
Smooth Linear Approximation of Non-overlap
Constraints

Graeme Gange1, Kim Marriott2, and Peter J. Stuckey1,3

1 Department of Comp Sci and Soft Eng
University of Melbourne, 3010, Australia

ggange@csse.unimelb.edu.au
2 Clayton School of IT Monash University, 3800, Australia

Kim.Marriott@infotech.monash.edu.au
3 National ICT Australia, Victoria Laboratory

pjs@csse.unimelb.edu.au

Abstract. Constraint-based placement tools and their use in diagram-
ming tools has been investigated for decades. One of the most important
and natural placement constraints in diagrams is that their graphic el-
ements do not overlap. However, non-overlap of objects, especially non-
convex objects, is extremely difficult to solve, especially to solve suffi-
ciently rapidly for direct manipulation. Here we present the first prac-
tical approach for solving non-overlap of possibly non-convex objects
in conjunction with other placement constraints such as alignment and
distribution. Our methods are based on approximating the non-overlap
constraint by a smoothly changing linear approximation. We have found
that this in combination with techniques for lazy addition of constraints,
is rapid enough to support direct manipulation in reasonably sized dia-
grams.

1 Introduction

Diagram editors were one of the earliest applications areas for constraint-solving
techniques in computing [22]. Constraint solving allows the editor to preserve
design aesthetics, such as alignment and distribution, and structural constraints,
such as non-overlap between objects, during manipulation of the graphic objects.
The desire for real-time updating of the layout during user interaction means
that fast incremental constraint solving techniques are required. This, and the
difficult, non-linear, combinatorial nature of some geometric constraints, has
motivated the development of many specialized constraint solving algorithms.

Geometric constraint solving techniques have evolved considerably and mod-
ern diagram editors, such as MicrosSoft Visio and ConceptDraw, provide place-
ment tools that impose persistent geometric constraints on the diagram elements,
such as alignment and distribution. However, the kind of constraints provided
is quite limited and, in particular, does not include automatic preservation of
non-overlap between objects. This is, perhaps, unsurprising since solving non-
overlap constraints is NP-hard. Here we address the problem of how to solve non-
overlap constraints in conjunction with alignment and distribution constraints



Fig. 1. An example of non-overlap interacting with alignment. Each word is aligned
horizontally, and no letter can overlap another. Starting from the left position direct
manipulation of the letters updates the position of all objects in real time as letters
are dragged around to reach the right position.

(a) (b) (c)

Fig. 2. Dynamic linear approximation of non-overlap between two boxes. Satisfaction
of any of the constraints: left-of, above, below and right-of is sufficient to ensure non-
overlap. Initially (a) the left-of constraint is satisfied. As the left rectangle is moved
(b), it passes through a state where both the left-of and above constraint are satisfied.
When the left-of constraint stops the movement right, the approximation is updated
to above and (c) motion can continue.

sufficiently quickly to support real-time updating of layout during user interac-
tion. We have integrated our non-overlap constraints into the constraint based
diagramming tool Dunnart. An example of using the tool is shown in Figure 1.

The key to our approach is the use of dynamic linear approximation (DLA) [16,
12]. While many geometric constraints, such as alignment and distribution are
linear, non-overlap is inherently non-linear. In DLA, non-linear constraints are
approximated by linear constraints. In a specialization of this technique, smooth
linear approximation (SLA), as the solution changes the linear approximation
is smoothly modified. The approach is exemplified in Figure 2. Efficient incre-
mental solving techniques for linear constraints [1] mean that this approach is
potentially fast enough for interactive graphical applications. It is worth point-
ing out that SLA is not designed to find a new solution from scratch, rather it
takes an existing solution and continuously updates this to find a new locally
optimal solution. This is why the approach is tractable and also well suited to

2



interaction since, if the user does not like the local optimum the system has
found, then they can use direct manipulation to escape the local optimum.

Previous research has described a number of proof-of-concept toys that demon-
strate the usefulness of SLA for non-overlap of two simple shapes, axis-aligned
rectangles and circles. In this paper we extend this to provide the first system-
atic investigation of how to use SLA to handle non-overlap between arbitrary
polygons of fixed sized and orientation. Handling convex polygons is a relatively
straightforward extension from axis aligned rectangles. A single linear constraint
between each pair of objects suffices to ensure non-overlap. Handling non-convex
polygons is considerably more difficult and the main focus of this paper.

