
Noname manuscript No.
(will be inserted by the editor)

Analysis and Evaluation of V*-kNN: An Efficient Algorithm for
Moving kNN Queries

Sarana Nutanong †‡
· Rui Zhang †

· Egemen Tanin †‡
· Lars Kulik †‡

E-mail: {sarana, rui, egemen, lars}@csse.unimelb.edu.au

the date of receipt and acceptance should be inserted later

Abstract The moving k nearest neighbor (MkNN) query
continuously finds the k nearest neighbors of a moving

query point. MkNN queries can be efficiently processed

through the use of safe regions. In general, a safe region

is a region within which the query point can move without

changing the query answer. This paper presents an incre-

mental safe-region-based technique for answering MkNN
queries, called the V*-Diagram, as well as analysis and

evaluation of its associated algorithm, V*-kNN. Traditional
safe-region approaches compute a safe region based on the

data objects but independent of the query location. Our ap-

proach exploits the knowledge of the query location and the

boundary of the search space in addition to the data objects.

As a result, V*-kNN has much smaller I/O and computation

costs than existing methods. We further provide cost models

to estimate the number of data accesses for V*-kNN and a

competitive technique, RIS-kNN. The V*-Diagram and V*-

kNN are also applicable to the domain of spatial networks

and we present algorithms to construct a spatial-network

V*-Diagram. Our experimental results show that V*-kNN
significantly outperforms the competitive technique. The re-

sults also verify the accuracy of the cost models.

Keywords Spatial databases, Nearest neighbor search.

1 Introduction

Current location-based services provide accurate position

information with a high degree of temporal precision. Con-

sider the following two scenarios. A driver in a GPS-

equipped car issues a continuous query to find the nearest

gas station while driving in a city. A tourist uses a location-

aware mobile device to issue a continuous query for the

† Department of Computer Science and Software Engineering,

University of Melbourne, Victoria, Australia
‡ NICTA Victoria, Australia

nearest restaurant. The queries are sent to a server that pro-

cesses the queries and returns the answers. In these scenar-

ios, the server has to continuously maintain the answer set

which may change depending on the location of the query

point. These queries are location-based continuous spatial

queries [33] and the scenarios above are typical examples of

moving k nearest neighbor queries (MkNN).

A straightforward way to process a MkNN query is us-

ing a sampling-based method, which processes the MkNN
query as a k nearest neighbor (kNN) query at sampled lo-

cations. This method does not provide answers between

sampled locations. In order to provide an (almost) contin-

uous answer to the query, a high sampling rate is required,

which makes the method inefficient due to the frequent pro-

cessing of kNN queries. The concept of the safe region

provides a more effective way to achieve continuous an-

swers to location-based spatial queries. In a safe-region-

based method, an answer is returned with a safe region.

As long as the query point stays in the safe region, the an-

swer remains the same. When the query point moves out of

the safe region, another answer with its associated region

is returned. Therefore, a safe-region-based method always

(that is, continuously) provides accurate answers without the

need for sampling. This approach also requires much less

frequent communication between the mobile client and the

server.

A classic example of safe-region-based techniques is

the Voronoi Diagram [20]. The Voronoi Diagram is a well

known space decomposition determined by distances to

a given discrete set of objects, typically, a set of points.

Specifically, the Voronoi Diagram of a set S of points

p1,p2, ...,pn is defined as a set of Voronoi cells where each

cell V (pi) is a set V of locations such that pi is the nearest

object to any location in V .
Processing a 1NN query using the Voronoi Diagram

involves: (i) locating which Voronoi cell the query point

falls into; and (ii) identifying the associated object. In Fig-

2

(a) Point set S, {a, b, c, d, e, f} (b) Voronoi Diagram of S (c) Second-order Voronoi Diagram

of S
(d) Ordered second-order Voronoi

Diagram of S

Fig. 1 The Voronoi diagram and its generalizations

ure 1(b), for example, q1 falls in V (a) and therefore a is

the nearest neighbor (NN) of q1. The answer remains valid

as long as the query point stays in V (a). When the query

point moves across the boundary of V (a) to V (c), c be-

comes the NN.

As exemplified in Figure 1(c), the Voronoi Diagram can

be generalized to the kth-order Voronoi Diagram (kVD). In
a kVD, each region is associated with the set of k nearest

neighbors, termed kNN set or k NNs, rather than only the

nearest one. The kVD can handleMkNN queries in the same

manner as the basic 1VD handles 1NN queries.

Another useful generalization of the Voronoi Diagram is

order sensitivity. As shown in Figure 1(d), the ordered kVD
partitions the space into cells where each cell is associated

to a particular ordering of the k NNs. The ordered kVD can

be used to answer MkNN queries that require the ranking of

the k NNs by their distances to the query point.

Although a kVD for any value of k can be constructed to

help process MkNN queries, the technique has the following

shortcomings:

(i) Expensive precomputation. The kVD requires pre-

computing all kVD cells and access to all data points.

Both computation and storage costs are high.

(ii) No support for dynamically changing k values. The

kVD can only accommodate kNN queries with a spe-

cific k value; the ordered kVD can only accommodate

kNN queries with k values no larger than the order of

the diagram. As a result, the technique is not suitable

for situations where the value of k is unknown in ad-

vance or can change dynamically.

(iii) Inefficient update operations. Many cells have to

be recomputed for each insertion or deletion on the

dataset.

The expensive precomputation is especially not justified if

the query point is confined to a small region of the whole

data space. For example, if a car is moving in a small part

of a city, then it is unnecessary to compute the kVD for the

entire city. Furthermore, one may require different kVDs for
different needs. For example, a driver may need to find a gas

station with a restroom facility while another driver needs

one with a special type of fuel. Precomputing kVDs for all
possible scenarios is considered prohibitive.

Zhang et al. [33] proposed an algorithm called Retrieve-

Influence-Set kNN (RIS-kNN) to locally compute a kVD
cell, which mitigates the precomputation and update prob-

lems (Shortcomings 1 and 3). However, the algorithm is still

relatively expensive and does not address the problem of dy-

namically changing k values (Shortcoming 2). This algo-

rithm is used as our competitive method.

In this paper, we present a technique called the V*-

Diagram, which is an incremental safe-region technique for

processing MkNN queries. Our technique has the following

key advantages.

(i) It requires no precomputation.

(ii) It gracefully handles dynamically changing k values.

(iii) It efficiently adapts to changes in the dataset, i.e., in-

sertions and deletions of objects.

The V*-Diagram is based on the safe-region concept, but

differs from any previous technique for MkNN queries in

the following aspect: previous safe-region-based techniques

compute safe regions purely based on the data (for example,

one can compute the kVD without referring to the query

point); the V*-Diagram computes safe regions based on

not only the data objects, but also the query point and

the current knowledge of the search space. This is one

of the main novelties of the technique. By doing so, both

computation and data retrieval of the V*-Diagram are more

economical than those of the other techniques.

The contributions of this paper are summarized as fol-

lows.

(i) We present the V*-Diagram technique and the associ-

ated algorithm, V*-kNN, to process MkNN queries.

(ii) We provide detailed algorithms to construct the V*-

Diagram in spatial networks and conduct experimen-

tal studies on a spatial-network implementation of the

V*-kNN algorithm.

3

(iii) We derive cost models for V*-kNN and a competitive

method, RIS-kNN, and verify that the cost models are

accurate.

(iv) We conduct an extensive experimental study. The ex-

perimental results show that V*-kNN significantly

outperforms RIS-kNN.
This paper is an extended version of our previous paper [19].

In the previous paper, we introduced the basic concept of the

V*-Diagram, formulated the V*-kNN algorithm, and gave

a complexity analysis on V*-kNN and RIS-kNN. We also

showed an example of how the V*-Diagram can be applied

to the domain of spatial networks. In this paper, we provide

cost models which can accurately capture the number of data

accesses for V*-kNN and RIS-kNN. We formally present

algorithms to construct the V*-Diagram in spatial networks.

Furthermore, we extend the experimental study to cover a

large set of parameters as well as the V*-Diagram in spatial

networks, and to verify the cost models.

The rest of the paper is organized as follows. Section 2

describes the problem setup. Related work is discussed in

Section 3. We formulate the V*-Diagram in Section 4. We

present V*-kNN, which is an algorithm for MkNN queries

based on the V*-Diagram, in Section 5. Cost models and

complexity analyses of the V*-kNN and the competitive

technique RIS-kNN are given in Section 6. In Section 7, we

show how the V*-Diagram technique can be applied to the

domain of spatial networks. Section 8 presents experimental

results. Section 9 concludes the paper.

2 Problem Setup

We assume a metric space, i.e., for any points p1, p2, p3 and

the distance function DIST(.), all of the following conditions
are satisfied.

(i) DIST(p1,p2) ≥ 0.
(ii) DIST(p1,p2) = DIST(p2,p1).
(iii) DIST(p1,p2) = 0 iff p1 = p2.

(iv) DIST(p1,p2) ≤ DIST(p1,p3) + DIST(p3,p2).
We focus our discussion on the L2 normed vector space

(the Euclidean space) and the spatial-network model. The

kNN query in other metric spaces, e.g., L1 and L∞, is gen-

erally discussed in the context of similarity search in high

dimensional data spaces [3, 4]. Application of the MkNN
query and the V*-Diagram in such a problem is beyond the

scope of this paper and will be a subject of further investi-

gation.

LetD be a metric data space and S be a finite set of point

objects. The k nearest neighbor (kNN) query is defined as

follows.

Definition 1 (k Nearest Neighbor (kNN) Query) Given a

set S of objects and a query point q, the kNN query finds

a set A of objects such that: (i) A contains k objects from

S; (ii) for any object x ∈ A and object y ∈ (S − A),
DIST(q,x) ≤ DIST(q,y).

The moving kNN (MkNN) query is defined as follows.

Definition 2 (Moving kNN (MkNN) Query) Given a set

S of objects and a moving query point q, the MkNN query

finds a kNN result for every position of q.

Due to the nature of location-based applications, MkNN
queries are discussed in the context of two settings:

(i) Centralized-processing paradigm. Both the query is-

suer and the processor are on the same machine. Then

the main performance measure is the total query pro-

cessing cost.

(ii) Client-server paradigm. The query is issued by a

client to a server through a wireless network (such as a

mobile phone network). The performance measure in-

volves the communication cost and the query process-

ing cost on the server side. In mobile applications, the

former one is generally more important than the latter,

since such settings usually have a high latency.

We assume an unknown trajectory which means that the

location of q gets updated in a periodic manner. We also as-

sume that no kVD is maintained but there is a generic spa-

tial index such as the R-tree [7] built on the data objects,

since it can be used for various query types and is efficient

to maintain. This is also argued as a valid assumption in re-

lated work [33].

3 Related Work

3.1 kNN algorithms

Many kNN search algorithms have been proposed based on

spatial hierarchical structures. One of their common fea-

tures is the application of the branch-and-bound strategy on

the structure. A tree can be traversed in a depth-first (DF-

kNN) [22] or a best-first (BF-kNN) [9] manner. BF-kNN
can incrementally retrieve more nearest neighbors if k in-

creases.

Figure 2 shows an example R-tree and the BF-kNN al-

gorithm. An R-tree [7] consists of a hierarchy of minimum

bounding rectangles (MBRs), where each corresponds to a

tree node and bounds all the MBRs in its sub-tree. Data ob-

jects are stored in leaf nodes and they are partitioned based

on a heuristic that aims to minimize the I/O cost. The BF-

kNN algorithm starts processing a kNN query from the root

node and traverses all the entries in increasing order accord-

ing to the MINDIST metric [23]. A priority queue is used

to maintain the search order of all retrieved data points and

nodes. The traversal stops if the first k elements retrieved

from the priority queue are all data points.

An example run of BF-kNN is shown in Table 1. For

ease of exposition, the priority queue is illustrated as a list

in this example. At Step 1, all child nodes of the root are in-

serted into the priority queue. Then the entries are dequeued

and the corresponding nodes are retrieved in order. The first

4

Fig. 2 R-tree and BF-kNN

Table 1 Example run of BF-kNN

Step Priority Queue Retrieved NN(s)

1 〈S, R, T 〉 〈〉
2 〈R, W, T, X〉 〈〉
3 〈V, W, T, X, U〉 〈〉
4 〈d, W, T, X, c, e, U〉 〈〉
5 〈W, T, X, c, e, U〉 〈d〉
6 〈f, T, g, X, c, e, U〉 〈d〉
7 〈T, g, X, c, e, U〉 〈d, f〉
8 〈Y, g, X, c, e, U, Z〉 〈d, f〉
9 〈j, g, X, c, e, U, k, Z, l〉 〈d, f〉
10 〈g, X, c, e, U, k, Z, l〉 〈d, f, j〉

dequeued item is S. The two child entries X and W of S are

inserted into the priority queue. Then R is dequeued. Nodes

U and V are inserted into the priority queue and so on. At

Step 4, d is the head of the priority queue. Data point d is de-

queued and inserted into the list of retrieved NNs as the first

NN. If another NN is needed, the process continues until an-

other data point is the head of the priority queue. At Step 6,

f is discovered as the second NN. By this means, an arbi-

trary number of NNs can be incrementally obtained. If the

value of k is fixed, an aggressive pruning can be performed

on the entries in the priority queue to reduce the queue size,

though the page access cost cannot be further reduced due

to the search-space optimality of the algorithm [10].

