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Program Analysis: A simple program

x := ?
y := x
for(i := 0; i < 6; i := i + 1) {

if(?) y := y + 1
}

y − x ≥ 0 ∧ x − y ≥ −6

≡

0 ≤ y − x ≤ 6

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 3 / 33



Program Analysis: A simple program

x := ?
y := x
for(i := 0; i < 6; i := i + 1) {

if(?) y := y + 1
}

y − x ≥ 0 ∧ x − y ≥ −6

≡

0 ≤ y − x ≤ 6

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 3 / 33



Program Analysis: Two’s complement

uint x := ?
uint y := x
for(i := 0; i < 6; i := i + 1) {

if(?) y := y + 1
}

0 ≤ y − x ≤ 6

x = MAXuint, y = 5

Well, that’s awkward.
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Order and Proximity

We need to distinguish between two kinds of relations:
Order The numeric value of two numbers (x ≤ y ).

Proximity Relative location on the number circle. (y = x + 6)

When reasoning over Z, these two notions are equivalent.
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Reasoning about proximity

Notice that proximity constraints are always bounded on both sides.
Consider y − x ∈ [6,∞]:
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Reasoning about proximity

To reason about proximity constraints, we need to handle two kinds of
inferences:

Resolution:

y − x ∈ [a,b] ∧ z − y ∈ [c,d ] |= z − x ∈ ?

Intersection:

y − x ∈ [a,b] ∧ y − x ∈ [c,d ] |= y − x ∈ ?

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 9 / 33



Resolution

We resolve pairs of constraints by adding the corresponding intervals:

0
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a′

b′

a + a′

b + b′
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Intersection

We need to take the intersection of pairs of intervals:

0

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 11 / 33



Intersection

We need to take the intersection of pairs of intervals:

0

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 11 / 33



Intersection

...but we can’t always represent it with a single interval.

0
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The bad news: Complexity

Satisfiability of a set of proximity constraints is NP-complete, even for
small m.

Reduction from 3-colouring:
x0

x1 x2
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A momentary diversion: Trade-offs

We care about 3 things:
Correctness
Precision
Efficiency

Verification:

We can trade time for additional precision.

Invariant Generation
Precision is nice, but we can’t spend too much time.

We really don’t want to sacrifice soundness.
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Satisfiability Modulo Theories (SMT)

SMT techniques are complete methods for families of NP-complete
problems.

Two theories are of particular interest:
SMT(BV) Bit-vectors
SMT(DL) Difference logic
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SMT(BV)

For m = 2b, we can encode the machine arithmetic operations directly:

x ≤ y 7→ x ≤u y
y − x ∈ [i , j] 7→ (vy -bv vx) -bv i ≤u j -bv i
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SMT(BV): y − x ∈ [i , j ]

We can shift the number circle until the interval for y − x starts at 0.

0

i

j

y − x
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SMT(BV): y − x ∈ [i , j ]

We can shift the number circle until the interval for y − x starts at 0.

0

j − i

(y − x)− i
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Mapping between wrapped and concrete values

Consider the range of y − x (over Z):
−∞

1−m m − 1
∞

If we map it onto the number circle, we get:

0
1−m m − 1
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SMT(DL)

We can then encode a proximity constraint as a disjunction of classical
difference constraints:

0

i

j y − x

−m + j

−m + i

j

i

m − 1
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SMT(DL)

This yields the encoding:

x ≤ y 7→ x ≤u y

y − x ∈ [i , j] 7→



 −m + 1 ≤ vy − vx ≤ −m + j
∨ −m + i ≤ vy − vx ≤ j
∨ i ≤ vy − vx ≤ m − 1

 if jm < im

(
−m + i ≤ vy − vx ≤ −m + j

∨ i ≤ vy − vx ≤ j

)
otherwise

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, Peter Schachte (Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia {ggange,harald,pjs,schachte}@csse.unimelb.edu.au)Solving Difference Constraints over Modular Arithmetic June 12, 2013 22 / 33



Incomplete methods

We probably don’t want to be running an SMT solver in the inner loop
of an abstract interpreter.

Can we adapt techniques from classical difference logic for a sound
overapproximation?

The same basic idea: build a graph of constraints, and see if we can
derive ⊥.
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Incomplete methods

We can’t use Bellman-Ford directly:

x y z

v

w

[0, m
2 ] [0, m

2 ]
[1,1

]

[1
,1

]

[1,1]

The path from x to z is already >, so we never discover that
z → v → w → z is inconsistent.

Floyd-Warshall is better, but a single iteration isn’t guaranteed to reach
a fixpoint.
Instead, we just apply a worklist algorithm until we can’t tighten any
constraints further.
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Combining proximity and order

Recall the mapping of a concrete range onto the number circle:
−∞

1−m m − 1
∞

0
1−m m − 1
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Combining proximity and order

Given a concrete and a wrapped interval, we can compute the reduced
product:

0
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Experimental Results

Unfortunately, we don’t (yet) have constraints from real programs.

Instead, we generated a range of random instances of increasing size:
Fixed |C| = 1.2|V |
10% ordering constraints
100 instances of each size

Times are given in ms
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Results: Random Instances

|V | |C| TIMEBV TIMEDL TIMEfix #U #FP

20 24 50.8 19.2 0.2 24 1
40 48 99.9 24.4 0.4 22 1
60 72 150.0 29.8 0.8 22 1
80 96 197.5 36.4 1.1 29 1

100 120 268.9 43.3 1.7 22 0
120 144 341.3 50.9 2.0 21 0
140 168 404.0 59.0 2.6 22 1
160 192 494.9 65.9 2.8 27 0
180 216 537.7 73.2 3.4 31 1
200 240 675.6 85.5 3.9 25 0
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