b. Unfortunately, while simple and easy to implement,

this definition is a little bit too general. Imagine that the desired position for the two

boxes is that that the upper-right corner of R1 touches the bottom-left corner of R2.

In this case both the left-of and below constraints are tight. If we use tightness as the

definition of active then the configuration update method will cycle indefinitely, al-

ternating between these two constraints as the current configuration. However, in

reality while tight, neither of these constraints are active in the sense that removing

them leads to a better solution since the optimum solution is that the two corners

touch.

Thus we require a definition of active that really captures how the constraint is

affecting the current solution. A fundamental notion in constrained optimization,

the constraint’s Lagrange multiplier, measures exactly this. As described in Chapter

2, the Lagrange multiplier for a constraint is exactly the coefficient of the corre-

sponding slack variable in the simplex tableau. For the purposes of this chapter,

the key property is that the value of the Lagrange multiplier λc for a linear inequal-

ity c ≡∑n
i=1 aixi ≤ b provides a measure of how “binding” a constraint is; it gives

the rate of increase of the objective function as a function of the rate of increase of

b. That is, it gives the cost that imposing the constraint will have on the objective
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update(θ)
if(active(config , θ))
dx := val(x2 − x1, θ)
dy := val(y2 − y1, θ)
d :=

√
dx2 + dy2

config := dx
d × (x2 − x1) + dy

d × (y2 − y1) ≥ r
return

Figure 8.8: Configuration update method for minimum Euclidean distance.

function, or conversely, how much the objective can be increased if the constraint

is relaxed.2

Thus, intuitively, a constraint with a small Lagrange multiplier is preferable to

one with a large Lagrange multiplier since it has less effect on the objective. In

particular, removing a constraint with a Lagrange multiplier of 0 will not allow the

objective to be improved and so the Lagrange multiplier is defined to be 0 for an

inequality that is not active, i.e. if
∑n

i=1 aixi < b. Simplex-based LP solvers, as a

byproduct of optimization, compute the Lagrange multiplier of all constraints in

the solver. In our example we therefore use the definition that active(c, θ) holds iff

λc 6= 0.

The only subtlety in the configuration update method is the need to ensure

that we do not get cycling behaviour resulting from repeatedly flipping between

two configurations. The final part of the puzzle is the definition of the function

better(c1, c2, θ) which essentially determines if it is worthwhile swapping active

constraint c1 for a feasible constraint c2. The trick here is to ensure that we do

not get cycling by flipping between two different configurations. This is done by

temporarily adding c2 to the constraint solver and computing λc1 and λc2 and then

returning λc1 > λc2 which holds if it is “better” to swap to c2 since this will lead

to a constraint with a smaller Lagrange multiplier. Computing the new Lagrange

multiplier is very efficient since the current solution will still be the optimum. Note

that whatever the result, the function better does not permanently add c2 to the

solver.
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Figure 8.9: Computation of new linear approximation for minimum Euclidean in-
stance.

8.4.2 Minimum Euclidean distance

Our next example is also quite simple: imposing a minimum Euclidean distance r

between two points (x1, y1) and (x2, y2). Figure 8.8 gives the configuration update

method. The update method computes a new linear approximation if the current

configuration is active. This new approximation depends upon the current position

of the points (x1, y1) and (x2, y2) and can be understood to be the linearization

of the minimum distance constraint around the tangent point. It is illustrated in

Figure 8.9.

Unlike the case for non-overlapping boxes, the new configuration for Euclidean

distance must be computed dynamically since there are an infinite number of pos-

sible configurations. Note that we can use this construct to model non-overlap of

two circles.

8.4.3 Point on the perimeter of a rectangle

In node-link diagrams representing metabolic pathways, one drawing convention

for cycles is to place nodes in the cycle on a perimeter of an axis-aligned rectangle

whose size and position adjusts to the desired position of the nodes. Again this

is straightforward to encode using SLA. Figure 8.10 gives the configuration update

method for the constraint that point p lies on the perimeter of rectangleR. There are

four configurations: “p on-left R,” “p on-right R,” “p on-top R,” and “p on-bottom R”

which correspond to which side of the rectangle the point lies on. Clearly this is a

sound and complete approximation to the original complex constraint. The code

assumes that the point p has variables (xp, yp) giving its position and that rectangle

2It follows that at an optimal solution the Lagrange multiplier λc for an inequality cannot be
negative.
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update(θ)
let on-top ≡ yp = yR + hR

2 ∧ xp ≤ xP + wR

2 ∧ xp ≥ xP − wR

2

let on-bottom ≡ yp = yR − hR

2 ∧ xp ≤ xP + wR

2 ∧ xp ≥ xP − wR

2

let on-left ≡ xp = xR − wR

2 ∧ yp ≤ yP + hR

2 ∧ yp ≥ yP − hR

2

let on-right ≡ xp = xR + wR

2 ∧ yp ≤ yP + hR

2 ∧ yp ≥ yP − hR

2
switch(config)

case(on-top)
if(val(xp = xR − wR

2 , θ) and lm(yp = yR + hR

2 , θ) > 0))
config := on-left

else if(val(xp = xR + wR

2 , θ) and lm(yp = yR + hR

2 , θ) > 0))
config := on-right

return
case(on-bottom) ... analogous to on-top
case(on-left) ... analogous to on-top
case(on-right) ... analogous to on-top

Figure 8.10: Configuration update method for constraining a point to lie on a
perimeter of a rectangle.