3.2 Techniques for processing MkNN queries

We have discussed two approaches for MkNN queries in

Section 1: one is sampling based and the other one is safe-

region based.

SR-kNN. Song and Roussopoulos [25] introduced a

method which will be referred to as SR-kNN in this paper.

SR-kNN reduces the access costs in the sampling-based ap-

proach by retrieving redundant data entries and caching. It

greatly reduces the cost of query reevaluation, but does not

solve the problem of inaccurate answers between sampled

locations. Thus, SR-kNN does not provide truly continuous

answers.

The kth-order Voronoi Diagram (kVD). Safe-region
based techniques produce continuous answers and reduce

processing and communication costs. The Voronoi Dia-

gram [20] is a classic example and can be used to pro-

cess M1NN queries as described in Section 1. For MkNN
queries, the kVD is used. There is a difference between the

order-sensitive kVD and the order-insensitive kVD, which
produce order-sensitive and order-insensitive k NNs, respec-

tively [20]. However, they both have the shortcomings de-

scribed in Section 1.

TPkNN andCkNN. Tao and Papadias [27] proposed the
time-parameterized kNN (TPkNN) query. Assuming a linear

trajectory of the query point, a TPkNN query finds (i) the

current kNN set, (ii) a position on the trajectory where the

kNN set changes and (iii) the objects that cause the change.

This is done by finding the earliest point on the trajectory

that has a different kNN set from the current one. This point

is also known as the influence point (or equivalently influ-

ence time when the speed is known), which can be consid-

ered as the boundary of a safe region.

Tao and Papadias [29] also considered the Continuous

kNN (CkNN) query, which finds the kNN for every single

point on a predefined linear trajectory. This is achieved by

identifying all influence points on the trajectory. The main

difference between CkNN and TPkNN is that CkNN obtains

all the influence points on the trajectory but TPkNN finds

only the first one. Both TPkNN and CkNN are limited to

known trajectories.

RIS-kNN. Zhang et al. [33] proposed an algorithm

called Retrieve-Influence-Set kNN (RIS-kNN) to locally

compute kVD cells using a spatial index. RIS-kNN uses the

TPkNN query [27] to find each edge of a kVD cell, 360 de-

grees around the query point.

Figure 4 shows how RIS-kNN discovers all edges of

V (a) from the example in Figure 1(a). Initially, a is found to

be the NN of q; the cell is initialized to the whole data space,

i.e., rectangle ABCD in this example. At Step 1, a TPkNN
query is executed with the trajectory from q to the top left

corner of the space (
−→
qA) and d is returned as the object that

changes the NN result along
−→
qA. The bisector1 of a and d,

Bad, contributes one edge to the cell. The cell is updated

to the polygon BCDEF . At Steps 2 and 3, two TPkNN
queries are executed with the trajectories from q to the new

corners (
−→
qE and

−→
qF). Two new edges are found according

to Baf and Bae. Since kVD cells for data points are con-

vex polygons, this process continues until all corners of the

cell have been checked and they all have the same k NNs

as q. The influence set, which the set of (non-kNN) objects
that determines the discovered bisectors, is {b, c,d,e,f}.

1 The bisector of two objects p1 and p2 is the set of points v such

that v is equidistant to p1 and p2.

5

(a) Initial step: F 〈a, c, b, f, e, d〉 (b) First update: F 〈a, c, b, e, f, d〉 (c) Second update: F 〈c, a, b, e, f, d〉

Fig. 3 Incremental rank update

(a) Step 1 (b) Steps 2 and 3

(c) Steps 4 and 5 (d) Final steps

Fig. 4 Using RIS-kNN to locally compute a kVD cell (k = 1)

RIS-kNN mitigates the precomputation problem (Short-

coming 1) of the kVD because it only accesses local data,

but this algorithm is still expensive because it performs

multiple (on average 12 [33]) TPkNN queries, where each

TPkNN query involves a costly tree traversal. RIS-kNN
does not solve the problem of dynamically changing k val-

ues (Shortcoming 2); changing k to a larger value incurs re-

calculation of the kVD cell. The computation of the previous

kVD cell cannot be reused and hence this algorithm is not

incremental.

Due to the fact that only one kVD cell is maintained at a

time, RIS-kNN handles dataset updates (insertions and dele-

tions of objects) more efficiently than the traditional kVD

technique. However, in a case where an update affects the

kNN result or the influence set, the current kVD cell has to

be recalculated.

IRU. Kulik and Tanin [17] introduced an algorithm

called incremental rank updates (IRU) to compute regions

where the ranking of all the objects (based on their dis-

tances) is the same. This is equivalent to computing the or-

dered kVD cell with k equal to n, where n is the total num-

ber of objects. Rather than computing the whole nVD, IRU
incrementally computes a neighboring nVD cell from the

current cell. In the paper [17], an order-sensitive nVD cell

is termed a fixed-rank region (FRR) since for any point in the

region, the ranking of all objects based on their distances is

fixed. Based on the observation that only rank-adjacent ob-

jects can swap their ranks2, defining the FRR of n objects

requires at most (n − 1) bisectors of the (n − 1) pairs of

rank-adjacent objects. Continuous monitoring of the rank-

ing of all objects is done by maintaining a rank-sorted list

of objects and its corresponding list of bisectors of pairs of

rank-adjacent objects (rank-adjacent bisectors). Each time

the query point crosses a bisector, the ranks of the two cor-

responding objects are swapped and the list of rank-adjacent

bisectors are updated.

An example is given in Figure 3, where the gray re-

gion is the current FRR that the moing query point is in.

Let us assume that the query point q starts at q1 and stops

at q2. In Figure 3(a), q is at q1 and the ranking is initially

〈a, c, b,f ,e,d〉 and the corresponding list of bisectors is

〈 Bac, Bcb, Bbf , Bef , Bde〉. Then q crosses Bef in Fig-

ure 3(b). This causes e and f to swap their ranks. Therefore

Bbf and Bde are replaced by Bbe and Bdf , respectively.

In Figure 3(c), Bac is crossed. This causes a and c to swap

their ranks and Bbc is replaced by Bab. It is shown that

onlyO(n) instead ofO(n2) bisectors are maintained during

2 In this paper, the rank of an object means the object’s position in

a list of objects sorted by their distances to some other object. We use

“ranking” and “ordering” interchangeably due to the usage of both in

the literature.

6

the iterations in the IRU algorithm [17]. However, IRU still

accesses all data objects to obtain the sorted list and checks

(n − 1) bisectors every time q moves.

Related spatial-network queries. Several kNN tech-

niques for static query points were proposed [12, 13, 21, 24]

for spatial networks. Papadias et al. [21] proposed incremen-

tal Euclidean restriction (IER) and incremental network ex-

pansion (INE) methods based on Dijkstra’s shortest-path al-

gorithm [6]. There are also MkNN techniques specific to

the domain of spatial networks. Kolahdouzan et al. [16] pro-

posed an algorithm that utilizes the Voronoi Network Nearest

Neighbor (VN3) [15]. Cho et al. [5] proposed a technique

that issues static kNN queries at the intersection points on

the query path.

Related moving-object queries.Hu et al. [11] proposed

a safe-region-based technique for static window and kNN
queries on moving objects. Each moving object maintains its

own safe region and only reports if its new location changes

the results of any of the queries.

Yu et al. [32] presented a query-indexing technique for

monitoring kNN queries for moving objects and a given set

of queries. Each query object maintain its own critical re-

gion to keep track of the kNN set.

Mouratidis et al. [18] proposed a threshold-based ap-

proach to monitoring the k NNs in a setting for moving ob-

jects. Each monitored object is associated with a range of

safe distances from the query point. An object cannot influ-

ence the query answer as long as it remains within the range

of safe distances.

Iwerks et al. [14] formulated an approach to processing

a kNN query on moving objects by continuous evaluation of

a range query. By imposing a condition that the scope of the

range query must include the (k + 1) NNs, the k NNs can

be evaluated based on only objects within the scope.

Benetis et al. [2] presented algorithms to process NN and

reverse NN queries for moving objects with known trajecto-

ries. Result validity is thus expressed as a function of time.

Similar to our work, Benetis et al. included methods to han-

dle insertions and deletions of data points.

These moving-object kNN techniques focus on monitor-

ing changes caused by location updates of data objects. The

emphasis of the MkNN techniques, on the other hand, is on

the changes caused by location updates of the query point.

Although the problem of moving query points was also ad-

dressed by Mouratidis et al. [18] and Iwerks et al. [14], their

techniques handle query location updates through insertions

and deletions of query objects, and recalculations of dis-

tances with respect to the new query locations. In contrast,

the V*-Diagram and the chosen competitive technique, RIS-

kNN [33], use safe regions to handle moving query points so

they require no distance recalculations. In this paper, we fo-

cus our comparative study on RIS-kNN, since the method is

customized for the setting of moving query points on static

data objects using safe regions.

3.3 Summary

The MkNN techniques are summarized in Table 2 on five

features: providing continuous answer, incremental evalu-

ation, accessing only local data (instead of all data), work-

ing on unknown query path and providing order-sensitive

k NNs. Only our proposed algorithm, V*-kNN, has all these
features.

Table 2 Comparison of MkNN techniques

Technique C
on
tin
uo
us

In
cr
em
en
ta
l

Lo
ca
l a
cc
es
s

U
nk
no
w
n
pa
th

O
rd
er
-s
en
si
tiv
e

SR-kNN [25] × � � � �

kVD [20] � × × � ×
Ordered kVD [20] � × × � �

TPkNN [27] � × � × ×
CkNN [29] � × � × ×
RIS-kNN [33] � × � � ×
IRU [17] � � × � �

V*-kNN � � � � �

4 The V*-Diagram

We formulate the V*-Diagram in this section. The V*-

Diagram is a safe-region-based technique. Previous tech-

niques compute safe regions purely based on the data. The

V*-Diagram computes safe regions based on not only the

data, but also the query point and the knowledge of the

search space.

The V*-Diagram assumes a metric space and a spatial

hierarchical index on the dataset. Hence the BF-kNN algo-

rithm can be used to incrementally retrieve NNs as discussed

in Section 3.1.

The V*-Diagram ensures the correctness of the k NNs

to the moving query point q by maintaining x auxiliary

objects in addition to the regular k NNs at all times. The

V*-Diagram comprises two types of regions, which are dis-

cussed in Section 4.1 and Section 4.2. These regions are then

put together to form a kNN safe region, discussed in Sec-

tion 4.3. Commonly used symbols are summarized in Ta-

ble 3.

To help explain the concept of a safe region with regard

to a data object, the notions of search sphere, known re-

gion and reliable region are first introduced. Recall the BF-

kNN algorithm in Section 3.1. Each object/node retrieved

from the priority queue corresponds to an implicit search

sphere (centered at the query point), which delimits the cur-

rent search coverage, and the sphere expands gradually as

more nodes/objects are accessed. Numbers are assigned to

those spheres in Figure 2 according to the steps in Table 1.

7

Fig. 5 The known, reliable, and safe regions

Table 3 Symbols

Symbol Meaning

n The number of objects in the database.

k The number of requested nearest neighbors.

x The number of auxiliary objects.

q The moving kNN query point.

qb The position where the latest BF-kNN call is made.

q′ The current position of the query point.

p A point object.

pk The current kth NN of q.

z The (k + x)th NN of qb when q is at qb .

Sk The safe region with regard to pk .

Bpipj
The bisector of two objects pi and pj .

For example, sphere 2 corresponds to Step 2 where node S
is retrieved; sphere 5 corresponds to Step 5 where object d

is retrieved. Intuitively, the search sphere denotes the region

we have full knowledge of, because all the objects in the

sphere are already retrieved.

In the V*-Diagram, BF-kNN is repeatedly called to en-

sure that the (k + x) maintained objects always include the

k NNs to q. Let qb be the position of q where the latest BF-

kNN call is made to retrieve the (k+x) NNs to qb. Let z be

the (k + x)th NN to qb. The search sphere corresponding to

z centered at qb is the latest one (since BF-kNN stops when

z is obtained), and we call this search sphere the known re-

gion, denoted by W (qb,z). We highlight z because it deter-

mines the boundary of the known region.