The first approach (described in Section 5.1) is to decompose each non-convex
polygon into a collection of convex polygons joined by equality constraints. Un-
fortunately, this leads to a large number of linear constraints between each pair
of non-convex polygons since if these are decomposed into m and n convex poly-
gons, respectively, then this gives rise to to mn constraints. In our second ap-
proach (described in Section 5.2), we invert the problem and, in essence, model
non-overlap of polygons A and B by the constraint that A is contained in the
region that is the complement of B.

As we have described them, the above two methods are conservative in the
sense that for each pair of objects there is always a linear constraint in the
solver ensuring that the objects will not overlap. However, if the objects are not
near each other this incurs the overhead of keeping an inactive inequality in the
linear solver. We also investigate non-conservative, lazy, variants of the above
two methods in which the linear constraints are added only if the objects are
“sufficiently” close and removed once they are sufficiently far apart. These utilize
fast collision-detection algorithms [14]4 and are described in Section 6.

We provide a detailed empirical evaluation of these different approaches and
their variants in Section 7. We find that SLA using the inverse approach with
lazy addition of constraints is the fastest technique. Furthermore, it is very fast
and fast enough to support immediate updating of object positions during direct
manipulation for practically sized diagrams. We believe the algorithms described
here provide the first viable approach to handling non-overlap of (possibly non-
convex) polygons in combination with other constraints in constraint-based di-
agramming tools.

2 Related Work

Starting with Sutherland [22], there has been considerable work on developing
constraint solving algorithms for supporting direct manipulation in interactive
graphical applications. These approaches fall into four main classes: propagation
4 It is perhaps worth emphasizing that collision-detection algorithms by themselves

are not enough to solve our problem. We are not just interested in detecting overlap:
rather, we must ensure that objects do not overlap while still satisfying other design
and structural constraints and placing objects as close as possible to the user’s
desired location.

3



based (e.g. [23]); linear arithmetic solver based (e.g. [3]); geometric solver-based
(e.g. [13]); and general non-linear optimisation methods such as Newton-Raphson
iteration (e.g. [17]). However, none of these techniques support non-overlap.

Non-overlap constraints have been considered by Baraff [2] and Harada,
Witkin, and Baraff [10], who use a specialised force based approach, modelling
the non-overlap constraint between objects by a repulsion between them if they
touch. However, they do not consider non-overlap constraints in conjunction
with other linear constraints. Hosobe [11] describes a general purpose constraint
solving architecture that handles non-overlap constraints and other non-linear
constraints. The system uses variable elimination to handle linear equalities and
a combination of non-linear optimisation and genetic algorithms to handle the
other constraints. Our approach addresses the same issue but is technically quite
different, and we believe much faster.

The most closely related work are our earlier papers introducing DLA [16,
12]. The present paper extends these by providing a more detailed investigation
of non-overlap and, in particular, of non-overlap of non-convex polygons. The
algorithms given here to compute the linear approximation are all new.

3 Background: Smooth Linear Approximation

In constraint-based editors the author can place geometric constraints on the
objects in the diagram. During subsequent editing these geometric constraints
will be maintained until the user explicitly removes them. Standard geometric
constraints are:
• horizontal and vertical alignment
• horizontal and vertical distribution
• horizontal and vertical ordering that keeps objects a minimum distance apart

horizontally or vertically while preserving their relative ordering
• an “anchor” tool that allows the user to fix the current position of a selected

object or set of objects.
Each of the above geometric relationships can be modelled as a linear con-

straint over variables representing the position of the objects in the diagram.
For this reason, a standard approach in constraint-based graphics editors is to
use a constraint solver that can support arbitrary linear constraints.

Direct manipulation is handled as follows. Assume that the variables y1, ..., ym

correspond to objects which are the subject of the direct manipulation and that
the variables x1, ..., xn correspond to the remaining objects, and let C be the set
of linear constraints representing geometry constraints. During directly manipu-
lation the system successively solves a sequence of linear optimization problems
of the form:

Minimize ws

∑n
i=1 |xi − ci|+ we

∑m
i=j |yj − dj | subject to C

where ci is the current value of xi and dj is the desired value of yj . The weighting
constants ws and we specify how important it is to move the yj ’s to their desired

4



position as opposed to leaving the xi’s at their current position. Typically we is
much greater than ws.

