Solving Difference Constraints over Modular Arithmetic

Graeme Gange Harald Søndergaard Peter J. Stuckey Peter Schachte

Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au

June 12, 2013

Outline

- Motivation
- Complete Methods
- Incomplete Methods
- 4 Results

Program Analysis: A simple program

```
x := \star

y := x

for(i := 0; i < 6; i := i + 1) {

<math>if(\star) y := y + 1

}
```

Program Analysis: A simple program

```
x := \star

y := x

for(i := 0; i < 6; i := i + 1) {

if(\star) y := y + 1

}
```

$$y - x \ge 0 \land x - y \ge -6$$

$$\equiv$$

$$0 \le y - x \le 6$$

```
uint x := *
uint y := x
for(i := 0; i < 6; i := i + 1) {
    if(*) y := y + 1
}</pre>
```

$$0 \le y - x \le 6$$

```
uint x := *
uint y := x
for(i := 0; i < 6; i := i + 1) {
    if(*) y := y + 1
}</pre>
```

$$0 \le y - x \le 6$$

$$x = MAX_{uint}, y = 5$$

Well, that's awkward.

Order and Proximity

We need to distinguish between two kinds of relations:

Order The numeric value of two numbers $(x \le y)$.

Proximity Relative location on the number circle. (y = x + 6)

When reasoning over \mathbb{Z} , these two notions are equivalent.

Notice that proximity constraints are always bounded on both sides. Consider $y-x\in [6,\infty]$:

Notice that proximity constraints are always bounded on both sides. Consider $y - x \in [6, \infty]$:

Notice that proximity constraints are always bounded on both sides. Consider $y-x\in [6,\infty]$:

Notice that proximity constraints are always bounded on both sides. Consider $y - x \in [6, \infty]$:

Notice that proximity constraints are always bounded on both sides. Consider $y-x\in [6,\infty]$:

Notice that proximity constraints are always bounded on both sides. Consider $y - x \in [6, \infty]$:

To reason about proximity constraints, we need to handle two kinds of inferences:

Resolution:

$$y - x \in [a, b] \land z - y \in [c, d] \models z - x \in ?$$

Intersection:

$$y - x \in [a, b] \land y - x \in [c, d] \models y - x \in ?$$

Resolution

We resolve pairs of constraints by adding the corresponding intervals:

Resolution

We resolve pairs of constraints by adding the corresponding intervals:

We need to take the intersection of pairs of intervals:

We need to take the intersection of pairs of intervals:

...but we can't always represent it with a single interval.

...but we can't always represent it with a single interval.

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

Reduction from 3-colouring:

The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for small m.

Reduction from 3-colouring:

A momentary diversion: Trade-offs

We care about 3 things:

- Correctness
- Precision
- Efficiency

A momentary diversion: Trade-offs

We care about 3 things:

- Correctness
- Precision
- Efficiency

Verification:

We can trade time for additional precision.

Invariant Generation

Precision is nice, but we can't spend too much time.

We really don't want to sacrifice soundness.

Satisfiability Modulo Theories (SMT)

SMT techniques are complete methods for families of NP-complete problems.

Two theories are of particular interest:

SMT(BV) Bit-vectors

 $SMT(\mathcal{DL})$ Difference logic

$SMT(\mathcal{BV})$

For $m = 2^b$, we can encode the machine arithmetic operations directly:

$$\begin{array}{ccc} x \leq y & \mapsto & x \leq_{\mathsf{u}} y \\ y - x \in [i, j] & \mapsto & (v_y -_{\mathsf{bv}} v_x) -_{\mathsf{bv}} i \leq_{\mathsf{u}} j -_{\mathsf{bv}} i \end{array}$$

SMT(\mathcal{BV}): $y - x \in [i, j]$

We can shift the number circle until the interval for y - x starts at 0.

SMT(\mathcal{BV}): $y - x \in [i, j]$

We can shift the number circle until the interval for y - x starts at 0.

Mapping between wrapped and concrete values

Consider the range of y-x (over \mathbb{Z}): $-\infty - - - - - - \frac{1}{1-m} - m - 1$

Mapping between wrapped and concrete values

Consider the range of y-x (over \mathbb{Z}): $-\infty - - - - \frac{1}{1-m} \frac{1}{m-1}$

If we map it onto the number circle, we get:

$SMT(\mathcal{DL})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$\mathsf{SMT}(\mathcal{DL})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$SMT(\mathcal{DL})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$SMT(\mathcal{DL})$

We can then encode a proximity constraint as a disjunction of classical difference constraints:

$SMT(\mathcal{DL})$

This yields the encoding:

$$y - x \in [i,j] \quad \mapsto \quad \begin{cases} x \leq_{\mathsf{u}} y \\ -m+1 \leq v_y - v_x \leq -m+j \\ \vee & -m+i \leq v_y - v_x \leq j \\ \vee & i \leq v_y - v_x \leq m-1 \end{cases} \quad \text{if } j_m < i_m$$

$$\begin{pmatrix} -m+i \leq v_y - v_x \leq -m+j \\ \vee & i \leq v_y - v_x \leq j \end{pmatrix} \quad \text{otherwise}$$

Incomplete methods

We *probably* don't want to be running an SMT solver in the inner loop of an abstract interpreter.

Can we adapt techniques from classical difference logic for a sound overapproximation?

The same basic idea: build a graph of constraints, and see if we can derive \perp .

Incomplete methods

We can't use Bellman-Ford directly:

The path from x to z is already \top , so we never discover that $z \to v \to w \to z$ is inconsistent.

Incomplete methods

We can't use Bellman-Ford directly:

The path from x to z is already \top , so we never discover that $z \to v \to w \to z$ is inconsistent.

Floyd-Warshall is better, but a single iteration isn't guaranteed to reach a fixpoint.

Instead, we just apply a worklist algorithm until we can't tighten any constraints further.

Recall the mapping of a concrete range onto the number circle:

$$-\infty$$
 ----- $\frac{1}{1-m}$ $m-1$

Experimental Results

Unfortunately, we don't (yet) have constraints from real programs.

Instead, we generated a range of random instances of increasing size:

- Fixed |C| = 1.2|V|
- 10% ordering constraints
- 100 instances of each size

Times are given in ms

Results: Random Instances

V	C	$TIME_{\mathcal{BV}}$	$TIME_{\mathcal{DL}}$	TIME _{fix}	#U	#FP
20	24	50.8	19.2	0.2	24	1
40	48	99.9	24.4	0.4	22	1
60	72	150.0	29.8	8.0	22	1
80	96	197.5	36.4	1.1	29	1
100	120	268.9	43.3	1.7	22	0
120	144	341.3	50.9	2.0	21	0
140	168	404.0	59.0	2.6	22	1
160	192	494.9	65.9	2.8	27	0
180	216	537.7	73.2	3.4	31	1
200	240	675.6	85.5	3.9	25	0