Figure 5 gives an example. The known region W (qb,z)
is actually a sphere centered at qb with the radius

DIST(qb,z). Point object p is one of the (k + x − 1) NNs
of qb and other objects in W (qb,z) are not shown.

4.1 Safe region with regard to a data object

Next, we formulate a region within which q can move while

p remains one of the (k + x) NNs of q. Let q′ denote

a later position of q after qb. Suppose q′ is at the po-

sition as shown in Figure 5. We extend the line segment

qbq
′ and it intersects W (qb,z) at χ. Let sph(v, l) denote

a sphere with center v and radius l. As long as p is in

sph(q′,DIST(q′,χ)), it is one of the (k + x) NNs of q′.

This is because any object outside sph(q′,DIST(q′,χ))
must be farther to q′ than p to q′ and there are at most

(k + x) objects inside sph(q′,DIST(q′,χ)). Since any ob-

ject in sph(q′,DIST(q′,χ) remains one of the (k + x) NNs
of q′, we call sph(q′,DIST(q′,χ)) the reliable region with

regard to q 3 and any object in the reliable region a reliable

object. If p is a reliable object, p is said to be reliable; oth-

erwise, it is said to be unreliable. Mathematically, p being

in the reliable region with regard to q′ is expressed as

DIST(q′,p) ≤ DIST(qb,z) − DIST(qb, q
′), (1)

where DIST(qb,z) − DIST(qb, q
′) is the length of q′χ.

If we consider q′ as a variable, then Equation (1) actu-

ally describes all the possible positions of q′ that guarantee

p remaining among the (k + x) NNs. Consequently, we can
formulate the safe region with regard to p as follows.

Definition 3 (Safe region with regard to a data object)

Given a known region W (qb,z) and a data object p within

W (qb,z), the safe region with regard to p is

S(qb,z,p) = {q′ : DIST(q′,p) + DIST(qb, q
′)

≤ DIST(qb,z)}.

For a point object p in a 2D Euclidean space, the boundary

of S(qb,z,p) is an ellipse as illustrated in Figure 5. The

two foci of the ellipse are qb and p; the sum of the distances

from qb and p to any point on the ellipse is DIST(qb,z). We

further have the following results.

Corollary 1 In Euclidean space, the safe region with regard

to a point object z, S(qb,z,z), is the line segment qbz.

3 We omit “with regard to q” when the context is clear.

8

Proof For any q′ in S(qb,z,z),

DIST(q′,z) + DIST(qb, q
′) ≤ DIST(qb,z). (2)

By the triangle inequality, we have DIST(q′,z) +
DIST(qb, q

′) ≥ DIST(qb,z). The set of points that satis-

fies both inequalities is {q′ : DIST(q′,z) +DIST(qb, q
′) =

DIST(qb,z)}. In Euclidean space, this is the line segment

qbz. 2

Corollary 2 Object p is reliable to q′ iff q′ is inside of

S(qb,z,p).

Proof We prove this by showing that for any object y out-

side W (qb,z), DIST(q′,p) is smaller than DIST(q′,y).
The two conditions: (i) q′ inside of S(qb,z,p); (ii) y out-

side of W (qb,z), imply that

DIST(q′,p) + DIST(qb, q
′) < DIST(qb,y).

The triangle inequality dictates that

DIST(qb,y) < DIST(q′,y) + DIST(qb, q
′).

We can conclude that DIST(q′,p) is smaller than

DIST(q′,y), and hence p is reliable to q′. 2

4.2 Fixed-rank region

As discussed in Section 3.2, the fixed-rank region (FRR)

and the incremental rank update (IRU) algorithm were in-

troduced in [17] to denote a set of possible query-point lo-

cations that share a specific ranking of all objects. In this

paper, we use the IRU algorithm to maintain the ranks of the

(k + x) objects retrieved.
Given a list L of objects, 〈p1, ...,pm〉, the FRR of L is

the set of all points v such that the objects in L are sorted

in ascending order according to their distances to v. Let

Hpipj
be defined as a set of points {v ∈ D : DIST(v,pi) ≤

DIST(v,pj)}, where D is the data space. An FRR is a func-

tion of a list of objects and is defined as follows.

Definition 4 (Fixed-rank region)

F 〈p1, ...,pm〉 =

m−1
⋂

i=1

Hpipi+1
.

F 〈p1, ...,pm〉 may be written in the compact format of

F (L).
In Figure 3(a), the ranking of the objects according to

their distances to q1 is L = 〈a, c, b,f ,e,d〉. F (L) is de-

fined as Hac ∩ Hcb ∩ Hbf ∩ Hfe ∩ Hed. The boundary of

F (L) is defined by five bisectors, Bac, Bcb, Bbf , Bef and

Bde.

We use the IRU algorithm described in Section 3.2 to

incrementally compute the FRR F (L) in which q currently

resides for the (k + x) maintained objects. A FRR is rep-

resented as (i) a list B of the (k + x − 1) rank-adjacent

bisectors, Bpipi+1
, for i = 1, 2, ..., k +x−1, and (ii) a ref-

erence point, which could be the current location of q. The

FRR is incrementally maintained by (i) checking whether q

crosses a bisector in B, and (ii) if yes, performing updates

accordingly.

The purpose of maintaining the FRR using the IRU algo-

rithm is to keep the (k +x) objects sorted according to their
distances to q. One alternative solution to IRU is to compute

distances between the (k + x) objects and q for every posi-

tion of q, which is sampling-based. Although both methods

have the same complexity, the FRR is important to the for-

mulation of a region where the (order-sensitive) kNN does

not change.

4.3 Integrated safe region

We are now ready to formulate the safe region for theMkNN
query, called the integrated safe region (ISR). The ISR is the

intersection of the current FRR of the (k + x) maintained

objects and the safe regions with regard to the k nearest ob-

jects. We will first define the ISR formally and then prove

that ISR satisfies the MkNN safe-region requirements.

Let O denote the (k + x)NN set of qb, L be the list of

these (k + x) objects sorted by their distances to q, and z

still be the farthest retrieved object to qb, which is pk+x.

The ISR is then formulated as

F (L) ∩ (

k
⋂

i=1

S(qb,z,pi)). (3)

The computation of the ISR can be greatly reduced

based on Lemma 1 and Theorem 1 below.

Lemma 1

F 〈pi,pj〉 ∩ S(qb,z,pj) ∩ S(qb,z,pi)

= F 〈pi,pj〉 ∩ S(qb,z,pj).

Proof For any point v ∈ F 〈pi,pj〉, v satisfies

DIST(v,pi) ≤ DIST(v,pj). (4)

For any point v ∈ S(qb,z,pj), by definition v satisfies

DIST(v,pj) + DIST(qb,v) ≤ DIST(qb,z). (5)

For any v ∈ F 〈pi,pj〉∩S(qb,z,pi), it satisfies inequalities
(4) and (5). By adding the two inequalities,

DIST(v,pi) + DIST(qb,v) ≤ DIST(qb,z). (6)

Inequality (6) shows that v ∈ S(qb,z,pi), given that

v ∈ F 〈pi,pj〉 ∩ S(qb,z,pj). It can be concluded

that: F 〈pi,pj〉 ∩ S(qb,z,pj) ⊆ S(qb,z,pi) and hence

S(qb,z,pi) can be discarded in F 〈pi,pj〉 ∩S(qb,z,pj)∩
S(qb,z,pi). 2

9

An example is given in Figure 6. The gray region

F 〈a, c, b,f〉∩S(q1,f , c)∩S(q1,f ,a) is exactly the same

as F 〈a, c, b,f〉 ∩ S(q1,f , c).

Theorem 1 For k ≥ 2,

F 〈p1, ...,pk〉 ∩ (

k
⋂

i=1

S(qb,z,pi))

= F 〈p1, ...,pk〉 ∩ S(qb,z,pk)

Proof Lemma 1 shows the case of k = 2, that is,

F 〈p1,p2〉 ∩ S(qb,z,p2) ∩ S(qb,z,p1) = F 〈p1,p2〉 ∩
S(qb,z,p2).

If the theorem holds for k = l, that is,

F 〈p1, ...,pl〉 ∩ (

l
⋂

i=1

S(qb,z,pi))

= F 〈p1, ...,pl〉 ∩ S(qb,z,pl),

then the theorem can be verified for k = l + 1 as follows:

F 〈p1, ...,pl+1〉 ∩ (

l+1
⋂

i=1

S(qb,z,pi))

= F 〈p1, ...,pl〉 ∩ F 〈pl,pl+1〉

∩(
l
⋂

i=1

S(qb,z,pi)) ∩ S(qb,z,pl+1)

= F 〈p1, ...,pl〉 ∩ F 〈pl,pl+1〉
∩S(qb,z,pl) ∩ S(qb,z,pl+1).

By applying Lemma 1, S(qb,z,pl) can be removed

from the above expression. Hence, we finally obtain

F 〈p1, ...,pl〉 ∩ F 〈pl,pl+1〉 ∩ S(qb,z,pl+1)

= F 〈p1, ...,pl+1〉 ∩ S(qb,z,pl+1).

The theorem therefore holds for any integer value of k
greater than or equal to 2. 2

Since F (L) = F 〈p1, ...,pk〉 ∩ F 〈pk,pk+1...,pk+x〉,
based on Theorem 1, Expression (3) can be reduced to

F (L) ∩ S(qb,z,pk). Therefore, the ISR can be defined as

follows.

Definition 5 (Integrated safe region (ISR)) Let O be the

(k + x)NN set of qb, L be the list of these (k + x) objects
sorted by their distances to q, z be the farthest retrieved ob-

ject to qb, and pk be the kth object in L. The integrated safe
region with respect to qb, z, pk and L is defined as

I(qb,z,pk, L) = F (L) ∩ S(qb,z,pk). (7)

Next, we prove that the ISR defined above satisfies the

requirements of being a safe region for the MkNN query,

that is, the k NNs as well as their order do not change when

q remains in the ISR.

Theorem 2 If the ISR I(qb,z,pk, L) is not an empty

set, every point q′ in I(qb,z,pk, L) has the same order-

sensitive k NNs.

Proof According to Definition 5, (i) since I ⊆ F (L) (pa-

rameters of I omitted), the ranking of the (k + x) objects is
fixed for all points in I , which satisfies the order-sensitivity

requirement; (ii) every point q′ in I is also in the safe regions

with regard to the first k objects in L. As a result, there can
be no object outside W (qb,z) nearer to q′ than any of the

first k objects in L. Therefore, all points q′ in I share the

same order-sensitive k NNs. 2

Fig. 6 Integrated safe region example (k = 2, x = 2)

As exemplified in Figure 6, four objects retrieved by

a 4NN query (k = 2 and x = 2) at q1 are 〈a, c, b,f〉.
Point q1 is the most recent point where a (k + x)NN
search (BF-kNN) is performed. As long as q′ remains in

F 〈a, c, b,f〉 ∩ S(q1,f , c) (the gray region), then: (i) no

object outside W (q1,f) is nearer to the two objects: a and

c; and (ii) the ranking of 〈a, c, b,f〉 is unchanged.
The diagram that contains the information used in com-

puting the ISR is called the V*-Diagram. It consists of: (i)

the bisectors of the rank-adjacent pairs in L; and (ii) the

boundary of the safe region with regard to pk. We may also

use the V*-Diagram to refer generally to the whole tech-

nique based on it, including the algorithms. Although the

V*-Diagram in the example of Figure 6 only computes a sin-

gle ISR, it actually allows incremental computation of new

ISRs, which is further discussed in Section 5.

5 Algorithms

In this section, we present V*-kNN, an algorithm for MkNN
queries based on the V*-Diagram, followed by a discussion

on the effect of x, the number of auxiliary objects. We also

present the algorithms to handle insertions/deletions and dy-

namically changing k values.

10

The V*-kNN algorithm uses the following data struc-

tures and variables to compute and maintain the ISR.

1. L: a list of (k + x) objects always sorted in ascending

order by their distances to q; these objects are the (k+x)
NNs retrieved at qb.

2. z: the farthest retrieved object in the known region when

q is at qb.

3. pk: the kth object in L.
4. Sk: the safe region with regard to pk.

5. B: a list of rank-adjacent bisectors in the order corre-

sponding to L.

We do not explicitly maintain F (L) because it is represented
by B, and checking whether q moves out of the current

F (L) is also done by checking whether q crosses any bi-

sector in B.