The effect of the optimization is to move the objects being directly manipu-
lated to their desired value, i.e. where the user wishes to place them, and leave
the other objects where they are unless they are connected by constraints to the
objects being moved. This optimization problem is repeatedly resolved during
direct manipulation for different values of the di’s. Fast incremental algorithms
have been developed to do this so that the object positions can be updated in
real-time [1].

However, not all geometric constraints are linear. Dynamic linear approxima-
tion (DLA) [16, 12] is a recent technique for handling non-linear constraints that
builds upon the aforementioned efficient linear constraint solving algorithms. In
DLA, non-linear constraints are approximated by linear constraints.

Consider a complex constraint C. A linear approximation of a complex con-
straint is a (possibly infinite) disjunctive set of linear configurations {F0, F1, . . . }
where each configuration Fi is a conjunction of linear constraints. For example
for the non-overlap constraint of the two boxes in Figure 2 there are four con-
figurations left-of, above, below and right-of each consisting of a single linear
constraint. We require that the linear approximation is safe in the sense that
each linear configuration implies the complex constraint and complete in the
sense that each solution of C is a solution of one of the linear configurations.
For the purposes of this paper we will consider the complex constraint C to be
a disjunctive set of its linear configurations.

In a specialization of this technique, smooth linear approximation (SLA), as
the solution changes the linear approximation is smoothly modified. SLA works
by moving from one configuration for a constraint to another, requiring that
both configurations are satisfied at the point of change. This smoothness criteria
reduces the difficulty of the problem substantially since we need to consider only
configurations that are satisfied with the present state of the diagram. It also
fits well with continuous updating of the diagram during direct manipulation.

The initial approach to smooth linear approxiation [16] involved keeping all
disjunctive configurations in the underlying linear solver, and relying on the
solver to switch between disjunctions. This has a number of problems: the num-
ber of configurations must be finite, and there is significant overhead in keeping
all configurations in the solver. This was improved in [12] by storing only the
current configuration in the solver and dynamically generating and checking
satisfiability of other configurations when required.

The basic generic algorithm for solving a set of smooth linear approximations
is given in Figure 3. Given a set of complex constraints C and their current con-
figurations F as well as an objective function o to be mininimized, the algorithm
uses a linear constraint solver to find an minimal solution θ with the current
configuration. It then searches for alternative configurations that are satisfied
currently, but if replaced would allow the objective function to decrease further.
The algorithm repeatedly replaces configurations until no further improvement
is possible. The algorithm is generic in:

5



sla(C, F, o)
Let C = {C0, C1, ..., Cn} be the set of complex constraints.
Let F = {F0, F1, ..., Fn} be the current set of configurations.
repeat

θ := minimize o subject to
Vn

j=1 Fj

finished := true
for i ∈ 1..n

F ′
i = update(θ, Ci, Fi,

Vn
j=1,j 6=i Fj , o)

if Fi 6= F ′
i then

Fi := F ′
i

finished := false
until finished

update(θ, C, F,F, o)
if ∃F ′ ∈ C where F ′ 6= F and θ satisfies F ′

and F ′ will improve the solution
return F ′

else return F

Fig. 3. General algorithm for solving sets of smooth linear approximations.

– The choice and technique for generating the linear configurations for the
complex constraint.

– How to determine if an alternative linear configuration might improve the
solution.

In the next two sections we describe various choices for these operations for
modelling non-overlap of two polygons.

4 Non-overlap of convex polygons

Smooth Linear Approximation (SLA) is well suited to modelling non-overlap of
convex polygons. The basis for our approach is the Minkowski difference, denoted
by P ⊕ − Q, of the two polygons P and Q we wish to ensure do not overlap.
Given some fixed point pQ in Q and pP in P the Minkowski difference is the
polygon M s.t. the point pQ − pP (henceforth referred to as the query point) is
inside M iff P and Q intersect.