R has variables (xR, yR) giving its center andwR and hR giving its width and height

respectively.

A difference from the non-overlapping box example is that each configuration is

a conjunction of three linear constraints rather than a single constraint. For instance

“p on-top R” is modelled by

yp = yR +
hR
2
∧ xp ≤ xP +

wR
2
∧ xp ≥ xP −

wR
2

which ensures that p is on the top side of R. The criteria for changing the configu-

ration is that the point must be on the corner of the rectangle and that the Lagrange

multiplier associated with the linear equality constraint of the current configuration

indicates that the change would be beneficial. For instance if the current configu-

ration is on-top and p is at the top left corner then the algorithm will change to the

on-left configuration if the Lagrange multiplier of yp = yR + hR
2 is strictly positive

since a strictly positive Lagrange multiplier means that reducing the height of the

rectangle would reduce the objective function and so it would be beneficial to al-

low p to move down the side. We use the function lm(c, θ) to compute the Lagrange

multiplier for constraint c at the current solution θ.

It is straightforward to generalize this constraint to one that allows the point

to lie on the perimeter of an arbitrary convex polygon. It should be clear that the

approximation is sound and complete.
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C1

C2

Figure 8.11: SLA of containment within a non-convex polygon using a dynamic
maximal convex polygon. Initially containment in the non-convex polygon is ap-
proximated by containment in the rectangle C1. When the point is moved and
reaches a boundary of C1 the approximation is updated to the rectangle C2.

8.4.4 Containment within a non-convex polygon

Containment within a polygon is a useful geometric constraint. Forcing a point

to lie inside a convex polygon is naturally modelled using linear constraints but

containment within a non-convex polygon cannot be modelled with a conjunction

of linear constraints. SLA is well-suited to modelling containment of a point p

within a non-convex polygon P : we simply approximate P by a (possibly infinite)

set of convex polygons C1, C2, ... s.t. Ci ⊂ P and that
⋃
iCi = P . Containment

within P is soundly and completely approximated by containment in one of the Ci.

There are many possible ways to choose the convex polygons.

The first approach we explored is to choose the Ci to be the set of maximal

convex polygons that lie inside P . They are computed dynamically and are allowed

to overlap. The algorithm updates the configuration corresponding toCi whenever

p lies on a boundary ofCi which is not a boundary of P . It computes a new maximal

convex polygon Cj inside P that strictly contains p. The process is illustrated in

Figure 8.11.

The disadvantage of this approach is that it is not simple to compute the new

maximal convex polygon. It is also quite an expensive operation. We have therefore

explored another approach which is suitable so long as the non-convex polygon P

is rigid (i.e. the shape and orientation is fixed) and simple (i.e. with no crossed

edges). The approach is to decompose P into triangular regions T1, ..., Tn. Such

decompositions are standard in computer graphics and there are a number of algo-

rithms for partitioning simple polygons into triangles [Seidel, 1991, Chazelle, 1991],
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T1

T2

T3

T4

Figure 8.12: SLA of containment within a non-convex polygon using triangular
decomposition. The figure shows the triangular decomposition of the non-convex
polygon from Figure 8.11. The original approximation is containment in triangle T1.
As the point moves and touches a triangle boundary this is updated to containment
in triangle T2 and then triangle T3.

of varying complexity. Our implementation uses a simple approach described by

O’Rourke [1998].

Each triangle Ti gives rise to a different configuration in which p is constrained

to lie inside Ti. Containment within Ti is enforced using three linear constraints,

one for each side of the triangle. When the point p is on the boundary of T and

the side it is on s is common to triangle T ′ then the approximation will be updated

to containment within T ′ if the constraint corresponding to s is active. This is il-

lustrated in Figure 8.12. In the case p is on a vertex and the corresponding two

sides are active and can be updated, the side with the highest Lagrange multiplier

is chosen.

8.4.5 Textboxes

Variable height text boxes are provided in most graphical editors and presentation

software. These are axis-aligned rectangles whose width is specified by the user

and whose height expands/shrinks to fit the text. When using a graphical editor

with constraints the natural generalization of variable height textboxes are rectan-

gles whose width or height can vary but which are always large enough to contain

their textual content.

Textboxes are equivalent to the table cells discussed in Chapter 6; they have a

finite number of minimal layouts where a minimal layout is a pair (w, h) such that

the text in the textbox can be laid out in a rectangle with width w and height h but

there is no smaller rectangle for which this is true. That is, for all w′ ≤ w and h′ ≤ h
either h = h′ and w = w′, or the text does not fit in a rectangle with width w′ and
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Figure 8.13: Linear approximations for textboxes. The minimal layouts (wi, hi) are
marked with bullet points. The feasible solutions for the layout are points below
and to the left of the shaded region.

height h′. For simplicity we assume that these minimum layouts are anti-monotonic

in the sense that if the width increases then the height will never increase—this is

almost invariably true in practice.