V*-kNN continuously produces answers as shown in

Algorithm 1. It has an initialization part (Lines 1 to 3) and

a continuous processing part (Lines 4 to 19). The initial-

Algorithm 1: V*-kNN(q0, k, x)

qb ← q01

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)2

ReportResult(L.Head(k))3

while (Event← GetEvent()) do4

q← Event.Position5

switch Event.Type do6

case RankUpdate7

Bisector← Event.Bisector8

L.OrderSwap(Bisector.Index)9

B.Update(L,Bisector.Index)10

if Bisector.Index ≤ k then11

ReportResult(L.Head(k))12

if Bisector.Index ∈ [k − 1, k] then13

pk ← L.Item(k)14

Sk ← S(qb , z, pk)15

ISR← ConstructISR(Sk,B,q)16

case ReliabilityUpdate17

qb ← q18

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)19

ization part calls the algorithm Compute-V* (Algorithm 2)

to compute the initial ISR using the starting point q0 of the

trajectory as qb. Then the continuous processing part starts.

Algorithm Compute-V* (Algorithm 2) runs as follows.

It first calls the BF-kNN algorithm to retrieve (k+x) objects
with qb as the query point; with the retrieved objects, it sets

z and pk accordingly; then, it computes S(qb,z,pk) and

rank-adjacent bisectors based on L and assigns them to Sk

and B, respectively; finally, the current ISR is computed. To

determine the correct half plane for each bisector in B, qb is

used as the reference point. Readers may notice that symbol

z is explained differently here from Table 3. Object z is used

to determine the known region and it is the (k + x)th NN of

qb when q is at qb. When deletion is taken into account, if

the (k + x)th NN of qb gets deleted, we still use the deleted

object to determine the known region. Therefore, we make it

more accurate here than in Table 3 when we did not consider

deletions.

The continuous processing part of V*-kNN is event

driven. It basically maintains the ISR as q moves. An event

is triggered when q exits the current ISR. There are two

types of events with this regard, RankUpdate and Reliabili-

tyUpdate. These events are generated by a separate inexpen-

sive process that constantly checks the current position of q

against the ISR. When an event is generated, it is associated

with a timestamp and the corresponding query position.

Algorithm 2: Compute-V*(qb, k, x)

L← BF-kNN(qb , k + x)1

z← L.Item(k + x)2

pk ← L.Item(k)3

Sk ← S(qb , z, pk)4

B← CreateBisectorList(L)5

ISR← ConstructISR(Sk,B,qb)6

return (L, z, Sk, B, ISR)7

Given that the query trajectory is unknown, the query

positions are updated discretely and checking for new events

has to be done based on these discrete updates. To provide

accurate answers, the checking should be performed at a

high frequency, which is acceptable because of the low cost.

Note that this is different from processing the query based

on sampling, which requires frequent tree searches instead

of event checking. The answer we provide is continuous,

not based on sampled locations. Since the query positions

are updated discretely, the events could happen anytime be-

tween two consecutive query updates. To compute the exact

time (position) the events happen, we assume a linear trajec-

tory between two consecutive query positions.

We describe the two event types, RankUpdate and Reli-

abilityUpdate below and discuss how to handlby reference

to Algorithm 1 (in the algorithm, q is used to denote the

position of the query point when an event takes place).

RankUpdate This event is triggered when q exits the current

F (L), that is, crossing a rank-adjacent bisector. Besides

the timestamp and query position, a RankUpdate event

also contains the information of the bisector crossed by

q (Line 8). For this event, the ranks of the two objects

corresponding to the bisector are swapped (Line 9) and

the bisector list B is updated accordingly (Line 10) as

explained in the IRU algorithm (Section 3.2). If the event

affects the rank of any of the k NNs (Line 11), then the

new k NNs are reported (Line 12). Moveover, if the rank

update changes pk (Line 13), Sk also needs to be up-

dated (Lines 14 to 15).

ReliabilityUpdate This event is triggered when q is leaving

Sk (that is, on the boundary of Sk). It means that the kth

NN is about to become unreliable and hence the num-

11

(a) Step 1: F 〈a, c, b, f〉 ∩ S(q1, f, c) (b) Step 2: F 〈c, a, b, f〉 ∩ S(q1, f, a) (c) Step 3: F 〈c, a, b, e〉 ∩ S(γ2, e, a)

Fig. 7 Example for Algorithm 1, (k = 2, x = 2)

ber of reliable objects is about to become less than k.
Therefore, the ReliabilityUpdate event calls Compute-

V* using the event position, q, to obtain x new auxiliary

objects so that all the (k + x) maintained objects are

reliable again. The new ISR is constructed accordingly.

This event does not cause result update because neither

the kNN set nor their ordering changes.

Figure 7 gives an example run of the algorithm. Accord-

ing to Figure 7(a), at the starting point q1, 4 NNs are re-

trieved in the order of 〈a, c, b,f〉. The ISR is F 〈a, c, b,f〉∩
S(q1,f , c).

Figure 7(b) shows how the ISR changes after q crosses

Bac. At the instant that q is crossing Bac at γ1, a RankUp-

date event is triggered, which causes a and c to swap their

ranks. The list L becomes 〈c,a, b,f〉, and this causes both

F (L) and Sk to change. Now a becomes pk (2nd NN), and

hence the ISR becomes F 〈c,a, b,f〉∩S(q1,f ,a) (the gray
region). The current 2 NNs, c and a, are reported to the user

in that order.

Figure 7(c) shows how the ISR changes after q ex-

its S(q1,f ,a). At the instant that q is exiting S(q1,f ,a)
at γ2, a ReliabilityUpdate event is triggered, which calls

Compute-V* to retrieve more objects. The new (k +x) NNs
are 〈c,a, b,e〉, with the corresponding ISR, F 〈c,a, b,e〉 ∩
S(γ2,e,a) (the gray region).

5.1 On the number of auxiliary objects

Auxiliary objects are an important part of the V*-Diagram

technique. They allow q to move away from qb while retain-

ing the current k NNs by providing the knowledge beyond

the coverage of the search sphere of the original k NNs. This

makes it possible to continuously evaluate the MkNN query.

In this subsection, we discuss possible values of x, the num-

ber of auxiliary objects. Generally, we find that x should not

assume the value of 0. This is explained as follows.

Having x equal to 0 implies that z and the kth object

in L, pk, are the same object. According to Corollary 1, in

Euclidean space, the safe region Sk with regard to z is the

line segment qbz. Unless q moves along qbz, q exits Sk as

it starts moving. Probabilistically, it is highly unlikely that

q moves along qbz since qbz is just one direction among

infinite possible directions q can move towards. Therefore,

it is probable that q always exits Sk as it moves and it trig-

gers the ReliabilityUpdate event repetitively. As a result, x
should not be set to 0 for Euclidean space.

When x is a positive integer, the problem of prema-

ture triggering of the ReliabilityUpdate does not happen ex-

cept under the coincidence described in the next paragraph.

Therefore, any positive integer is a valid value for x. The ef-
fect of the value of x on performance is further investigated

in Sections 6 and 8.

In theory, the problem of Sk being a line seg-

ment may happen with any value of x when the last

(x + 1) objects in L have the same distance to qb,

which is DIST(qb,z). In this case, DIST(qb,pk) is

equal to DIST(qb,z). By definition, Sk = {q′ :
DIST(q′,pk) + DIST(qb, q

′) ≤ MINDIST(qb, z)}. If we
replace DIST(qb,z) by DIST(qb,pk) in the inequality of

the definition, we get Sk = {q′ : DIST(q′,pk) +
DIST(qb, q

′) ≤ DIST(qb,pk)}, which is also a line seg-

ment in Euclidean space. To completely avoid this problem,

we can check whether DIST(qb,pk) is equal to DIST(qb,z)
after we retrieve (k + x) objects by a BF-kNN call. If they

are equal, then we increase the value of x until DIST(qb,pk)
is different from DIST(qb,z).

In general, a larger value of x provides a larger Sk, and

hence the less frequent we need to retrieve new objects from

the database. Having the value of x too small will result in

frequent BF-kNN calls. On the other hand, a too large x
value also incurs the overhead of retrieving more objects in

every BF-kNN call and more computation for maintaining

them.

12

5.2 Insertions and deletions of objects

In this subsection, we describe the algorithm to perform up-

dates (that is, insertions and deletions) to the dataset for

V*-kNN. The algorithm is called DatasetUpdate and is pre-

sented in Algorithm 3. In this algorithm, q denotes the po-

sition of the query point when the update occurs and it is

passed in as an input. Let p be the object to be inserted

or deleted. First, the algorithm checks whether the p is in

W (qb,z). If not, the update can be safely ignored because

it cannot affect the ISR. Otherwise, an insertion/deletion of

p into/from L is performed and B is updated accordingly

(Lines 2 to 6): insertion of p needs q for computing dis-

tances between q and the maintained objects to find the cor-

rect insertion slot in L; deleting p from L requires only a

simple lookup operation. After the bisector update, the ISR

and L could be in one of the following three cases:

– The length of L becomes smaller than k as a result

of a deletion (Line 7). In this case, qb is set to q and

Compute-V* is called to retrieve more objects and com-

pute the new ISR accordingly (Lines 7 to 9). The new

result is reported (Line 10).

– The length of L is still greater than k but the update

affects the kNN set (Line 11). We update pk and Sk

(Lines 12-13) and check if q is inside the new Sk (Line

14). If q is not inside the new Sk, then Compute-V* is

called (Line 16). Otherwise, the ISR is updated to reflect

the changes in B and Sk. Since the k NNs have changed,

the new result is reported to the user (Line 19).

– The update has no effects to the kNN set (but to one

of the auxiliary objects) (Line 20). Only the ISR is up-

dated to reflect the change in B.

5.3 MkNN with dynamically changing k values

The ability to gracefully handle changes to the value of k
is crucial for the distance browsing functionality [10]. For

static kNN queries, distance browsing is a feature that al-

lows NNs to be incrementally retrieved without having to

specify the value of k in advance. In this paper, we allow the

value of k to be changed without incurring heavy computa-

tions.

Algorithm KUpdate (Algorithm 4) shows how V*-kNN
handles dynamically changing k values. The algorithm has

two inputs: the current location q of the query point and

the new k value. We first check if the new k is greater than

the length of L. If yes, qb is set to q and Compute-V* is

called. Otherwise, pk and Sk are updated for the new k
(Lines 5 and 6). If q is not inside the new Sk, qb is set to

q and Compute-V* is called. Otherwise, only the ISR has

to be updated to incorporate the new Sk (Line 11). Finally,

the new k NNs are reported (Line 12). As we can see, the

V*-kNN algorithm can easily accommodate dynamically

changing k values due to its incremental nature.

Algorithm 3: DatasetUpdate(q,p,Operation)

if p ∈W (qb , z) then1

if Operation = Insertion then2

L← Insert(L,p,q)3

else4

L← Delete(L,p)5

B.Update(L)6

if k > L.Length() then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

ReportResult(L.Head(k))10

else if DIST(q, p) ≤ DIST(q, pk) then11

pk ← L.Item(k)12

Sk ← S(qb , z, pk)13

if q /∈ Sk then14

qb ← q15

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)16

else17

ISR← ConstructISR(Sk,B,q)18

ReportResult(L.Head(k))19

else20

ISR← ConstructISR(Sk,B,q)21

Algorithm 4: KUpdate(q,k)

if k > L.Length() then1

qb ← q2

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)3

else4

pk ← L.Item(k)5

Sk ← S(q, z, pk)6

if q /∈ Sk then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

else10

ISR← ConstructISR(Sk,B,q)11

ReportResult(L.Head(k))12

6 Cost Models and Comparative Performance Analysis

In this section, we give a comparative performance analy-

sis on V*-kNN and its best competitor, RIS-kNN [33]. For

ease of exposition, we assume a 2D unit space. The analysis

can be extended to higher dimensional spaces with arbitrary

sizes by applying the same procedure. We also assume that

the data objects are uniformly distributed points. In addition

to the symbols shown in Table 3, frequently used symbols in

this section and the experimental study (Section 8) are pre-

sented in Table 4. In our analysis, we focus on data access

costs, since this is commonly the dominating factor in many

application domains.

13

Table 4 Additional symbols

Symbol Meaning

l The total trajectory length.

s The distance between two consecutive points of

location updates.

qe The point where the query point exits the safe region

with regard to pk .

de The distance between qe and qb .

nb The number of BF-kNN calls.

nv The number of kVD cells crossed.

6.1 V*-kNN

V*-kNN requires data access every time a ReliabilityUpdate

event takes place and triggers a BF-kNN call (Line 17 of

Algorithm 1). Therefore, the number of data accesses for

V*-kNN is measured as the number nb of BF-kNN calls.

A ReliabilityUpdate event is triggered every time the query

point q exits S(qb,z,pk). At the exit point qe, BF-kNN is

performed and qe becomes the new qb. A ReliabilityUpdate

event reoccurs when q exits S(qb,z,pk) again. Let de be

the distance between qb and qe. The number nb of BF-kNN
calls has a negative correlation with de. In the worst case,

when q moves in a straight line, nb is inversely proportional

to de.