For convex polygons, it is possible to “walk” one polygon around the bound-
ary of the second; the vertices of the Minkowski difference consist of the offsets
of the second polygon at the extreme points of the walk. It follows that the
Minkowski difference of two convex polygons is also convex. An example of the
Minkowski difference of two convex polygons is given in Figure 4 while an ex-
ample of a non-convex Minkowski sum is shown in Figure 5.

6



�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Fig. 4. A unit square S and unit diamond D and their Minkowski difference S ⊕−D.
The local origin points for each shape are shown as circles.

There has been considerable research into efficient computation of the Minkowski
difference of two polygons.5 Optimal O(n + m) algorithms for computing the
Minkowski difference of two convex polygons with n and m vertices have been
known for some time [8, 18]. Until recently calculation of the non-convex Minkowski
difference decomposed the polygons into convex components, constructed the
convex Minkowski difference of each pair, and took the union of the resulting
differences. Recently direct algorithms have appeared based on convolutions of
a pair of polygons [19, 6]. We make use of the implementations in the CGAL
(www.cgal.org) computational geometry library.

We can model non-overlap of convex polygons P and Q by the constraint that
the query point is not inside their Minkowski difference, M . As the Minkoskwi
difference of two convex polygons is a convex polygon, it is straightforward to
model non-containment in M : it is a disjunction of single linear constraints, one
for each side of M , specifying that the query point lies on the outside of that
edge.

Consider the unit square S and unit diamond D shown in the left of Figure 4.
Their Minkowski difference is shown in the right of Figure 4. The linear approxi-
mation of the non-overlap constraint between S and D is the disjunctive configu-
ration: {y ≤ 0, x+y ≤ 0, x ≤ 0.5, y−x ≥ 2, y ≥ 2, x+y ≥ 3, x ≤ 1.5, y−x ≤ −1}
which represent the 8 sides of the Minkowski difference shown at the right of the
figure, from the bottom in clockwise order, where (x, y) = (xD, yD) − (xS , yS)
represents the relative position of the diamond to the square.

The approximation is conservative and accurate. It is also relatively simple
and efficient to update the approximation as the shapes are moved. Note that the
Minkowski difference only needs to be computed once. However before getting
into details of how to update the approximation, we need to introduce Lagrange

5 More precisely, research has focussed on the computation of their Minkowski sum
since the Minkowski difference of A and B is simply the Minkowski sum of A and a
reflection of B.

7



multipliers. These are a fundamental notion in constrained optimization, but
describing their properties is beyond the scope of this paper; the interested reader
is referred to [7]. Here, it suffices to understand that the value of the Lagrange
multiplier λc for a linear inequality c ≡

∑n
i=1 aixi ≤ b provides a measure of how

“binding” a constraint is; it gives the rate of increase of the objective function
as a function of the rate of increase of b. That is, it gives the cost that imposing
the constraint will have on the objective function, or conversely, how much the
objective can be increased if the constraint is relaxed.6

Thus, intuitively, a constraint with a small Lagrange multiplier is preferable
to one with a large Lagrange multiplier since it has less effect on the objective.
In particular, removing a constraint with a Lagrange multiplier of 0 will not
allow the objective to be improved and so the Lagrange multiplier is defined to
be 0 for an inequality that is not active, i.e. if

∑n
i=1 aixi < b. Simplex-based

linear constraint solvers, as a byproduct of optimization, compute the Lagrange
multiplier of all constraints in the solver.

Updating of the linear approximation to non-overlap with a convex polygon
works as follows. Assume that the current linear approximation is the linear
constraint c corresponding to boundary edge e and that the current solution is
θ. If λc = 0 we need do nothing since changing the constraint could not improve
the solution. Otherwise assume that λc > 0. We consider the two edges e1 and
e2 adjacent to e and their corresponding constraints c1 and c2. If θ does not
satisfy c1 and does not satisfy c2, then we do not change the choice of linear
approximation since it cannot be done smoothly. Otherwise, it will satisfy at
most one of the two, say c1. We must now determine if it will improve the
solution if we swap c for c1. We do this by tentatively adding c1 to the solver
and computing its Lagrange multiplier λc1 . (Note that this is very efficient since
the current solution will still be the optimum.) If λc1 < λc then we are better
off swapping to use c1. This is done by removing c from the solver, leaving c1 in
the solver. Otherwise, we are better off staying with the current approximation,
so we remove c1 from the solver.