Assume that the textbox T has width w and height h. Requiring T to be large

enough to contain its textual content is equivalent to requiring that w ≥ wi and

h ≥ hi for one of its minimal layouts (wi, hi). SLA can be used to move between the

different choices of minimal layouts. The only catch is that because the constraints

w ≥ wi and h ≥ hi are at right-angles the solution tends to stick in the minimal

layout w = wi and h = hi. To smooth the transition to adjacent configurations we

“flatten” this by adding a small constant ε to wi and hi. Assuming that the next

narrower minimal layout is (wi−1, hi−1) and the next wider layout is (wi+1, hi+1)

the actual linear approximation we use is shown in Figure 8.13. This approximation

is clearly no longer complete, but remains sound and does not appear to cause any

numerical stability issues.

The configuration update method is shown in Figure 8.14. It moves between

adjacent minimal layouts when the current width and height allow this. Note that

the geometry of the minimal layouts ensures that the conditions on at most one of

the if statements can hold. In practice the minimal layouts need not be computed

all at once but dynamically as needed. Efficient methods for computing minimal

layouts are surveyed in Hurst et al. [2009]. We use the binary search algorithm

described in Hurst et al. [2006c].
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update(θ)
let [(w1, h1), ..., (wn, hn)] be the minimal layouts ordered by increasing width.
let wbi ≡ w ≥ wi for i = 1..n
let hbi ≡ h ≥ hi for i = 1..n
let wc1 ≡ wb1
let wci ≡ wbi ∧ (wi + ε− wi−1)× (h− hi−1) ≤ (hi + ε− hi−1)× (w − wi−1) for i = 2..n
let hcn ≡ hbn
let hci ≡ hbi ∧ (wi+1 − wi − ε)× (h− hi − ε) ≤ (hi+1 − hi − ε)× (w − wi − ε) for i = 1..n− 1
let i be s.t. config ≡ wci ∧ hci
if(active(wbi, θ) and i > 1 and lm(wbi, θ) > 0)

config := wci−1 ∧ hci−1
else if(active(hbi, θ) and i < n and lm(hbi, θ) > 0)

config := wci+1 ∧ hci+1

return

Figure 8.14: Configuration update method for requiring a textbox to be large
enough to contain its textual content.
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Figure 8.15: Approximation of textbox configurations. Two different configura-
tions, and the intermediate stage are marked; the shaded region is the set of legal
values for the width and height. Note that at any point where a transition between
configurations may occur, the point satisfies both configurations.

8.5 Non-Overlap of Polygons

In the previous section we saw how to model non-overlap of two boxes and of

two circles. In this section we consider non-overlap of convex and non-convex

polygons. We start by considering non-overlap of two convex polygons. We restrict

our attention to rigid polygons since this means that the slope of the polygon’s

edges are fixed which allows us to use a linear constraint to model a point being

on, above or below the edge.

8.5.1 Non-overlap of two convex polygons

The obvious approach to handle non-overlap of two convex polygons P andQ is to

choose an edge of P for which the corresponding line separates the two polygons
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Figure 8.16: A unit square S and unit diamond D and their Minkowski difference
S ⊕−D. The local origin points for each shape are shown as circles.

and add a constraint that the closest point on Q to this line remains on the other

side of the line. This is the direct generalization of the approach used for non-

overlap of boxes. When the linear approximation is updated we need to move

to the appropriate adjacent edge on P and compute the new closest point on Q.

Conceptually this is what we do. However, our implementation is simplified by

using the Minkowski difference, denoted by P ⊕ − Q, of the two polygons P and

Q to essentially pre-compute the closest point. Given some fixed point pQ in Q

and pP in P the Minkowski difference is the polygon M such that the point pQ − pP
(henceforth referred to as the query point) is inside M iff P and Q intersect.

For convex polygons, it is possible to “walk” one polygon around the boundary

of the second; the vertices of the Minkowski difference consist of the offsets of the

second polygon at the extreme points of the walk. It follows that the Minkowski

difference of two convex polygons is also convex. An example of the Minkowski

difference of two convex polygons is given in Figure 8.16 while an example of a

non-convex Minkowski sum is shown in Figure 8.19.

There has been considerable research into how to compute the Minkowski dif-

ference of two polygons efficiently.3 Optimal O(n + m) algorithms for computing

the Minkowski difference of two convex polygons with n and m vertices have been

known for some time [Ghosh, 1990, O’Rourke, 1998]. Until recently calculation of

the Minkowski difference of non-convex polygons decomposed the polygons into

convex components, constructed the convex Minkowski difference of each pair, and

3More precisely, research has focused on the computation of their Minkowski sum since the
Minkowski difference of A and B is simply the Minkowski sum of A and a reflection of B.
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update(θ)
let [(x0, y0), ..., (xn−1, yn−1)] be the offset from (xP , yP ) of the vertices of M in clockwise order.
let ci ≡ (xi+1 mod n − xi)× (yQ − yi − xP ) ≥ (yi+1 mod n − yi)× (xQ − xi − xP ) for i = 0..n
let i be s.t. config ≡ ci
if(active(ci, θ))

if(val(c(i−1)modn, θ) and better(ci, c(i−1)modn, θ))
config := c(i−1)modn

else if(val(c(i+1)modn, θ) and better(ci, c(i+1)modn, θ))
config := c(i+1)modn

return

Figure 8.17: Configuration update method for non-overlap of two rigid polygons
P and Q with Minkowski difference M computed using the reference points pQ ≡
(xQ, yQ) in Q and pP ≡ (xP , yP ) in P .

took the union of the resulting differences. More recently direct algorithms have ap-

peared based on convolutions of a pair of polygons [Ramkumar, 1996, Flato, 2000].