The value of de is estimated as follows. When q moves

to qe, pk is on the boundary of the reliable region (with

regard to qe). In Figure 8, for example, b is pk and qe is

on the boundary of S(qb,z, b). We can see that de, which is

DIST(qb, qe), is given by

de = DIST(qb,χ) − DIST(qe,χ).

Note that DIST(qb,χ) is the radius of W (q,z), which is

a sphere that contains (k + x) points; DIST(qe,χ) is the

radius of the reliable region with regard to qe, which is a

sphere that contains k points.

We use the cost model proposed by Tao et al. [30] to

estimate the distance between qb and qe. According to the

model, the distance between the query point qb and the kth

NN (in a 2D unit space with n objects uniformly distributed)

is estimated as 2√
π

(

1 −
√

1 −
√

k
n

)

. Therefore de, i.e.,

DIST(qb,χ) − DIST(qe,χ), is given by

de =
2√
π





√

1 −
√

k

n
−

√

1 −
√

k + x

n



 . (8)

Another factor that may affect nb is the directionality of

the trajectory. We show our analysis on two typical trajec-

tory types: straight line and random. For straight-line tra-

jectories, nb is inversely proportional to de, and therefore

nb = l/de, (9)

where l is the trajectory length.

Fig. 8 Combined safe region (k = 2, x = 6) and its circle approxima-

tion

For random trajectories, we use the random-walk model

to help estimate nb. A random walk is a sequence of fixed-

size steps where the orientation of each step is selected at

random. We first estimate the region within which the query

point can move without requiring any data access (termed

as the combined safe region (CSR)). Figure 8 shows that the

CSR (the gray region) consists of sections of safe regions

with regard to different objects when they are the kth NN.

For example, part of the CSR in the figure is a set of points

v such that v is in S(qb,z, b) and b is the kth NN of v.

Since the distance between qb and qe is de (see Figure 8),

we can approximate the CSR as a circle centered at qb with a

radius of de. Second we estimate the number ns of steps the

query point q has to take from qb in order to cross the circle

approximation to the CSR for the first time. This turns out

to be a classic random-walk problem [26] and ns is given by

ns = (de/s)2, (10)

where s is the step size. Therefore, for a random trajectory

with length l, nb is given by

nb = ls/d2
e. (11)

6.2 RIS-kNN

RIS-kNN processes the MkNN query as follows. Every time

the query point q exits the current kVD cell, RIS-kNN is ex-

ecuted to obtain the new kVD cell and the corresponding k
NNs. Therefore, the number of data accesses for RIS-kNN
is equal to the number nv of kVD cells crossed by q. In

the worst case, q moves along a straight line, and nv is pro-

portional to the average linear density4 of the kVD cells.

Assuming that n is much greater than k, the number of the

kVD cells in 2D space is approximated as 2kn [20]. The

area of the space is 1 square unit, so the density of kVD

4 The number of kVD cells crossed per unit length along a straight

line.

14

cells is 2kn, which corresponds to a linear density of
√

2kn.
For a given trajectory length l, the number nv of kVD cells

crossed by the trajectory is given by

nv = l
√

2kn. (12)

Figure 9 shows that the number of kVD cells that q crosses

as it moves from q1 to q2 is roughly the square root of the

number of kVD cells overlapped with (or contained by) the

gray square with a side length of DIST(q1, q2).

Fig. 9 The quadratic relation between the number of crossed kVD
cells and the density of kVD cells

The RIS-kNN cost model (Equation (12)) is used to esti-

mate the number of data accesses for both trajectory types in

the experiments (Section 8.5). This is because, for the con-

sidered values of parameters, kVD cells are too small for the

two different trajectory types to produce a noticeable differ-

ence in terms of the number nv of encountered kVD cells.

We will see from the experimental results that the cost model

can accurately estimate the number of data accesses for both

trajectory types.

6.3 Comparison of V*-kNN and RIS-kNN

Since the trajectory type that maximizes nb is a straight line,

we use the cost model for straight-line trajectories to repre-

sent the processing cost of V*-kNN in this comparison. The

value of nb in terms of k, n, x and l can be expressed as

nb =
l
√

π

2

(

√

1 −
√

k
n
−
√

1 −
√

k+x
n

) .

The expression of nb can be relaxed as follows:

1
√

1 −
√

k
n
−
√

1 −
√

k+x
n

=

√

1 −
√

k
n

+

√

1 −
√

k+x
n

√

k+x
n

−
√

k
n

≤
2

√

1 −
√

k
n

√

k+x
n

−
√

k
n

≤ 2
√

k+x
n

−
√

k
n

≤ 4n

x

√

k + x

n
.

Therefore, we obtain 2
√

π

(

l
√

(k+x)n
x2

)

as an upper

bound of nb. Typically, x is comparable to k and (k + x)
is much smaller than xk. As a result,

nb ≤ 2
√

π

(

l

√

kn

x

)

.

Let Cnn be the cost of a BF-kNN call. An upper bound of

the total cost of V*-kNN is

Cnn

(

2
√

π · l
√

kn

x

)

.

The total cost is determined by the number nv of RIS-

kNN calls and the cost of each RIS-kNN call. Each RIS-

kNN run requires 12 TPkNN queries on average [33]. Let

Ctpnn be the cost of a TPkNN call. Then the total cost of

RIS-kNN for the MkNN query is

12Ctpnn

(√
2 · l

√
kn
)

.

We now compare the costs of V*-kNN and RIS-kNN.
For the number of data accesses, V*-kNN has a lower count

than RIS-kNN especially when x is large. For the cost per

data access, V*-kNN executes a single BF-kNN query to

retrieve (k + x) NNs and RIS-kNN executes 12 TPkNN
queries on average. To compare the costs of a BF-kNN call

and a TP-kNN call, we refer to the experimental results re-

ported by Tao et al. [28], which suggest that the I/O cost of

each TPkNN call is comparable to that of a BF-kNN call.

Although V*-kNN retrieves x auxiliary objects in addition

to the k NNs for each BF-kNN call, this small addition to k
has no significant effect on the cost of BF-kNN [10]. For the

practical range of x values suggested by our experiments, a

single BF-kNN call (issued by V*-kNN) has a lower cost

than 12 TPkNN calls (issued by RIS-kNN). Therefore, V*-
kNN has both smaller number of data accesses and lower

cost per data access.

15

In terms of the CPU cost, V*-kNNmaintains the rank of

(k+x) objects, which has more computation than RIS-kNN.
However, given today’s mobile devices (e.g., phones with

multimedia and graphical functionalities), we argue that the

CPU power of these devices is adequate to check (k+x−1)
bisectors at a reasonably high frequency (e.g., once every

second) for practical values of k and x. In realistic settings,

the benefits in the data access cost outweigh this overhead.

7 The V*-Diagram in Spatial Networks

When the movement of the query point is constrained by

network connectivity, NN problems should be solved based

on the network distance. For example, a car is travelling on a

road and it keeps track of the k nearest gas stations based on

the road network distance. A spatial network is also a metric

space [23]. The V*-Diagram and V*-kNN are applicable to

the domain of spatial networks because we assume a metric

space in their formulations.

The essence of the V*-Diagram is the ISR, which con-

sists of two key components: the safe region Sk with regard

to kth NN and the fixed-rank region (FRR). We focus our

discussions on how to determine these two components. We

reuse the algorithms to process MkNN queries presented in

Section 5.

A spatial network is usually represented as a set of

vertices and a set of edges, where an edge is defined by

two vertices. Given two points p1 and p2 in the net-

work, DIST(p1,p2) is the length of path(p1,p2), where
path(p1,p2) denotes the shortest path between p1 and p2.

Figure 10(a) shows a spatial network of eight nodes, a to h.

The distance DIST(q1, s) is 2 using the path via b.

We use pnt(p1,p2, l) to denote a point on edge(p1,p2)
with a distance l along the edge to p1, and seg(p1,p2, l) to
denote a section on edge(p1,p2) with two endpoints of p1

and pnt(p1,p2, l). For example, u is at pnt(a,e, 3), and
the segment between Vertex a and q1 can be represented as

seg(a, b, 3).

Figure 10(a) shows a MkNN query with k and x values

of 1 and 2, respectively. The (k+x) NNs of q1, i.e., s, t and

u, are retrieved via a spatial-network kNN query [12,13,21,

24]. We can apply the known region definition in Section 4

and express the known region with regard to q1 and u as

W (q1,u) = {v ∈ D : DIST(q1,v) ≤ DIST(q1,u)}.

This region is mapped to a collection of the following

edges and segments in the network: edge(a, b), edge(a, c),
edge(b,d), seg(a,e, 3), seg(b,f , 5), seg(d, c, 2) and

seg(d, g, 2). The region W (q1,u) is shown as thick line

segments in Figure 10.

Next, we determine the safe region Sk of the kth NN of

q (which is s in Figure 10(a)). The safe region with regard

to s is given by

S(q1,u, s) = {q′ : DIST(q′, s) + DIST(q1, q′)

≤ DIST(q1,u)}.
We formulate an algorithm to identify the boundary of

Sk based on the observation that the safe region with re-

gard to p in Euclidean space is an elliptic region with the

focal points of qb and p. Specifically, we apply the incre-

mental network expansion (INE) algorithm [21] around the

two focal points, qb and p, to identify edges that cross the

boundary of Sk. As seen in Algorithm 5, a priority queue is

used to order vertices to be examined according to the sum

aggregate distance (SUMDIST) to qb and p. We explain the

algorithm via the following example.

Algorithm 5: Compute-Sk-Boundary(qb, z, pk)

Create an empty list Lb of boundaries1

Create an empty priority queue pq of vertices2

Insert vertices adjacent to path(qb , pk) into pq3

while (pq is not empty) do4

r← pq.PopHead()5

if (DIST(qb , r) + DIST(r, pk) ≤ DIST(qb , z)) then6

Insert all immediate neighbors of r into pq7

else8

Identify the boundary points on path(qb , r) and9

path(pk , r), then insert them into Lb

return Lb10

In this example, Algorithm 5 is applied to the example

in Figure 10(a) to calculate the boundaries of S(q1,u, s).
A summary of execution steps is given in Table 5 and de-

tailed explanations are given as follows.

• Step 0. A list Lb and a priority queue pq are initialized

(Lines 1 and 2). Vertices d, a and f , which are adjacent

to path(q1, s), are inserted into pq (Line 3).

• Step 1. Vertex d is retrieved from pq (Line 5). Since the

SUMDIST of d is smaller than or equal to DIST(q1,u)
(Line 6), we insert the neighbors of d, i.e., c and g, into

pq (Line 7).

• Step 2.We examine a. Since the SUMDIST of a is greater

than DIST(q1,u), we identify the boundaries of Sk on

path(q1,a) and path(s,a). The two paths provide the

same boundary at pnt(b,a, 3). The boundary is inserted

into Lb (Line 9).

• Step 3. We examine c and find two boundaries at

pnt(b,a, 3) and Vertex d. Since pnt(b,a, 3) is a dupli-

cate, only d is inserted into Lb.

• Step 4. We examine f . The SUMDIST of f is greater

than DIST(q1,u). A boundary of Sk is identified as

pnt(b,f , 2) and is inserted into Lb (Line 9).

• Step 5. We examine g and find a boundary at Vertex d.

Since Vertex d is a duplicate, it is not inserted into Lb.

We finally obtain the boundaries of S(q1,u, s) as d,

pnt(b,a, 3) and pnt(b,f , 2). These boundaries corre-

16

(a) Safe region S(q1, u, s) (b) Fixed-rank region F 〈s, t, u〉 (c) ISR I(q1, u, s, 〈s, t, u〉) is the intersection
of S(q1, u, s) and F 〈s, t, u〉

Fig. 10 V*-Diagram in a spatial network (k = 1 and x = 2)

spond to the region containing edge(b,d), seg(b,a, 3) and
seg(b,f , 2). The safe region S(q1,u, s) is shown as the

segments in the gray triangle in Figure 10(a).

Table 5 Example run of Algorithm 5

Step Vertex pq Lb

0 - 〈d, a, f〉 〈〉
1 d 〈a, c, f, g〉 〈〉
2 a 〈c, f, g〉 〈pnt(b, a, 3)〉
3 c 〈f, g〉 〈pnt(b, a, 3), d〉
4 f 〈g〉 〈pnt(b, a, 3), d, pnt(b, f, 2)〉
5 g 〈〉 〈pnt(b, a, 3), d, pnt(b, f, 2)〉

The FRR of 〈s, t,u〉 is given by Hst ∩ Htu. As dis-

cussed in Section 4.2, the FRR is determined by the rank-

adjacent bisectors of the (k + x) objects. In a spatial net-

work, a bisector reduces to points on edges. Algorithm 6 is

an algorithm to find the boundary of an FRR F (L) as a list
Lb of bisecting points. Specifically, the algorithm finds all

bisecting points of all rank-adjacent bisectors of L on edges

in Le (Lines 2 and 3). A bisecting point on an edge is cal-

culated by checking whether the two endpoints are on either

side of the bisector5 (Line 4). If yes, the bisecting point is

calculated and inserted into Lb (Lines 5 and 6).