5 Non-Convex Polygons

We now give two extensions of our technique for handling non-overlap of convex
polygons to the case when one or both of the polygons are non-convex. We do
not allow holes in the polygons.

5.1 Decomposition into convex polygons

Probably the most obvious approach is to simply decompose the non-convex
polygons into a union of convex polygons which are constrained to be joined
together (either using equality constraints, or simply using the same variables

6 It follows that at an optimal solution the Lagrange multiplier λc for an inequality
cannot be negative.

8



������
������
������
������
������
������
������

������
������
������
������
������
������
������

Fig. 5. The Minkowski difference of a non-convex and a convex polygon. From left, A,
B, extreme positions of A and B, A⊕−B.

to denote their position), and add a non-overlap constraint for each pair of
polygons.

This decomposition based method is relatively simple to implement since
there are a number of well explored methods for convex partitioning of poly-
gons, including Greene’s [9] dynamic programming method for optimal parti-
tioning. However, it has a potentially serious drawback: in the worst case, even
the optimal decomposition of a non-convex polygon will have a number of convex
components that is O(n) where n the number of vertices in the polygon. This
means that in the worst case the non-overlap constraint for each pair of non-
convex polygons with O(n) vertices will lead to O(n2) non-overlap constraints
between the convex polygons.

5.2 Inverse Approach

However, in reality most of these Ω(n2) constraints are redundant and unneces-
sary. An alternative approach is to use our earlier observation that we can model
non-overlap of convex polygons P and Q by the constraint that the query point
is not inside their Minkowski difference, M . This remains true for non-convex
polygons, although the Minkowski difference may now be non-convex. An exam-
ple Minkowski difference for a non-convex polygon is shown in Figure 5.

In our second approach we pre-compute the Minkowski difference M of the
two, possibly non-convex, polygons P and Q and then decompose the space not
occupied by the Minkowski polygon into a union of convex regions, R1, .., Rm.
We have that the query point is not inside M iff it is inside one of these convex
regions. Thus, we can model non-overlap by a disjunction of linear constraints,
with one for each region Ri, specifying that the query point lies inside the region.
We call this the inverse approach.

The present implementation discards any holes in the resulting Minkowski
difference, yielding a simple polygon.7 This can be described by the polygon’s
7 Holes could be handled by detecting whether the query point is inside a hole at

construction, and keeping either the outer face or the appropriate hole as needed.

9



Fig. 6. A non-convex polygon, together with convex hull, decomposed pockets and
adjacency graphs. From a given region, the next configuration must be one of those
adjacent to the current region.

convex hull and a series of non-convex pockets where the boundary of the polygon
deviates from the convex hull. The key to the inverse approach is that whenever
the query point is not overlapping with the polygon, it must be either outside the
convex hull of the polygon (as in the convex case), or inside one of the pockets. If
each pocket is then partitioned into convex regions, it is possible to approximate
the non-overlap of two polygons with either a single linear constraint (for the
convex hull) or a convex containment (for a pocket region). An example is shown
in Figure 6

As the desired goal is to reduce the number of constraints in the linear con-
straint solver, it seems reasonable to partition the pockets into triangular regions,
resulting in at most 3 constraints per pair of polygons. The use of a triangula-
tion has the added benefit of defining an adjacency graph which allows selection
of adjacent regions in O(1) time (Figure 6). There are a number of algorithms
for partitioning simple polygons into triangles [21, 4], of varying complexity; the
present implementation uses a simple approach described by O’Rourke [18].

One of the advantages of the inverse approach is that, in most cases, partic-
ularly when the pairs of polygons are distant, the two polygons are treated as
convex. It is only when the polygons are touching, and the query point lies upon
the opening to a pocket that anything more complex occurs.

Updating of the approximation extends that given earlier for convex poly-
gons. The new case is that the current linear approximation is one of the tri-
angular regions, R, in the pocket. In this case it has three constraints c1, c2, c3

corresponding to each boundary edge. We have pre-computed the subset of those
constraints that correspond to boundary constraints that are permeable in the
sense that the boundary is shared with the convex hull or another triangular
region. We compare the Lagrange multipliers of these constraints and determine
which constraint has the largest Lagrange multiplier, say c. If λc = 0 we need do
nothing since changing the region cannot improve the solution. Otherwise the
current solution is on the boundary corresponding to c and so we move to the
adjacent region sharing the same boundary.

