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Program Analysis: A simple program

7/ =0;i<6;i=i+1){
if(x) y =y+1
}
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Program Analysis: A simple program

for(i:=0;i<6;i:=i+1){
if(x) y =y +1
}

y—x>0Ax—y>—6

0<y—x<6
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Program Analysis: Two’s complement

uint x = %

uint y = x

for(i:=0;i<6;i:=i+1){
if(x) y =y +1
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Program Analysis: Two’s complement

uint x = %

uint y = x

for(i:=0;i<6;i:=i+1){
if(x) y =y +1

}

0<y-x<6

X = MAXuyint, ¥ =5

Well, that’s awkward.
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Order and Proximity

We need to distinguish between two kinds of relations:
Order The numeric value of two numbers (x < y).
Proximity Relative location on the number circle. (y = x + 6)

When reasoning over Z, these two notions are equivalent.
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Reasoning about proximity

Notice that proximity constraints are always bounded on both sides.
Consider y — x € [6, q]:

X
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Notice that proximity constraints are always bounded on both sides.
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y X
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Reasoning about proximity

To reason about proximity constraints, we need to handle two kinds of
inferences:

Resolution:

y—-xelablhnz—yelc,dlEz—xe?

Intersection:

y—-xelablhny—xelc,dlEy—xe?
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Resolution

We resolve pairs of constraints by adding the corresponding intervals:




Resolution

We resolve pairs of constraints by adding the corresponding intervals:

b+ b
A
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Intersection

We need to take the intersection of pairs of intervals:



Intersection

We need to take the intersection of pairs of intervals:
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Intersection

...but we can’t always represent it with a single interval.



Intersection

...but we can’t always represent it with a single interval.
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The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for
small m.
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The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for
small m.

Reduction from 3-colouring:
Xo

X1 X2
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The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for
small m.

Reduction from 3-colouring:
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A momentary diversion: Trade-offs

We care about 3 things:
@ Correctness
@ Precision
@ Efficiency
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A momentary diversion: Trade-offs

We care about 3 things:
@ Correctness
@ Precision
@ Efficiency

Verification:
@ We can trade time for additional precision.

Invariant Generation
@ Precision is nice, but we can’t spend too much time.

We really don’t want to sacrifice soundness.
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Satisfiability Modulo Theories (SMT)

SMT techniques are complete methods for families of NP-complete

problems.

Two theories are of particular interest:
SMT(BV) Bit-vectors
SMT(DL) Difference logic
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For m = 2°, we can encode the machine arithmetic operations directly:

X<y = x<yy
y=xelil = (VyuyV)bvi<uj-ovi
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SMT(BV): y — x € [i,]]

We can shift the number circle until the interval for y — x starts at 0.
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Mapping between wrapped and concrete values

Consider the range of y — x (over Z):
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Mapping between wrapped and concrete values

Consider the range of y — x (over Z):

If we map it onto the number circle, we get:
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We can then encode a proximity constraint as a disjunction of classical
difference constraints:



We can then encode a proximity constraint as a disjunction of classical
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We can then encode a proximity constraint as a disjunction of classical
difference constraints:

Graeme Gange, Harald Sendergaard, Peter Solving Difference Constraints over Modular A June 12, 2013



This yields the encoding:

X<y —= Xx<uy
M+ 1<V — V< —m+j
Vo —m+i<vy—v < if jm < im
y—xelij] ~ V i<y —v<m-1
( —m+i<v,—v<—-m+j
%

. , herwi
<V, — vy < > otherwise
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Incomplete methods

We probably don’t want to be running an SMT solver in the inner loop
of an abstract interpreter.

Can we adapt techniques from classical difference logic for a sound
overapproximation?

The same basic idea: build a graph of constraints, and see if we can
derive 1.
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Incomplete methods

We can’t use Bellman-Ford directly:

4
. 0.7y 02 L\ ‘:

The path from x to z is already T, so we never discover that
Z — V — W — Zis inconsistent.
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Incomplete methods

We can’t use Bellman-Ford directly:

A\ 4
EEFELI g
s

The path from x to z is already T, so we never discover that
Z — V — W — Zis inconsistent.

Floyd-Warshall is better, but a single iteration isn’t guaranteed to reach
a fixpoint.

Instead, we just apply a worklist algorithm until we can’t tighten any
constraints further.
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Combining proximity and order

Recall the mapping of a concrete range onto the number circle:

R

1—-m
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Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced
product:
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Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced
product:
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Experimental Results

Unfortunately, we don’t (yet) have constraints from real programs.

Instead, we generated a range of random instances of increasing size:
@ Fixed |C| =1.2|V]|
@ 10% ordering constraints
@ 100 instances of each size

Times are given in ms
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Results: Random Instances

LIVI [ IC| | TIMEgy | TIMEp, | TIMEs [ #U | #FP |
20 24 50.8 19.2 02| 24 1
40 48 99.9 24.4 0.4 | 22
60 | 72 150.0 29.8 08| 22
80 | 96 197.5 36.4 1.1 ] 29
100 | 120 268.9 43.3 1.7 | 22
120 | 144 341.3 50.9 2.0 | 21
140 | 168 404.0 59.0 26 | 22
160 | 192 494.9 65.9 2.8 | 27
180 | 216 537.7 73.2 3.4 | 31
200 | 240 675.6 85.5 39| 25

O -~ 0O 00— 42 -
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