Unlike the boundary of Sk, bisecting points of rank-

adjacent bisectors are not localized around the query point.

We have to limit the search space by specifying the list Le

of edges we want to check to avoid accessing all edges in

the data space. If the FRR is to be used in conjunction with

the Sk to construct the ISR, Le can be the list of edges over-

lapped with (or contained by) Sk. A “lazier” approach is

having Le as a singleton list of the edge that the query point

currently occupies and executing the algorithm every time

the query point enters a new edge. In addition, this lazy ap-

proach can be applied to evaluations of Sk.

5 We omit the handling a marginal case where one or both of the

vertices are on the bisector.

Algorithm 6: Compute-FRR-Boundary(L, Le)

Create an empty list Lb of boundaries1

for all (edge(a, b) in Le) do2

for all (rank adjacent pairs (s, t) in L) do3

if a and b are on either side of Bst then4

Find Point v on edge(a, b) such that5

DIST(v, s) is equal to DIST(v, t)
Insert v into Lb6

return Lb7

By applying Algorithm 6 to all edges in the net-

work in Figure 10(b), two following bisectors are detected:

(i) Bst as pnt(b,d, 2.5) and pnt(a, c, 0.5), and (ii) Btu as

pnt(b,a, 1.5) and pnt(a, c, 1.5). The two bisecting points

pnt(a, c, 0.5) and pnt(a, c, 1.5) are outside Sk and hence

are irrelevant to the ISR. Now letLe be the edges overlapped

with (or contained by) Sk. The two detected bisecting points

are pnt(b,d, 2.5) and pnt(b,a, 1.5) from Bst and Btu, re-

spectively. Figure 10(c) shows that two bisecting points are

sufficient to function as the FRR boundary to form part of

the ISR boundary.

The ISR definition given in Section 4.3 can be applied

to the spatial-network domain. The spatial-network ISR re-

tains the kNN safe-region property, since Theorems 1 and 2

are applicable to any metric space. The boundary of the ISR

I(qb,z,pk, L), i.e., the V*-Diagram, can be obtained by us-

ing Algorithm 5 and Algorithm 6 to construct S(qb,z,pk)
and F (L), respectively. As shown in Figure 10(c), the ISR

is the intersection of S(q1,u, s) and F 〈s, t,u〉, and con-

sists of seg(b,a, 1.5), seg(b,d, 2.5) and seg(b,f , 2). It is
shown as the segments in the gray region. According to

Algorithm 1, exiting the ISR via pnt(b,a, 1.5) (Btu) or

pnt(b,d, 2.5) (Bst) triggers a RankUpdate event, and ex-

iting the ISR via pnt(b,f , 2) triggers a ReliabilityUpdate

event.

17

8 Experimental Study

This section presents the results of our experimental study,

which includes the followings: (i) the effect of the num-

ber x of auxiliary objects on V*-kNN; (ii) a performance

comparison between V*-kNN and its best competitor, RIS-

kNN [33], in terms of the total response time, the I/O cost

and the communication cost; (iii) validation of the three cost

models in Section 6. (iv) experimental study on a spatial-

network implementation of the V*-kNN algorithm.

8.1 Experimental setup

The experiments were conducted on a 2.4GHz Intel Core 2

Quad machine with a 4GB main memory. An R*-tree [1]

was used to index the data objects. The R*-tree, V*-kNN
and RIS-kNN were implemented in C++. The page size is 1

KB, which has a node capacity of 50 entries.

We used both synthetic and real datasets in our exper-

iments. All datasets span the space of 10, 000 × 10, 000
square units. We generated synthetic datasets with uniform

(U) and Zipfian (Z) distributions with the default cardinal-

ity of 25, 000 data points. The real datasets are 65, 743 and

119, 897 postal addresses from California (C) and North-

Eastern USA (N), respectively.

 5000

 5500

 6000

 6500

 5000 5500 6000 6500

(a) Directional (D)

 2850

 2875

 2900

 2925

 2950

 2150 2175 2200 2225

(b) Random (R)

Fig. 11 Trajectory types

We generated two different types of query trajectories,

directional (D) and random (R), as shown in Figure 11. The

trajectory length is denoted as l and the distance between

two consecutive location updates (step size) is denoted as s.
The number u of location updates is given by u = l/s. For
example, a trajectory with l of 2, 000 units and s of 2 units

has 1, 000 query point updates. Between two query point up-
dates, the trajectory is assumed to be a straight line segment.

For each type of trajectory, we generated 20 different trajec-

tories. We ran these 20 trajectories as a query set for each

experiment and presented the average result. We measured

both the cumulative total response time (the wall-clock time)

and the cumulative number of page accesses for a whole tra-

jectory as the performance metric.

Note that in Section 6, we considered two types of tra-

jectories, straight-line and random. A straight-line trajectory

can be considered as a special case of a directional trajectory

where all sampling points are co-linear. In our experiments,

directional trajectories were used instead of straight-line tra-

jectories, since the former are more realistic than the lat-

ter. For random trajectories, each trajectory is generated as a

random walk [26], which conforms with the analysis given

in Section 6.

Table 6 gives a summary on the ranges and the de-

fault values of the parameters used from Section 8.2 to Sec-

tion 8.5: (i) the number of auxiliary objects x, (ii) the cache
size c, (iii) the trajectory length l, (iv) the cardinality n of the

dataset, (v) the value of k, (vi) the step size s, and (vii) the

probability δ that the k value is altered by 1. The settings

for the spatial-network experimental study are given in Sec-

tion 8.6.

Table 6 Summary of parameters

Parameter Default Value Range Increment

x 15 [3:24] 3

c 32 [0:32] 8

l 2,000 [400:2,000] 400

n 25,000 [25,000:100,000] 25,000

k 20 [10:40] 10

s 2 [2:3] 0.25

δ 0 [0:0.1] 0.025

8.2 Choosing the value of x

In the first set of experiments, we study the impact of the

value of x on the performance of V*-kNN. The value of x
was varied from 3 to 24. We did not use the values less than 3
for x because too small values of x do not yield a reasonable

size of Sk to make V*-kNN effective. Figure 12 shows the

response time and the number of page accesses as functions

of x for both query trajectory types.

The general trend of the results is observed as follows.

The response time first decreases as x increases and the re-

sponse time starts to increase when x becomes larger than

approximately 15. This is because an increase in x reduces

the number of BF-kNN calls, i.e., the number of data ac-

cesses, but increase the CPU cost due to the higher number

of objects that V*-kNN has to maintain. When x becomes

too large, the computational overhead of maintaining more

objects becomes more significant and may outweigh the sav-

ings in the number of data accesses.

According to Figures 12(b) and 12(d), the page-access

cost increases as x increases. This is because the footprint

of V*-kNN becomes larger. Although the number of data

accesses is higher for smaller values of x, consecutive ac-

cesses are localized. This spatial locality results in repetitive

accesses on pages already stored in the cache.

18

 0.01

 0.1

 1

 10

 100

 3 6 9 12 15 18 21 24

ti
m

e
 (

s
e
c
)

x

U
Z
C
N

(a) Total cost (D)

 10

 100

 3 6 9 12 15 18 21 24
P

a
g
e
 A

c
c
e
s
s

x

U
Z
C
N

(b) Page access (D)

 0.01

 0.1

 1

 10

 100

 3 6 9 12 15 18 21 24

ti
m

e
 (

s
e
c
)

x

U
Z
C
N

(c) Total cost (R)

 10

 3 6 9 12 15 18 21 24

P
a
g
e
 A

c
c
e
s
s

x

U
Z
C
N

(d) Page access (R)

Fig. 12 Effect of x

These results confirms our discussion in Section 5.1 and

the analysis in 6. In all these experiment, the x value of 15
provides a good performance, so 15 is used as the default

value of x for the rest of the experiments.

8.3 Comparative study: centralized

In this subsection, we compare V*-kNN with RIS-kNN in

terms of their total response times.

The effect of c. In this set of experiments, we use the

buffer sizes between 0 and 32 pages. Figure 13 shows the re-

sults for two synthetic datasets with the default dataset size

and the two real datasets. V*-kNN outperforms the RIS-

kNN in all settings in terms of both total response time

and number of page accesses. In most cases, the improve-

ment factor is one order of magnitude. For both methods,

the page access cost decreases as the buffer size increases as

expected. The total response time remains relatively stable

as the buffer size increases. The main reason is that the R-

tree buffer has the same functionality as the page cache [8],

which is a transparent disk buffer (on the main memory)

maintained by the operating system. Therefore, changes in

the buffer size have no effect on the total response time.

The effect of l. In this set of experiments, we vary the

trajectory length l from 400 to 2, 000 units. Figure 14 shows

the response time on the four datasets. In all experiments,

V*-kNN outperforms RIS-kNN and the improvement factor

is one order of magnitude in most cases. The results in terms

of the number of page accesses have very similar behavior as

those of the total response time. Therefore we do not present

them for the remaining experiments. For both techniques,

the total response time increases as l increases.

 1

 10

 0 8 16 24 32

ti
m

e
 (

s
e
c
)

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 10

 100

 1000

 10000

 0 8 16 24 32

P
a
g
e
 A

c
c
e
s
s

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Page access (U)

 1

 10

 0 8 16 24 32

ti
m

e
 (

s
e
c
)

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Total cost (Z)

 1

 10

 100

 1000

 10000

 0 8 16 24 32

P
a
g
e
 A

c
c
e
s
s

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Page access (Z)

 1

 10

 100

 0 8 16 24 32

ti
m

e
 (

s
e
c
)

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(e) Total cost (C)

 10

 100

 1000

 10000

 100000

 0 8 16 24 32

P
a
g
e
 A

c
c
e
s
s

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(f) Page access (C)

 1

 10

 100

 0 8 16 24 32

ti
m

e
 (

s
e
c
)

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(g) Total cost (N)

 10

 100

 1000

 10000

 100000

 0 8 16 24 32

P
a
g
e
 A

c
c
e
s
s

#buffer pages

V* (D)
V* (R)

RIS (D)
RIS (R)

(h) Page access (N)

Fig. 13 Centralized processing: effect of c

The effect of n. In this set of experiments, the number of

objects in the dataset is varied from 25, 000 to 100, 000 for

the synthetic datasets. Figure 15 shows the response time re-

sults. Again, V*-kNN outperforms RIS-kNN in all settings

and the improvement factor is one order of magnitude in

most cases. For both techniques, the total response time in-

creases as the number of objects increases.

The effect of k. In this set of experiments, we vary the

value of k from 10 to 40 for the four datasets. Figure 16

shows the response time results. We observe similar results

as in previous experiments. V*-kNN outperforms RIS-kNN
in all settings and the improvement factor is one order of

magnitude in most cases. For both techniques, the total re-

sponse time increases as the value of k increases, but the

19

 0.1

 1

 10

 100

 400 800 1200 1600 2000

ti
m

e
 (

s
e
c
)

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 0.01

 0.1

 1

 10

 100

 400 800 1200 1600 2000
ti
m

e
 (

s
e
c
)

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Total cost (Z)

 0.1

 1

 10

 100

 400 800 1200 1600 2000

ti
m

e
 (

s
e
c
)

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Total cost (C)

 0.1

 1

 10

 100

 400 800 1200 1600 2000

ti
m

e
 (

s
e
c
)

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Total cost (N)

Fig. 14 Centralized processing: effect of l

 1

 10

 100

 25 50 75 100

ti
m

e
 (

s
e
c
)

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 1

 10

 100

 25 50 75 100

ti
m

e
 (

s
e
c
)

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Total cost (Z)

Fig. 15 Centralized processing: effect of n

total response time of V*-kNN increases slower than that of

RIS-kNN.

The effect of s. Figure 17 shows the response time re-

sults as the step size s is varied from 2 to 3 units while the

trajectory length is fixed to 2, 000 units. The total cost for

RIS-kNN remains stable as s increases, since s only affect

the validity-check frequency whose cost is negligible. We

also observe that there is no absolute increase for V*-kNN
as s is varied from 2 to 3 units.

The effect of δ. The value δ is the probability that the

k value is altered (decreased or increased) by 1 for each lo-

cation update. Specifically, for a trajectory of u location up-

dates, the value of k is expected to change uδ times. Table 7

shows the expected number of times the k value changes

and the expected range of k for each experimented value of

δ, where u is equal to 1,000 updates.