6 Lazy Addition of Constraints

The preceding methods are all conservative in the sense that for each pair of
objects there is always a linear constraint in the solver ensuring that the objects

10



will not overlap. However, if the objects are not near each other this incurs the
overhead of keeping an inactive inequality in the linear solver. A potentially
more efficient approach is to lazily add the linear constraints only if the objects
are “sufficiently” close and remove them once they are sufficiently far apart.

We have investigated two variants of this idea which differ in the meaning
of sufficiently close. The first method measures closeness by using the bounding
boxes of the polygons. If these overlap, a linear approximation for the complex
constraint is added and once they stop overlapping it is removed. We also in-
vestigated a more precise form of closeness, based on the intersection of the
actual polygons, rather than the bounding box. However, we found the overhead
involved in detecting intersection and the instability introduced by repeatedly
adding and removing the non-overlap constraint made this approach infeasible.
Thus we focus on the first variant.

Implementation relies on an efficient method for determining if the bound-
ing boxes of the polygons overlap. Determining if n 2-D bodies overlap is a
well studied problem and numerous algorithms and data structures devised in-
cluding Quad/Oct-trees [20], and dynamic versions of structures such as range,
segment and interval-trees [5]. Unfortunately many of these methods handle non-
rectangular shapes poorly, or are very difficult to implement. The method we
have chosen to use is an adaptation of that presented in [14].

The algorithm is based, as with most efficient rectangle-intersection solu-
tions, on the observation that two rectangles in some number of dimensions will
intersect if and only if the span of the rectangles intersect in every dimension.
Thus, maintaining a set of interacting rectangles is equivalent to maintaining (in
two dimensions) two sets of intersecting intervals.

The algorithm acts by first building a sorted list of rectangle endpoints,
and marking corresponding pairs to denote whether or not they are intersecting
in either dimension. While this step takes, in the worst case O(n2) time for n
rectangles, it is in general significantly faster. As shapes are moved, the list must
be maintained in sorted order, and interacting pairs updated. This is done by
using insertion sort at each time-step, which will sort an almost sorted list in
O(n) time.

Note that it is undesirable to remove the linear constraint enforcing non-
overlap between two polygons as soon as the solver moves them apart and their
bounding boxes no longer intersect; instead, such pairs of polygons are added
to a removal buffer, and then removed only if their bounding boxes are still not
intersecting after the solver has reached a stable solution.

A change in intersection is registered only when a left and right endpoint of
different bounding boxes swap positions. If a left endpoint is shifted to the left
of a right endpoint, an intersection is added if and only if the boxes are already
intersecting in all other dimensions. If a left endpoint is shifted to the right of
a right endpoint, the pair cannot intersect, so the pair is added to the removel
buffer (if currently intersecting). (See Figure 7)

Unfortunately, we have found that this simple approach to lazy (or late) addi-
tion of constraints has the significant drawback of violating the conservativeness

11



b2e4b4 e3b3e2e1b2b1 e4b4 e3b3e1b1 e2

Fig. 7. The sorted list of endpoints is kept to facilitate detection of changes in inter-
section. As the second box moves right, b2 moves to the right of e1, which means that
boxes 1 and 2 can no longer intersect. Conversely, endpoint e2 moves to the right of
b3, which means that boxes 2 and 3 may now intersect.

of the approximation and somewhat undermines the smoothness of the approxi-
mation since objects can momentarily overlap during direct manipulation. This
can cause problems when the objects are being moved rapidly; that is, the dis-
tance moved between solves is large compared to the size of the objects. This is
not very noticeable with the inverse approach but is quite noticeable with the
decomposition method, as the convex components (and hence bounding boxes)
are often rather small; if two shapes are moved sufficiently far between solves,
the local selection of configurations may be unsatisfiable.

One possible solution would be to approximate the shapes by a larger rectan-
gle with some “padding” around each of the objects. Another possible approach
is to use rollback to recover from overlapping objects. When overlap is detected
using collision detection, we roll back to the previous desired values (which did
not lead to overlap), add the non-overlap constraint and re-solve and, finally,
solve for the current desired value. This should maintain most of the speed ben-
efits of the current lazy addition approaches, while maintaining conservativeness
of approximation; and using a separate layer for the late addition avoids adding
additional complexity to the linear constraint solver.

