Solving Difference Constraints over Modular Arithmetic

Graeme Gange Harald Søndergaard Peter J. Stuckey Peter Schachte

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia
\{ggange, harald, pjs, schachte\}@csse.unimelb.edu.au
June 12, 2013

Outline

(1) Motivation
(2) Complete Methods
(3) Incomplete Methods
(4) Results

Program Analysis: A simple program

$$
\begin{aligned}
& x:=\star \\
& y:=x \\
& \text { for }(i:=0 ; i<6 ; i:=i+1)\{ \\
& \quad \text { if }(\star) y:=y+1 \\
& \}
\end{aligned}
$$

Program Analysis: A simple program

$$
\begin{aligned}
& x:=\star \\
& y:=x \\
& \text { for }(i:=0 ; i<6 ; i:=i+1)\{ \\
& \quad \text { if }(\star) y:=y+1 \\
& \}
\end{aligned}
$$

$$
\begin{gathered}
y-x \geq 0 \wedge x-y \geq-6 \\
\equiv \\
0 \leq y-x \leq 6
\end{gathered}
$$

Program Analysis: Two's complement

$$
\begin{aligned}
& \text { uint } x:=\star \\
& \text { uint } y:=x \\
& \text { for }(i:=0 ; i<6 ; i:=i+1)\{ \\
& \quad \text { if }(\star) y:=y+1 \\
& \}
\end{aligned}
$$

$$
0 \leq y-x \leq 6
$$

Program Analysis: Two's complement

$$
\begin{aligned}
& \text { uint } x:=\star \\
& \text { uint } y:=x \\
& \text { for }(i:=0 ; i<6 ; i:=i+1)\{ \\
& \quad \text { if }(\star) y:=y+1 \\
& \}
\end{aligned}
$$

$$
\begin{gathered}
0 \leq y-x \leq 6 \\
x=\text { MAX }_{\text {uint }}, y=5
\end{gathered}
$$

Well, that's awkward.

Program Analysis: Two's complement

Order and Proximity

We need to distinguish between two kinds of relations:
Order The numeric value of two numbers $(x \leq y)$.
Proximity Relative location on the number circle. $(y=x+6)$

When reasoning over \mathbb{Z}, these two notions are equivalent.

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

Notice that proximity constraints are always bounded on both sides. Consider $y-x \in[6, \infty]$:

Reasoning about proximity

To reason about proximity constraints, we need to handle two kinds of inferences:

Resolution:

$$
y-x \in[a, b] \wedge z-y \in[c, d] \models z-x \in ?
$$

Intersection:

$$
y-x \in[a, b] \wedge y-x \in[c, d] \models y-x \in ?
$$

Resolution

We resolve pairs of constraints by adding the corresponding intervals:

Resolution

We resolve pairs of constraints by adding the corresponding intervals:

Intersection

We need to take the intersection of pairs of intervals:

Intersection

We need to take the intersection of pairs of intervals:

Intersection

...but we can't always represent it with a single interval.

Intersection

...but we can't always represent it with a single interval.

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

Reduction from 3-colouring:

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

Reduction from 3-colouring:

A momentary diversion: Trade-offs

We care about 3 things:

- Correctness
- Precision
- Efficiency

A momentary diversion: Trade-offs

We care about 3 things:

- Correctness
- Precision
- Efficiency

Verification:

- We can trade time for additional precision.

Invariant Generation

- Precision is nice, but we can't spend too much time.

We really don't want to sacrifice soundness.

Satisfiability Modulo Theories (SMT)

SMT techniques are complete methods for families of NP-complete problems.

Two theories are of particular interest:
SMT(BV) Bit-vectors
SMT $(\mathcal{D L})$ Difference logic

SMT (BV)

For $m=2^{b}$, we can encode the machine arithmetic operations directly:

$$
\begin{array}{rll}
x \leq y & \mapsto & x \leq_{\mathrm{u}} y \\
y-x \in[i, j] & \mapsto & \left(v_{y-\mathrm{bv}} v_{x}\right)_{-\mathrm{bv}} i \leq_{\mathrm{u}} j-\mathrm{bv}
\end{array}
$$

$\operatorname{SMT}(\mathcal{B V}): y-x \in[i, j]$

We can shift the number circle until the interval for $y-x$ starts at 0 .

$\operatorname{SMT}(\mathcal{B V}): y-x \in[i, j]$

We can shift the number circle until the interval for $y-x$ starts at 0 .

Mapping between wrapped and concrete values

Consider the range of $y-x$ (over \mathbb{Z}):

Mapping between wrapped and concrete values

Consider the range of $y-x($ over $\mathbb{Z})$:

If we map it onto the number circle, we get:

$\operatorname{SMT}(\mathcal{D} \mathcal{L})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$\operatorname{SMT}(\mathcal{D} \mathcal{L})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$\operatorname{SMT}(\mathcal{D} \mathcal{L})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$\operatorname{SMT}(\mathcal{D} \mathcal{L})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

SMT (DL $)$

This yields the encoding:

$$
\begin{aligned}
x \leq y & \mapsto \quad x \leq u y \\
y-x \in[i, j] & \mapsto\left\{\begin{array}{ll}
\left(\begin{array}{ll}
-m+1 \leq v_{y}-v_{x} \leq-m+j \\
v & -m+i \leq v_{y}-v_{x} \leq j \\
v & i \leq v_{y}-v_{x} \leq m-1
\end{array}\right) \\
\left(\begin{array}{ll}
-m+i \leq v_{y}-v_{x} \leq-m+j \\
v & i \leq v_{y}-v_{x} \leq j
\end{array}\right)
\end{array} \quad \text { if } j_{m}<i_{m}\right.
\end{aligned}
$$

Incomplete methods

We probably don't want to be running an SMT solver in the inner loop of an abstract interpreter.

Can we adapt techniques from classical difference logic for a sound overapproximation?

The same basic idea: build a graph of constraints, and see if we can derive \perp.

Incomplete methods

We can't use Bellman-Ford directly:

The path from x to z is already \top, so we never discover that $z \rightarrow v \rightarrow w \rightarrow z$ is inconsistent.

Incomplete methods

We can't use Bellman-Ford directly:

The path from x to z is already \top, so we never discover that $z \rightarrow v \rightarrow w \rightarrow z$ is inconsistent.

Floyd-Warshall is better, but a single iteration isn't guaranteed to reach a fixpoint.
Instead, we just apply a worklist algorithm until we can't tighten any constraints further.

Combining proximity and order

Recall the mapping of a concrete range onto the number circle:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced product:

Experimental Results

Unfortunately, we don't (yet) have constraints from real programs.
Instead, we generated a range of random instances of increasing size:

- Fixed $|C|=1.2|V|$
- 10\% ordering constraints
- 100 instances of each size

Times are given in $m s$

Results: Random Instances

$\|V\|$	$\|C\|$	TIME $_{\mathcal{B V}}$	TIME $_{\mathcal{D L}}$	TIME $_{\text {fix }}$	\#U	\#FP
20	24	50.8	19.2	0.2	24	1
40	48	99.9	24.4	0.4	22	1
60	72	150.0	29.8	0.8	22	1
80	96	197.5	36.4	1.1	29	1
100	120	268.9	43.3	1.7	22	0
120	144	341.3	50.9	2.0	21	0
140	168	404.0	59.0	2.6	22	1
160	192	494.9	65.9	2.8	27	0
180	216	537.7	73.2	3.4	31	1
200	240	675.6	85.5	3.9	25	0