We can model non-overlap of convex polygons P and Q by the constraint that

the query point is not inside their Minkowski difference, M . As the Minkoskwi

difference of two convex polygons is a convex polygon, it is straightforward to

model non-containment in M : it is a disjunction of single linear constraints, one for

each side of M , specifying that the query point lies on the outside of that edge.

The approximation is sound and complete. It is also relatively simple and effi-

cient to update the approximation as the shapes are moved. If the constraint corre-

sponding to the current edge is active then we move to an adjacent edge whenever

this is feasible and strictly reduces the associated Lagrange multiplier. We note

that the Minkowski difference only needs to be computed once. The actual lin-

ear approximation we use is shown in Figure 8.17; it is very similar to the code in

Figure 8.7.

8.5.2 Overlap of two non-convex polygons

We now extend our technique for handling non-overlap of convex polygons to the

case when one or both of the polygons are non-convex. We restrict attention to sim-

ple polygons without internal holes. When using SLA we cannot move an object

from outside a polygon to inside an internal hole of a polygon in any case.

Probably the most obvious approach is to decompose each non-convex polygon

into a union of convex polygons which are constrained to be joined together (either
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Figure 8.18: Example diagram with complex non-convex polygons.

using equality constraints, or simply using the same variables to denote the shared

position), and add a non-overlap constraint for each pair of polygons.

This decomposition based method is relatively simple to implement since there

are a number of well explored methods for convex partitioning of polygons, in-

cluding Greene’s dynamic programming method [Greene, 1983] for optimal parti-

tioning. However, it has a potentially serious drawback: in the worst case, even

the optimal decomposition of a non-convex polygon will have a number of convex

components that is linear in the number of vertices in the polygon. This means that

in the worst case the non-overlap constraint for a pair of non-convex polygons with

n and m vertices will lead to Ω(nm) non-overlap constraints between the convex

polygons.

Consider the shapes shown in Figure 8.18. There are 4 non-convex polygons

(each starting from the corners of the maze), and two fixed convex polygons within

the maze. Each non-convex polygon is aligned with its neighbours on the edge

of the maze. There are 12, 2, 6, and 34 components of the non-convex objects in

the NW, NE, SE, and SW respectively. The non-overlap of the NW and SE corner

objects requires 72 non-overlap constraints to encode in the decomposition based

approach, but indeed these two objects will never interact due to the other con-

straints.

As illustrated by the maze example, in reality most of these Ω(nm) non-overlap

constraints are redundant and unnecessary. An alternative approach is to use our

earlier observation that we can model non-overlap of convex polygons P and Q by
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Figure 8.19: The Minkowski difference of a non-convex and a convex polygon.
From left, A, B, extreme positions of A and B, A⊕−B.

Figure 8.20: A non-convex polygon, together with convex hull, decomposed pock-
ets and adjacency graphs. From a given region, the next configuration must be one
of those adjacent to the current region.

the constraint that the query point is not inside their Minkowski difference,M . This

remains true for non-convex polygons, although the Minkowski difference may

now be non-convex. An example Minkowski difference for a non-convex polygon

is shown in Figure 8.19.

In our second approach we pre-compute the Minkowski difference M of the

two, possibly non-convex, polygons P and Q and then decompose the space not

occupied by the Minkowski polygon into a union of convex regions, R1, .., Rm. We

have that the query point is not inside M iff it is inside one of these convex regions.

Thus, we can model non-overlap by a disjunction of linear constraints, with one for

each region Ri, specifying that the query point lies inside the region. We call this

the inverse approach.

These regions cover the region outside the polygon’s convex hull, the non-

convex pockets where the boundary of the polygon deviates from the convex hull,

and the holes inside the polygon. The key to the inverse approach is that whenever

the query point is not overlapping with the polygon, it must be either outside the

convex hull of the polygon (as in the convex case), or inside one of the pockets or

holes. If each pocket and hole is then partitioned into convex regions, it is pos-
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sible to approximate the non-overlap of two polygons with either a single linear

constraint (for the convex hull) or a convex containment (for a pocket or hole). An

example is shown in Figure 8.20. Note that in practice we can ignore holes in the

polygon since with SLA it is impossible to reach them.

The configuration update algorithm is virtually identical to that detailed in Sec-

tion 8.4.4. We use the approach in which pockets and holes are decomposed into

triangular regions.

One of the advantages of the inverse approach is that, in most cases, particularly

when the pairs of polygons are distant, the two polygons are treated as convex. It

is only when the polygons are touching, and the query point lies upon the opening

to a pocket that anything more complex occurs.