7 Evaluation

The algorithms were implemented using the Cassowary linear inequality solver,
included with the QOCA constraint solving toolkit [15]. Non-convex Minkowski
difference calculation was implemented using the Minkowski sum 2 CGAL pack-
age produced by Wein [24]. We implemented both the decomposition and inverse
approach for handling non-overlap of non-convex polygons. The decomposition
was handled using Greene’s dynamic programming algorithm [9]. For each ver-
sion, both the conservative and lazy versions were implemented for comparison,
and (of course) executed with exactly the same input sequence of interaction.

Two experiments were conducted. Both involved direct manipulation of di-
agrams containing a large number of non-convex polygons some of which were
linked by alignment constraints. We focussed on non-convex polygons because
all of our algorithms will be faster with convex polygons than non-convex. The

12



(a) ( b)

Fig. 8. Diagrams for testing. (a) Non-overlap of polygons representing text. The actual
diagram is constructed of either 2 or 3 repetitions of this phrase. (b) The top row of
shapes is constrained to align, and pushed down until each successive row of shapes is
in contact.

experimental comparison of the approaches were run on an Intel Core2 Duo
E6700 with 2GB RAM.

The first experiment measured the time taken to solve the constraint system
for a particular set of desired values during direct manipulation of the diagram
containing non-convex polygons representing letters, shown in Figure 8(a). In-
dividual letters were selected and moved into the center of the diagram in turn.
The results are given in Table 1(a). Note that the conservative decomposition
method was unusable on the full diagram with 3 copies of the text, this is indi-
cated with “–” in the table entry. On a smaller version of the diagram with 2
copies of the text it took on average 107 milliseconds.

In order to further explore scalability, a diagram of tightly fitting U-shapes,
Figure 8(b), of a varying number of rows was constructed, and the top row
pushed through the lower layers. Results are given in Figure 1(b).

Direct Inverse
Cons Lazy Cons Lazy

Ave Time – 15.49 4.77 3.15

Max Time – 26.03 31.54 11.26

Ave Cycle – 2.58 1.89 2.55

Max Cycle – 18 16 10

Direct Inverse
Rows Cons Lazy Cons Lazy

5 16.99 1.86 2.79 0.87

6 34.95 2.21 2.93 1.23

7 23.12 4.13 4.99 1.49

8 34.35 4.05 7.01 2.02

9 49.02 7.40 10.99 2.51

10 61.90 7.68 12.07 5.39

(a) Text diagram (b) U-shaped polygons
Table 1. Experimental results. For the text diagram, we show the average and maxi-
mum time to reach a stable solution, and the average and maximum number of solving
cycles to stabilize. For the U-shaped polygon test we show average time to reach a
stable solution as the number of rows increases. All times are in milliseconds.

The results clearly demonstrate that the inverse approach is significantly
faster than the decomposition approach. They also show that for both approaches
the lazy versions are significantly faster than the conservative versions. Interest-

13



ingly, the conservative version of the inverse approach appears to outperform
even the lazy version of the decomposition approach in cases where the convex
hulls do not penetrate (such as the text example).

Most importantly the results also demonstrate that the inverse approach
(with or without laziness) can solve non-overlap constraints sufficiently rapidly
to facilitate immediate update of polygon positions during direct manipulation
of realistically sized diagrams.

8 Conclusions

We have explored the use of smooth linear approximation (SLA) to handle solv-
ing of non-overlap constraints between polygons. We presented two possible ap-
proaches for handling non-overlap of non-convex polygons and have shown that
the inverse method (which models non-overlap of polygons A and B by the
constraint that A is contained in the region that is the complement of B) is
significantly faster than decomposing each non-convex polygons into a collection
of adjoining convex polygons.

We have also shown that the inverse method can be sped up by combining
it with traditional collision-detection techniques in order to lazily add the non-
overlap constraint only when the bounding boxes of the polygons overlap. This is
capable of solving non-overlap of large numbers of complex, non-convex polygons
rapidly enough to allow direct manipulation, even when combined with other
types of linear constraints, such as alignment constraints.