Figure 18 shows the response times as the probability

δ is varied from 0 to 0.1 with an increment of 0.025. For

RIS-kNN, the total response time has a positive correlation

with δ. For V*-kNN, although the correlation is less appar-

ent than that of RIS-kNN, we observe that a higher value of
δ has a tendency to produce a greater response time. This is

 0.1

 1

 10

 100

 10 20 30 40

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 0.1

 1

 10

 100

 10 20 30 40

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Total cost (Z)

 1

 10

 100

 1000

 10 20 30 40

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Total cost (C)

 1

 10

 100

 1000

 10 20 30 40

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Total cost (N)

Fig. 16 Centralized processing: effect of k

 0.01

 0.1

 1

 10

 100

 2 2.25 2.5 2.75 3

ti
m

e
 (

s
e
c
)

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 0.01

 0.1

 1

 10

 100

 2 2.25 2.5 2.75 3
ti
m

e
 (

s
e
c
)

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Total cost (Z)

 0.01

 0.1

 1

 10

 100

 2 2.25 2.5 2.75 3

ti
m

e
 (

s
e
c
)

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Total cost (C)

 0.1

 1

 10

 100

 2 2.25 2.5 2.75 3

ti
m

e
 (

s
e
c
)

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Total cost (N)

Fig. 17 Centralized processing: effect of s

Table 7 Effect of δ

δ Expected number of changes Expected range of k

0 0 [20:20]

0.025 25 [17:23]

0.050 50 [15:25]

0.075 75 [14:26]

0.100 100 [13:27]

20

because a greater fluctuation in k incurs a higher access cost

and more CPU time for both algorithms. V*-kNN consis-

tently outperforms RIS-kNN in all settings.

 0.01

 0.1

 1

 10

 100

 0 0.025 0.05 0.075 0.1

ti
m

e
 (

s
e
c
)

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Total cost (U)

 0.01

 0.1

 1

 10

 100

 0 0.025 0.05 0.075 0.1

ti
m

e
 (

s
e
c
)

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Total cost (Z)

 0.01

 0.1

 1

 10

 100

 1000

 0 0.025 0.05 0.075 0.1

ti
m

e
 (

s
e
c
)

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Total cost (C)

 0.1

 1

 10

 100

 1000

 0 0.025 0.05 0.075 0.1

ti
m

e
 (

s
e
c
)

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Total cost (N)

Fig. 18 Centralized processing: effect of δ

8.4 Comparative study: client-server

In a high-latency client-server setting, communication costs

between the mobile client and the server dominate the other

costs. The following experiments compare the communica-

tion costs of V*-kNN and RIS-kNN. The number of times

a client has to communicate with the server is used as the

performance measure.

For V*-kNN, the communication cost is measured by

the number of times the BF-kNN query is executed because

other operations are local. For RIS-kNN, the communica-

tion cost is the number of times the query itself is executed,

i.e., the number of kVD cells crossed. We ignore the data

size because query answers in the experiments can be ac-

commodated by a single packet with a typical size of 500

bytes (approximately 62 data points). V*-kNN requires a

storage for only x data points, since the first k can be reused.

RIS-kNN requires k objects for the query answer and 6 point
locations on average for the corresponding kVD cell’s cor-

ners.

The effect of x. Figure 19 shows the communication

costs with the increasing x values in the four datasets and

two trajectory types. Although the parameter x does not ap-

ply to RIS-kNN, we use its results from the default values

of c, l, n and k for comparison purposes. For all datasets, we

can see that the communication cost of V*-kNN decreases

as the value of x increases. This conforms with the cost anal-

ysis in Section 6, which suggests that the retrieval cost of the

V*-kNN should decrease as x increases. It can be seen that

when x is greater than 6, V*-kNN outperforms RIS-kNN in

all settings.

The difference between the communication cost and to-

tal response time (Figure 12) is notable. Unlike the total re-

sponse time, the communication cost measure disregards the

CPU cost. Only the number of data accesses is considered,

and thus there is no penalty for large values of x. In practice,
however, the value of x will be limited by the computational

capability of each individual mobile device, since the cost to

maintain the (k + x) objects is positively correlated to x.

 0.01

 0.1

 1

 10

 100

 1000

 3 6 9 12 15 18 21 24

#
c
o
m

m
u
n
ic

a
ti
o
n
s

x

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 3 6 9 12 15 18 21 24

#
c
o
m

m
u
n
ic

a
ti
o
n
s

x

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

 0.1

 1

 10

 100

 1000

 3 6 9 12 15 18 21 24

#
c
o
m

m
u
n
ic

a
ti
o
n
s

x

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Communication cost (C)

 1

 10

 100

 1000

 3 6 9 12 15 18 21 24

#
c
o
m

m
u
n
ic

a
ti
o
n
s

x

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Communication cost (N)

Fig. 19 Communication cost: effect of x

The effect of l. Figure 20 shows the communication

costs as we vary the trajectory length l from 400 to 2, 000
units. The communication costs increases as l increases.

This is because l is proportional to the number of BF-kNN
calls for V*-kNN, and the number of crossed kVD cells for

RIS-kNN.

The effect of n. Figure 21 shows the communication

costs as we vary the value of n from 25, 000 to 100, 000.
Since a larger value of n produces denser kVD cells in the

data space, the cost of RIS-kNN increases as n increases due

to more frequent cell crossings. The communication cost of

V*-kNN also has a positive correlation with n as suggested

by the analysis in Section 6. V*-kNN still outperforms RIS-

kNN in all settings, as shown in Figure 21. The effect of n
on the communication and total costs are very similar. This

is because n has positive correlations with: communication,

tree-traversal and computation costs.

21

 0.01

 0.1

 1

 10

 100

 1000

 400 800 1200 1600 2000

#
c
o
m

m
u
n
ic

a
ti
o
n
s

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 400 800 1200 1600 2000
#
c
o
m

m
u
n
ic

a
ti
o
n
s

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

 0.1

 1

 10

 100

 1000

 400 800 1200 1600 2000

#
c
o
m

m
u
n
ic

a
ti
o
n
s

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Communication cost (C)

 1

 10

 100

 1000

 400 800 1200 1600 2000

#
c
o
m

m
u
n
ic

a
ti
o
n
s

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Communication cost (N)

Fig. 20 Communication cost: effect of l

 0.1

 1

 10

 100

 1000

 25 50 75 100

#
c
o
m

m
u
n
ic

a
ti
o
n
s

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.1

 1

 10

 100

 1000

 25 50 75 100

#
c
o
m

m
u
n
ic

a
ti
o
n
s

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

Fig. 21 Communication cost: effect of n

The effect of k. Figure 22 shows the communication

costs as we vary the value of k from 10 to 40. Similar to

the parameter n, the communication cost increases as k in-

creases, since the k has a positive correlation to both the

density of kVD cells and the number of times that V*-kNN
executes BF-kNN. V*-kNN continues to outperform RIS-

kNN in all settings.

The effect of s. Figure 23 shows the communication

costs as we vary the step size s from 2 to 3 units. For V*-

kNN on directional trajectories, the parameter s has no ef-

fect on the communication cost, the results hence remain

stable as s changes. For V*-kNN on random trajectories,

the communication cost slightly increases as s increases. For
RIS-kNN, we observe no significant change in the commu-

nication cost as s increases.

The effect of δ. Figure 24 shows the communication

costs as we vary the probability δ from 0 to 0.1. For both
algorithms, the value of δ has a positive correlation with

the communication cost. This is because RIS-kNN has to

recompute the kVD cell every time k is altered. For V*-

kNN, an increase in δ has a greater effect on the communica-

 1

 10

 100

 1000

 10 20 30 40

#
c
o
m

m
u
n
ic

a
ti
o
n
s

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40

#
c
o
m

m
u
n
ic

a
ti
o
n
s

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

 1

 10

 100

 1000

 10 20 30 40

#
c
o
m

m
u
n
ic

a
ti
o
n
s

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Communication cost (C)

 10

 100

 1000

 10 20 30 40

#
c
o
m

m
u
n
ic

a
ti
o
n
s

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Communication cost (N)

Fig. 22 Communication cost: effect of k

 1

 10

 100

 1000

 2 2.25 2.5 2.75 3

#
c
o
m

m
u
n
ic

a
ti
o
n
s

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.01

 0.1

 1

 10

 100

 2 2.25 2.5 2.75 3

#
c
o
m

m
u
n
ic

a
ti
o
n
s

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

 10

 100

 2 2.25 2.5 2.75 3

#
c
o
m

m
u
n
ic

a
ti
o
n
s

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Communication cost (C)

 100

 1000

 2 2.25 2.5 2.75 3

#
c
o
m

m
u
n
ic

a
ti
o
n
s

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Communication cost (N)

Fig. 23 Communication cost: effect of s

tion cost for random trajectories than directional trajectories.

This is because of the correlation between the expected ra-

dius de of the combined safe region (CSR) and the expected

number ns of steps between two consecutive data accesses.

According to Equation (10), ns is quadratic with respect to

de for random trajectories, while ns is proportional to de

for directional trajectories. As de has a negative correlation

with k, a greater fluctuation in the value of k has a greater

effect on random trajectories than directional trajectories for

V*-kNN.

22

 0.1

 1

 10

 100

 1000

 0 0.025 0.05 0.075 0.1

#
c
o
m

m
u
n
ic

a
ti
o
n
s

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) Communication cost (U)

 0.1

 1

 10

 100

 1000

 0 0.025 0.05 0.075 0.1
#
c
o
m

m
u
n
ic

a
ti
o
n
s

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Communication cost (Z)

 10

 100

 0 0.025 0.05 0.075 0.1

#
c
o
m

m
u
n
ic

a
ti
o
n
s

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(c) Communication cost (C)

 10

 100

 1000

 0 0.025 0.05 0.075 0.1

#
c
o
m

m
u
n
ic

a
ti
o
n
s

δ

V* (D)
V* (R)

RIS (D)
RIS (R)

(d) Communication cost (N)

Fig. 24 Communication cost: effect of δ

8.5 Cost model validation

In this subsection, we validate our cost models described in

Section 6. For V*-kNN, the number nb of BF-kNN calls is

estimated as:

nb = l/de, (for straight-line trajectories); (13)

nb = ls/d2
e, (for random-walk trajectories). (14)

The value of de is given by Equation (8).

For RIS-kNN, according to Section 6, the number nv of

kVD cells crossed by a query point moving in a straight line

trajectory with a length of l is estimated by

nv = l
√

2kn. (15)

We use Equation (13) for V*-kNN on directional trajec-

tories and Equation (14) for V*-kNN on random trajecto-

ries. Equation (15) is used for RIS-kNN on both types of

trajectories. We show the estimated data access counts pro-

duced by the three cost models in comparison to the actual

results, as well as the relative errors. The relative error of a

measurement is given by |(v0 − v)/v|, where v is the mea-

sured value and v0 is the theoretical estimate.

The effect of x. Figure 25 shows a comparison between

experimental results and the two cost models (for V*-kNN)
as the value of x is varied from 3 to 24. Figure 25(a) shows
that the estimates produced by the two V*-kNN cost models

conform with the experimental results. That is, the number

of data accesses reduces as x increases. Figure 25(b) dis-

plays the relative errors between the theoretical estimates

and the measured values. The accuracy of the cost models

for both trajectory types have a tendency to improve as x

 0.1

 1

 10

 100

 3 6 9 12 15 18 21 24

#
a
c
c
e
s
s
e
s

x

V* (D)
V* (R)

Est.

(a) Effect of x

 0

 20

 40

 60

 80

 100

 120

 140

 3 6 9 12 15 18 21 24

E
rr

o
r

(%
)

x

V* (D)
V* (R)

(b) Relative errors

Fig. 25 Cost model validation for x on synthetic uniform data

increases. When x assumes a relatively large value (15), the
relative errors are less than 10%.

The effect of l. Figure 26 provides a comparison be-

tween the experimental results and the three cost models as

the value of l is varied from 400 to 2, 000 units. Figure 26(a)

shows that the number of data accesses increases as l in-
creases for both algorithms and the experimental results con-

form with the estimates produced by the cost models. The

relative errors are presented in Figure 26(b). For V*-kNN
on random trajectories, we observe a drastic accuracy im-

provement as l is increased from 400 to 800 units and the

relative error remains below 10% for the rest of l values. For
V*-kNN on directional trajectories and RIS-kNN on both

trajectory types, their relative errors remain below 5% for

the whole range of l values.

 0.01

 0.1

 1

 10

 100

 400 800 1200 1600 2000

#
a
c
c
e
s
s
e
s

l

V* (D)
V* (R)

RIS (D)
RIS (R)

Est.