8.5.3 Overlap of multiple polygons

However, naive use of SLA to model non-overlap of many polygons leads to a

quadratic growth in the number of linear constraints since at least one constraint

is generated between each pair of objects (and potentially more in the case of non-

convex polygons). Our experience suggests that this is impractical for larger di-

agrams and was the reason for developing the Lazy SLA Algorithm. The key to

efficiency is to use Lazy SLA together with efficient incremental object collision

detection techniques developed for computer graphics.

We have investigated two variants of this idea which differ in the meaning of

overlap and hence the definition of the method c.safe in the Lazy SLA Algorithm.

The first variant tests the intersection of the polygons, so c.safe holds if the two

polygons do not strictly intersect. While this addresses the problem of having many

constraints in the solver, O(n2) constraint checks must be performed during each

update. We then augmented this with a bounding-box based detection step. If the

bounding boxes do not strictly overlap, c.safe holds; otherwise, we perform the

normal intersection test.

Implementation relies on an efficient method for determining if the bound-

ing boxes of the polygons overlap. Determining if n 2-D bodies overlap is a well

studied problem and numerous algorithms and data structures devised including

Quad/Oct-trees [Samet, 1990], and dynamic versions of structures such as range,
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b2e4b4 e3b3e2e1b2b1 e4b4 e3b3e1b1 e2

Figure 8.21: The sorted list of endpoints is kept to facilitate detection of changes
in intersection. As the second box moves right, b2 moves to the right of e1, which
means that boxes 1 and 2 can no longer intersect. Conversely, endpoint e2 moves
to the right of b3, which means that boxes 2 and 3 may now intersect.

segment and interval-trees [Chiang and Tamassia, 1992]. The method we have cho-

sen to use is an adaptation of that presented in Lin et al. [1996].

The algorithm is based, as with most efficient rectangle-intersection solutions,

on the observation that two rectangles in some number of dimensions will inter-

sect if and only if the span of the rectangles intersect in every dimension. Thus,

maintaining a set of intersecting rectangles is equivalent to maintaining (in two

dimensions) two sets of intersecting intervals.

The algorithm acts by first building a sorted list of rectangle endpoints, and

marking corresponding pairs to denote whether or not they are intersecting in ei-

ther dimension. While this step takes, in the worst case,O(n2) time for n rectangles,

it is in general significantly faster. As shapes are moved, the list must be maintained

in sorted order, and intersecting pairs updated. This is done by using insertion sort

at each time-step, which will sort an almost sorted list in O(n) time.

In order to use the Lazy SLA Algorithm we must also provide a definition for

the method c.enforce(θ) which chooses a configuration to enforce the constraint c

that two polygons do not overlap. This is done by trying the configurations in turn,

choosing the first configuration that is satisfied by θ.

A change in intersection is registered only when a left and right endpoint of

different bounding boxes swap positions. If a left endpoint is shifted to the left

of a right endpoint, an intersection is added if and only if the boxes are already

intersecting in all other dimensions. If a left endpoint is shifted to the right of a

right endpoint, the pair cannot intersect. (See Figure 8.21)
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8.6 Evaluation

We have implemented all of the algorithms described in the chapter. They were

implemented using the Cassowary linear inequality solver [Badros et al., 2001],

included with the QOCA constraint solving toolkit [Marriott et al., 1998]. Non-

convex Minkowski difference calculation was implemented using the Minkowski sum 2

CGAL package produced by Wein [Wein, 2006].

All of the applications of SLA described in Section 8.4 work well and are more

than fast enough for interactive graphical applications. For this reason in the ex-

perimental evaluation described in this section we focus on evaluating the perfor-

mance of the algorithms proposed for non-overlap of many non-convex polygons

because this is the most complex and potentially expensive geometric constraint

handled by SLA. We evaluate whether they are fast enough to support incremental

update during direct manipulation since this is the most demanding requirement.

We implemented both the decomposition and direct approach for handling

non-overlap of non-convex polygons. The decomposition was handled using Greene’s

dynamic programming algorithm [Greene, 1983]. For the decomposition approach,

both the eager and lazy variants were implemented; however only the lazy variants

of the direct approach were tested. Each variant was tested with (of course) exactly

the same input sequence of interaction.

While much consideration has been given to the implementation of Simplex-

based constraint solvers, they are still vulnerable to floating-point inaccuracy. This

can particularly be a problem when repeatedly solving highly constrained prob-

lems with non-integer coefficients, such as occur with non-overlap and text layout.

As such, we provide results with both double-precision arithmetic, which is sig-

nificantly faster but vulnerable to numerical stability issues, and an exact rational

representation using GMP (gmplib.org).

Two experiments were conducted. Both involved direct manipulation of di-

agrams containing a large number of non-convex polygons some of which were

linked by alignment constraints. We focused on non-convex polygons because all

of our algorithms will be faster with convex polygons than non-convex. The exper-

imental comparison of the approaches were run on an Intel Core2 Duo E8400 with

4GB RAM.
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(a) (b)

Figure 8.22: Diagrams for testing. (a) Non-overlap of polygons representing text.
The actual diagram is constructed of either 2 or 3 repetitions of this phrase. (b) The
top row of shapes is constrained to align, and pushed down until each successive
row of shapes is in contact.