Acknowledgements

We thank Michael Wybrow for his help in integrating the non-overlap constraint
solving code into the Dunnart diagramming tool and Peter Moulder and Nathan
Hurst for insightful comments and criticisms.

References

1. Greg J. Badros, Alan Borning, and Peter J. Stuckey. The Cassowary linear
arithmetic constraint solving algorithm. ACM Trans. Comput.-Hum. Interact.,
8(4):267–306, 2001.

2. D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. Pro-
ceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques, pages 23–34, 1994.

3. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic con-
straints for user interface applications. In Proceedings of the 10th annual ACM
symposium on User Interface Software and Technology, pages 87–96. ACM Press
New York, NY, USA, 1997.

4. B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Compu-
tational Geometry, 6(1):485–524, 1991.

5. Yi-Jen Chiang and Roberto Tamassia. Dynamic algorithms in computational ge-
ometry. Proceedings of the IEEE, 80(9):1412–1434, 1992.

14



6. Eyal Flato. Robust and efficient construction of planar Minkowski sums. Master’s
thesis, School of Computer Science, Tel-Aviv University, 2000.

7. R. Fletcher. Practical methods of optimization. Wiley-Interscience New York, NY,
USA, 1987.

8. Pijush K. Ghosh. A solution of polygon containment, spatial planning, and other
related problems using minkowski operations. Comput. Vision Graph. Image Pro-
cess., 49(1):1–35, 1990.

9. D.H. Greene. The decomposition of polygons into convex parts. Computational
Geometry, pages 235–259, 1983.

10. M. Harada, A. Witkin, and D. Baraff. Interactive physically-based manipulation
of discrete/continuous models. Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques, pages 199–208, 1995.

11. H. Hosobe. A modular geometric constraint solver for user interface applications.
Proceedings of the 14th annual ACM symposium on User Interface Software and
Technology, pages 91–100, 2001.

12. N. Hurst, K. Marriott, and P. Moulder. Dynamic approximation of complex graph-
ical constraints by linear constraints. In Proceedings of the 15th annual ACM
symposium on User Interface Software and Technology, pages 27–30, 2002.

13. G.A. Kramer. A geometric constraint engine. Artificial Intelligence, 58(1-3):327–
360, 1992.

14. M. Lin, D. Manocha, and J. Cohen. Collision detection: Algorithms and applica-
tions, 1996.

15. Kim Marriott, Sitt Chen Chok, and Alan Finlay. A tableau based constraint
solving toolkit for interactive graphical applications. In Proceedings of the 4th
International Conference on Principles and Practice of Constraint Programming,
pages 340–354, London, UK, 1998. Springer-Verlag.

16. Kim Marriott, Peter Moulder, Peter J. Stuckey, and Alan Borning. Solving dis-
junctive constraints for interactive graphical applications. In Proceedings of the 7th
International Conference on Principles and Practice of Constraint Programming,
pages 361–376, London, UK, 2001. Springer-Verlag.

17. Greg Nelson. Juno, a constraint-based graphics system. In Proceedings of the
12th annual conference on Computer Graphics and Interactive Techniques, pages
235–243, New York, NY, USA, 1985. ACM Press.

18. Joseph O’Rourke. Computational Geometry in C. 2nd edition, 1998.
19. GD Ramkumar. An algorithm to compute the Minkowski sum outer-face of two

simple polygons. Proceedings of the Twelfth Annual Symposium on Computational
geometry, pages 234–241, 1996.

20. Hanan Samet. The Design and Analysis of Spatial Data Structures. 1990.
21. R. Seidel. A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory
Appl, 1(1):51–64, 1991.

22. Ivan E. Sutherland. Sketch pad a man-machine graphical communication system.
In DAC ’64: Proceedings of the SHARE design automation workshop, pages 6.329–
6.346, New York, NY, USA, 1964. ACM Press.

23. B. Vander Zanden. An incremental algorithm for satisfying hierarchies of multiway
dataflow constraints. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(1):30–72, 1996.

24. Ron Wein. Exact and efficient construction of planar Minkowski sums using the
convolution method. In Proceedings of the 14th Annual European Symposium on
Algorithms, pages 829–840, September 2006.

15