The first experiment measured the time taken to solve the constraint system

for a particular set of desired values during direct manipulation of the diagram

containing non-convex polygons representing letters, shown in Figure 8.22(a). In-

dividual letters were selected and moved into the center of the diagram in turn.

The results are given in Table 8.1(a). Note that the eager variants were terminated

after 30 minutes – they were far too slow to be usable in practice. It is interesting

to note that, in this instance, the solver was faster using rationals than using dou-

bles; this appears to be due to numerical instability causing the simplex solver to

converge slowly.

In order to further explore scalability, a diagram of tightly fitting U-shapes, Fig-

ure 8.22(b), of a varying number of rows was constructed, and the top row pushed

through the lower layers. Results are given in Figure 8.1(b).

The performance of the eager decomposition approach clearly highlights the

need for the Lazy SLA algorithm; the lazy version could be solved between 5 and

100 times faster.

The results clearly demonstrate that the direct approach is significantly faster

than the decomposition approach. When using a floating point representation, any

of the lazy variants could be used for direct manipulation. Even when using exact

numerical representation, the direct approach, combined with bounding-box based

collision detection, could be solved quickly enough to facilitate direct manipulation

without noticeable delay.
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Rational Decomp. Direct
Eager† Lazy Lazy+BB Lazy Lazy+BB

Ave Time 1510.36 392.00 24.52 58.73 12.21
Max Time 720184.00 982.90 123.09 247.07 41.00
Ave Cycle 2.84 1.18 2.06 1.14 1.14
Max Cycle 27 5 11 6 6

Double Decomp. Direct
Eager† Lazy Lazy+BB Lazy Lazy+BB

Ave Time 2428.26 6.27 1.56 1.08 0.89
Max Time 169708.00 68.53 10.56 5.84 33.66
Ave Cycle 3.948 1.37 1.61 1.17 1.18
Max Cycle 15 16 13 6 18

(a) Text diagram

Rational Decomp. Direct
Rows Eager Lazy Lazy+BB Lazy Lazy+BB

5 365.87 71.08 18.38 18.74 10.01

6 623.04 100.86 23.80 25.86 12.23

7 1080.01 133.83 29.64 36.65 15.90

8 1545.00 164.58 35.82 46.10 18.37

9 2698.42 206.31 40.84 59.02 23.47

10 3830.43 246.33 47.44 72.38 25.18

Double Decomp. Direct
Rows Eager Lazy Lazy+BB Lazy Lazy+BB

5 37.00 0.98 0.80 0.67 0.66

6 96.43 1.29 1.03 0.83 0.83

7 121.53 1.82 1.30 1.15 1.07

8 215.59 2.62 1.46 1.27 1.25

9 316.91 3.64 1.78 1.65 1.50

10 528.65 4.67 2.03 1.95 1.65
(b) U-shaped polygons

Table 8.1: Experimental results. For the text diagram, we show the average and
maximum time to reach a stable solution, and the average and maximum num-
ber of solving cycles (iterations of the repeat while loop in Figure 8.6) to stabilize.
Experiments marked with †were terminated after 30 mins. For the U-shaped poly-
gon test we show average time to reach a stable solution as the number of rows
increases. All times are in milliseconds.
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8.7 Conclusions

We have described a new generic approach to geometric constraint solving in in-

teractive graphical application that we call smooth linear approximation (SLA). We

believe it is the first viable approach to handling a wide variety of non-linear geo-

metric constraints in combination with linear constraints in interactive constraint-

based graphical applications.

A particular focus of the chapter has been handling non-overlap of (possibly

non-convex) polygons. We presented two possible approaches for handling non-

overlap of non-convex polygons and have shown that the direct method (which

models non-overlap of polygons A and B by the constraint that A is contained in

the region that is the complement of B) is significantly faster than decomposing

each non-convex polygons into a collection of adjoining convex polygons.

We have also shown that the direct method can be sped up by combining it with

traditional collision-detection techniques in order to lazily add the non-overlap

constraint only when the bounding boxes of the polygons overlap. This is capable

of solving non-overlap of large numbers of complex, non-convex polygons rapidly

enough to allow direct manipulation, even when combined with other types of lin-

ear constraints, such as alignment constraints.
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9
Conclusion

IN this thesis we have developed two types of generic propagators for lazy

clause generation solvers, that can be used to enforce a variety of global con-

straints, and developed models for a variety of diagram and document com-

position problems. We have also presented a modelling technique for supporting

complex geometric constraints in an interactive constraint-based diagram system.

In Chapter 3, we introduced new algorithms for propagating constraints ex-

pressed as Multi-valued Decision Diagrams. To support their use in lazy clause

generation solvers, we also developed several algorithms for explaining inferences

generated by these propagators. We evaluated these propagators (and explana-

tion algorithms) using several problems with a variety of regular and sequence

constraints. In Chapter 4, we adapted these methods to constraints represented

as s-DNNF circuits. This representation, a superset of MDDs, is slightly more ex-

pensive for analysis, but allows a polynomial representation for several classes of

constraints that require an exponential number of nodes to construct as an MDD.

We compared these s-DNNF propagators to previously published results on shift

scheduling using a domain-consistent decomposition. In all cases, at least one of

the s-DNNF propagators outperformed the decomposition; incremental propaga-

tion with explanation weakening was the best overall method on these problems.

We also presented results for a forklift scheduling problem.

In both of these cases, incremental/greedy explanations were often superior,

sometimes because they resulted in reduced search, and in other cases because

minimal explanations were too expensive to compute. However, we were unable to
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CHAPTER 9. CONCLUSION

find any method that was uniformly better on all problems. A direction of definite

interest, then, is to determine what characteristics of problem or constraint deter-

mine which explanation algorithm will be beneficial, either statically, or dynami-

cally during search. Also, these explanation algorithms operate on a constraint in

isolation. An interesting path for further work is to find a way of constructing a

better (smaller, or more re-usable) global explanation taking into account the set of

propagators involved in a conflict.

The intent of developing these techniques is to take advantage of modern Boolean

reasoning techniques without losing the ability to reason about the high-level struc-

ture of the given problem. While we have considered two approaches for repre-

senting arbitrary constraints, there may be alternative representations which can

more concisely encode certain classes of constraints, or allow more efficient anal-

ysis. Also, these propagators communicate only through clauses relating to the

externally visible variables; there may be better ways of connecting the low-level

Boolean representation with the higher-level propagators.

We have also applied combinatorial optimization techniques to solve a vari-

ety of document composition and layout problems. In Chapter 5 we developed

SAT- and MIP-based models for constructing layouts for k-layered graphs with

minimum crossings, and with a maximal planar subgraph. The MIP-based model

was consistently able to solve larger crossing minimization problems than the SAT

model; however for the planar subset problem, the SAT model was superior. Al-

most all the collected graphs from the GraphViz gallery could be solved within

one minute, as could most of the random graphs. These models were extended

to handle combined objective functions – solving first crossing minimization then

planarization, and planarization then crossing minimization. For crossing mini-

mization then planarization, the MIP-based model was again superior, only failing

to solve 4 instances within one minute. For planarization then crossing minimiza-

tion, the MIP model was able to quickly find good solutions, but the SAT model

was able to prove optimality of substantially more instances.

The models in Chapter 5 only address the second phase of the Sugiyama lay-

out process, and assumes nodes have already been assigned to layers. It would be

interesting to construct a model for solving the optimal complete k-layered cross-

ing minimization problem; that is, given a graph and a number of layers, find the
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layering and ordering within layers which minimizes the number of crossings. It

would also be of interest to apply similar techniques to other graph layout prob-

lems, such as optimal connector routing for graphs with rectangular (or otherwise

area-consuming) vertices.

We have presented several models for computing minimal-height table layouts,

both with and without column- and row-spans. These models used a variety of

solver technologies, including integer programming, constraint programming and

A? search. As expected, the constraint-programming method without learning was

substantially inferior to the other methods. All the other methods were able to solve

almost all the scraped HTML tables in under 10 seconds; however, the cell-free lazy

clause generation model consistently outperformed all the other models, solving

all the HTML tables in under 0.1 seconds, and performing 1–2 orders of magnitude

faster on the artificially generated tables. These models assume the input is text,

so we can pre-compute a discrete set of possible configurations. Further work in-

volves extending these models to handle a wider range of content; tables including

sub-tables, images and other floating elements.

For the guillotine layout problem, we developed several methods for both the

fixed and free variants. As the recursive structure of the problems (particularly the

free layout problem) rendered them unsuitable for conventional constraint solvers,

we developed bottom-up and top-down dynamic programming approaches. We

also applied bounding techniques to improve the performance of the top-down ap-

proaches. For the fixed layout problem, the bottom-up method was far superior,

and could quickly construct optimal solutions to large instances; adding bound-

ing resulted in only a small improvement to top-down performance. The poor

performance of the top-down methods is likely due to the large width and sparse

solution space of the fixed layout problem. With the free layout problem, how-

ever, bounded top-down dynamic programming is approximately twice as fast as

bottom-up construction. For instances with a column-based layout, the bounded

top-down method is generally 1–2 orders of magnitude faster, as we can often cut

off search early when we find a solution that is guaranteed to be optimal. As for

the table layout, these guillotine layout methods are limited to text, where we pre-

calculate the set of possible article configurations; eventually we would like to ex-

tend this to handle a wider class of media. Also, many articles are available in
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CHAPTER 9. CONCLUSION

multiple forms – with or without header images, and with more verbose body text.

It would be interesting to explore related composition and pagination problems

with different objective functions – trying to maximise some measure of “niceness”

for the overall layout, rather than just minimizing height.

We have described Smooth Linear Approximation (SLA), a method for integrat-

ing complex geometric constraints into a constraint-based layout system by con-

structing and updating local linear approximations to the constraints. We demon-

strated the use of this modelling technique by implementing a variety of constraints

including flexible text-boxes, Euclidian separation constraints, and non-overlap of

boxes, convex polygons and non-convex polygons. In many of these cases, main-

taining the approximation in the solver is expensive, and many of the constraints

are not binding (particularly in the case of non-overlap, with O(n2) constraints, at

most O(n) of which may be binding). As such, we developed the lazy SLA al-

gorithm, and demonstrate that it is capable of maintaining non-overlap of a large

number of complex polygons together with alignment constraints quickly enough

to permit direct manipulation.

The current technique for handling polygon non-overlap constraints relies on

having fixed size and orientation of the polygons. Handling re-sizing of convex

polygons should be relatively simple; a more challenging task is to handle changes

in orientation (such as rotation) or other kinds of deformation. Also of interest is

the application of these techniques to other kinds of constraints.

As more and more of our reading moves online, it is increasingly necessary to

provide dynamic publications which can adapt to individual readers and display

devices. This requires the development of new tools and methods for automatically

composing layouts for diverse classes of documents; these layout tasks are a ready

supply of increasingly hard combinatorial problems. In turn, this motivates the

development of new methods for improving the performance of combinatorial op-

timization techniques. Conversely, the continuing improvements to combinatorial

optimization techniques allow us to solve practical instances of increasingly hard

problems, and encourage us to attempt problems that were previously considered

intractable. We hope that this cyclical feedback will result in considerable benefits

for practitioners of both fields.
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O. Lhomme and J. Régin. A fast arc consistency algorithm for n-ary constraints.

In Proceedings of The Twentieth National Conference on Artificial Intelligence and the

Seventeenth Innovative Applications of Artificial Intelligence Conference, pages 405–

410. AAAI Press / The MIT Press, 2005.

M. Lin, D. Manocha, and J. Cohen. Collision detection: Algorithms and applica-

tions, 1996.

X. Lin. Active layout engine: Algorithms and applications in variable data printing.

Computer-Aided Design, 38(5):444–456, 2006.

I. Maros and G. Mitra. Simplex algorithms. In J. Beasley, editor, Advances in Linear

and Integer Programming, Oxford Lecture Series in Mathematics and Its Applica-

tions, 4. Clarendon Press, 1996.

J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

K. Marriott and S. Chok. Qoca: A constraint solving toolkit for interactive graphical

applications. Constraints, 7(3):229–254, 2002.

K. Marriott, S. Chok, and A. Finlay. A tableau based constraint solving toolkit for

interactive graphical applications. In Proceedings of the 4th International Conference

on Principles and Practice of Constraint Programming, pages 340–354, London, UK,

1998. Springer-Verlag.

K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M. Garcia de la Banda, and M. Wal-

lace. The design of the Zinc modelling language. Constraints, 13(3):229–267, 2008.

S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.

Operations Research, 48(2):256–267, 2000.

C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline

crossing minimization. In Proceedings of the 7th International Symposium on Graph

Drawing, volume 1731 of LNCS, pages 217–224. Springer, 1999.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In 38th Design Automation Conference, pages 530–535, 2001.

202



BIBLIOGRAPHY

P. Mutzel. An alternative method to crossing minimization on hierarchical graphs.

In Proceedings of the 4th International Symposium on Graph Drawing, volume 1190

of LNCS, pages 318–333. Springer, 1996.

G. Nelson. Juno, a constraint-based graphics system. In SIGGRAPH ’85 Conference

Proceedings, pages 235–243, San Francisco, July 1985. ACM.

R. Nieuwenhuis and A. Oliveras. DPLL(T ) with exhaustive theory propagation

and its application to difference logic. In CAV, pages 321–334, 2005.

J. Nocedal and S. Wright. Numerical optimization. Springer-Verlag, 1999. ISBN

0387987932.

O. Ohrimenko, P. Stuckey, and M. Codish. Propagation via lazy clause generation.

Constraints, 14(3):357–391, 2009.

J. O’Rourke. Computational Geometry in C. 2nd edition, 1998.

G. Pesant. A regular language membership constraint for finite sequences of vari-

ables. In M. Wallace, editor, Proceedings of the 10th International Conference on

Principles and Practice of Constraint Programming, volume 3258 of LNCS, pages

482–495. Springer-Verlag, 2004.

J. Puchinger and P. J. Stuckey. Automating branch-and-bound for dynamic pro-

grams. In Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-based Program Manipulation, pages 81–89. ACM, 2008.

C. Quimper and T. Walsh. Global grammar constraints. In Proceedings of the 12th In-

ternational Conference on Principles and Practice of Constraint Programming, volume

4204 of LNCS, pages 751–755, 2006.

C. Quimper and T. Walsh. Decomposing global grammar constraints. In Proceedings

of the 13th International Conference on Principles and Practice of Constraint Program-

ming, volume 4741 of LNCS, pages 590–604, 2007.

D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 Specification, section ‘Autolay-

out Algorithm’. http://www.w3.org/TR/html4/appendix/notes.html\

verb|#|h-B.5.2, 1999.

203



BIBLIOGRAPHY

G. Ramkumar. An algorithm to compute the Minkowski sum outer-face of two

simple polygons. Proceedings of the Twelfth Annual Symposium on Computational

geometry, pages 234–241, 1996.

B. Randerath, E. Speckenmeyer, E. Boros, P. Hammer, A. Kogan, K. Makino,

B. Simeone, and O. Cepek. A satisfiability formulation of problems on level

graphs. Electronic Notes in Discrete Mathematics, 9:269–277, 2001.

R. Rasmussen and M. A. Trick. Round robin scheduling – a survey. European Journal

of Operational Research, 188(3):617–636, 2008.
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