(a) Effect of l

 0

 5

 10

 15

 20

 25

 30

 35

 400 800 1200 1600 2000

E
rr

o
r

(%
)

l

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Relative errors

Fig. 26 Cost model validation for l on synthetic uniform data

The effect of n. Figure 27 provides a comparison be-

tween the experimental results and the three cost models as

the value of n is varied from 25, 000 to 100, 000 objects. Fig-
ure 27(a) shows that the communication cost increases as n
increases. The cost models accurately capture the number of

data accesses for both algorithms. Figure 27(b) shows that

for the considered range of n, the relative errors are below

15%.

The effect of k. Figure 28 provides a comparison be-

tween the experimental results and the three cost models as

the value of k is varied from 10 to 40. Figure 28(a) shows

that the access cost increases as k increases and the cost

23

 0.1

 1

 10

 100

 1000

 25 50 75 100

#
a
c
c
e
s
s
e
s

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

Est.

(a) Effect of n

 0

 5

 10

 15

 20

 25

 25 50 75 100
E

rr
o
r

(%
)

n (x1000)

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Relative errors

Fig. 27 Cost model validation for n on synthetic uniform data

models accurately capture the number of data accesses for

both algorithms. Figure 28(b) shows that when k assumes

a relatively large value (20), the relative errors are less than
15% and in most cases, the relative errors are below 10%.

 1

 10

 100

 10 20 30 40

#
a
c
c
e
s
s
e
s

k

V* (D)
V* (R)

RIS (D)
RIS (R)

Est.

(a) Effect of k

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40

E
rr

o
r

(%
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Relative errors

Fig. 28 Cost model validation for k on synthetic uniform data

The effect of s. Figure 29 shows a comparison between

the three cost models and the experimental results as the step

size s is varied from 2 to 3. The cost models correctly cap-

ture the stable number of accesses for the case of RIS-kNN
on both trajectory types and V*-kNN on directional trajec-

tories. The slight increase in the number of accesses for V*-

kNN on random trajectories is also captured by the corre-

sponding cost model. Figure 29(b) shows that the relative

errors are smaller than 15% in most cases.

 1

 10

 100

 1000

 2 2.25 2.5 2.75 3

#
a
c
c
e
s
s
e
s

s

V* (D)
V* (R)

RIS (D)
RIS (R)

Est.

(a) Effect of s

 0

 5

 10

 15

 20

 25

 2 2.25 2.5 2.75 3

E
rr

o
r

(%
)

s

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) Relative errors

Fig. 29 Cost model validation for s on synthetic uniform data

8.6 Spatial-network experimental study

The problem of spatial-network MkNN is concerned with

maintaining the k objects with the smallest network dis-

tances, while the movement of the query point is constrained

by the network connectivity. In this experiment, we simulate

a scenario of a vehicle travelling in a road network while

continuously keeping track of the k nearest gas stations.

Figure 30 illustrates the road network used in this set of

experiments. The road network consists of 175,813 nodes

and 179,179 edges. The average degree of the network is

2.04. The data objects are uniformly distributed among the

edges in the data space of 10,000 × 10,000 square units.

Fig. 30 Road network in North America

In our implementation of Algorithm 1, we use the in-

cremental network expansion (INE) kNN algorithm [21] as

the access method. To calculate the boundaries of the safe

region Sk and the fixed-rank region (FRR), we employ the

lazy-evaluation approach discussed in Section 7. That is, we

evaluate only Sk and FRR boundaries along the edge that

the query point currently occupies.

The results are presented in two cost measures, the total

response time (the total cost) and the number of accesses.

The total response time is the wall clock time taken to pro-

cess one trajectory. The number of accesses is the number

of INE-kNN calls, which is also indicative of the communi-

cation cost in the client-server paradigm6.

Table 8 gives a summary on the range and default val-

ues of the parameters used in the experiments. To provide a

practical range of k values in this gas-station scenario, we

use the k values between 2 to 10. We use the x values from

2 to 10 to comply with the range of k values. In order to em-

ulate typical interstate driving distances, the range of trav-

elling distances l of [250:1,000] units is used. According to

the 2002 economic census [31], the number of nearest gas

stations in the U.S. was 121,446 in that year. We therefore

set the range of n values to [25,000:125,000] objects. Due

6 This is under the assumption that the road network is static and is

stored on both client and server sides, so communication is required

only during each INE-kNN call.

24

to space limitations, other parameters c, s and δ are set to

constant values of 0, 0.5 and 0 respectively.

Table 8 Spatial network: summary of parameters

Parameter Default Value Range Increment

k - [2:10] 2

x 6 [2:10] 2

l 250 [250:1000] 250

n 25,000 [25,000:125,000] 25,000

The effect of x. Figure 31(a) shows the total response

times as the value of x is varied from 2 to 10 for the k
values between 2 to 10. The figure shows that the optimal

value of x gradually shifts from 4 to 6 as k increases. This

is because the cost for each access via INE-kNN increases

as k increases. It therefore becomes more beneficial to in-

crease the number x of auxiliary objects in order to reduce

the number of accesses. Since the x value of 6 generally pro-

vides a reasonable performance for all experimented k val-

ues, we set the default value of x to 6. Figure 31(b) shows

the number of accesses for the same ranges of x and k in

Figure 31(a). Similar to the Euclidean counterpart in Fig-

ure 25(a), the number of accesses reduces as x increases.

Although not displayed here, we have also conducted an

experiment on a sampling based approach that does not uti-

lize auxiliary objects and invokes INE-kNN at every loca-

tion update. We have found that this method has greater re-

sponse times than V*-kNN (with x equal to 6) by 5.9 times

for k of 2 and 6.5 times for k of 10. The number of accesses

of the sampling based approach is higher than that of V*-

kNN (with x equal to 6) by 54.3 times for k of 2 and 36.5

times for k of 10.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 6 8 10

ti
m

e
 (

s
e

c
)

x

k=2
k=4
k=6
k=8

k=10

(a) Total cost

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10

#
a

c
c
e

s
s
e

s

x

k=2
k=4
k=6
k=8

k=10

(b) Number of accesses

Fig. 31 Spatial network: effect of x

The effect of l. Figure 32 shows that both of the total

response time and the number of accesses increase as the

trajectory length l increases for all values of k. This is be-
cause as l increases, the trajectory covers a larger portion of

the network and the query point encounters more updates.

The effect of n. A greater value of n provides a higher

object density, which produces two different effects. First,

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 250 500 750 1000

ti
m

e
 (

s
e

c
)

l

k=2
k=4
k=6
k=8

k=10

(a) Total cost

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 250 500 750 1000

#
a

c
c
e

s
s
e

s

l

k=2
k=4
k=6
k=8

k=10

(b) Number of accesses

Fig. 32 Spatial network: effect of l

as shown in Figure 33(b), we observe a higher number of

accesses, which conforms with the Euclidean counterpart in

Figure 27(a). Second, we observe a reduction in the total

cost as shown in Figure 33(a). This is because as the density

of data objects increases, (k + x) NNs can be retrieved with
a smaller network-distance calculation cost during each data

access via INE-kNN. This reduction in the cost per access

outweighs the increase in the number of accesses and results

in a reduction of the total cost.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 25 50 75 100 125

ti
m

e
 (

s
e

c
)

n (x1000)

k=2
k=4
k=6
k=8

k=10

(a) Total cost

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 25 50 75 100 125

#
a

c
c
e

s
s
e

s

n (x1000)

k=2
k=4
k=6
k=8

k=10

(b) Number of accesses

Fig. 33 Spatial network: effect of n

8.7 Summary

V*-kNN consistently outperforms RIS-kNN. The two fac-

tors that make V*-kNN superior to RIS-kNN are a lower

cost per access and a smaller number of data accesses. V*-

kNN, however, incurs an additional CPU cost in order to

maintain the order of (k + x) objects. This CPU overhead

could be disadvantageous when using a slow mobile device

especially with a large value of x.
For V*-kNN, a random trajectory tends to incur a

smaller communication cost than a directional trajectory of

the same length, since the query point on a random trajectory

tends to stay in the same combined safe region for a longer

period of time. This effect is also captured by our cost mod-

els in Equations (13) and (14). The cost differences between

the two trajectory types are less apparent for the total time,

which takes CPU costs into account. This is because a sim-

ilar amount of work is required to keep the (k + x) objects

25

in order. Finally, the experimental results have shown that

for practical ranges of s, l, x, k and n values, the cost mod-

els can accurately capture the number of data accesses for

V*-kNN and RIS-kNN.
For the spatial-network experiments, the results regard-

ing the number of accesses conform with the Euclidean

counterpart. That is, the number of accesses has a positive

correlation with the parameters l, n and k, and has a nega-

tive correlation with x. For the total response time, choosing

the value of x is still a trade off between the number of ac-

cesses and the CPU cost. Due to the behavior of the underly-

ing access method, INE-kNN, the value of n has a negative

correlation with the total response time, which is opposite to

the case for the Euclidean space.

9 Conclusions

In this paper, we have discussed the V*-Diagram and the

associated algorithm V*-kNN, which can be used to effi-

ciently process moving k nearest neighbor queries (MkNN).
Unlike other safe-region techniques, which only utilizes the

knowledge of the data objects, the V*-Diagram exploits also

the query location and the scope of the current search space.

As a result, the V*-Diagram is more economical in terms

of both I/O and CPU costs. We also showed that the V*-

Diagram can be applied to spatial networks. We have de-

rived cost models for V*-kNN and a competitive technique,

RIS-kNN, and showed that they can accurately predict the

number of data accesses for both techniques. We also per-

formed an extensive experimental study and the results show

that our algorithm outperforms RIS-kNN by one order of

magnitude.

References

1. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree:

an efficient and robust access method for points and rectangles. In:

SIGMOD, pp. 322–331 (1990)

2. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest

and reverse nearest neighbor queries for moving objects. VLDB

J. 15(3), 229–249 (2006)

3. Böhm, C.: A cost model for query processing in high dimensional

data spaces. ACM Trans. Database Syst. 25(2), 129–178 (2000)

4. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroquı́n, J.L.:

Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321

(2001)

5. Cho, H.J., Chung, C.W.: An efficient and scalable approach to

CNN queries in a road network. In: VLDB, pp. 865–876 (2005)

6. Dijkstra, E.W.: A note on two problems in connection with graphs.

Numeriche Mathematik 1, 269–271 (1959)

7. Guttman, A.: R-trees: a dynamic index structure for spatial search-

ing. In: SIGMOD, pp. 47–57 (1984)

8. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann (2006)

9. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Sym-

posium on Large Spatial Databases, pp. 83–95 (1995)

10. Hjaltason, G.R., Samet, H.: Distance browsing in spatial

databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

11. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring

continuous spatial queries over moving objects. In: SIGMOD, pp.

479–490 (2005)

12. Huang, X., Jensen, C.S., Lu, H., Saltenis, S.: S-GRID: A versatile

approach to efficient query processing in spatial networks. In:

SSTD, pp. 93–111 (2007)

13. Huang, X., Jensen, C.S., Saltenis, S.: The islands approach to near-

est neighbor querying in spatial networks. In: SSTD, pp. 73–90

(2005)

14. Iwerks, G.S., Samet, H., Smith, K.P.: Maintenance of k-nn and

spatial join queries on continuously moving points. ACM Trans.

Database Syst. 31(2), 485–536 (2006)

15. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neigh-

bor search for spatial network databases. In: VLDB, pp. 840–851

(2004)

16. Kolahdouzan, M.R., Shahabi, C.: Alternative solutions for con-

tinuous k nearest neighbor queries in spatial network databases.

GeoInformatica 9(4), 321–341 (2005)

17. Kulik, L., Tanin, E.: Incremental rank updates for moving query

points. In: GIScience, pp. 251–268 (2006)

18. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A threshold-

based algorithm for continuous monitoring of k nearest neighbors.

IEEE Trans. Knowl. Data Eng. 17(11), 1451–1464 (2005)

19. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-Diagram:

A query dependent approach to moving kNN queries. In: VLDB,

pp. 1095–1106 (2008)

20. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: concepts

and applications of Voronoi diagrams. John Wiley & Sons, Inc.

(1992)

21. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing

in spatial network databases. In: VLDB, pp. 802–813 (2003)

22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor

queries. In: SIGMOD, pp. 71–79 (1995)

23. Samet, H.: Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann (2006)

24. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network

distance browsing in spatial databases. In: SIGMOD, pp. 43–55

(2008)

25. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving

query point. In: SSTD, pp. 79–96 (2001)

26. Splitzer, F.: Principles of Random Walk. Springer (2001)

27. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-

temporal databases. In: SIGMOD, pp. 334–345 (2002)

28. Tao, Y., Papadias, D.: Spatial queries in dynamic environments.

ACM Trans. Database Syst. 28(2), 101–139 (2003)

29. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor

search. In: VLDB, pp. 287–298 (2002)

30. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An efficient cost

model for optimization of nearest neighbor search in low and

medium dimensional spaces. IEEE Trans. Knowl. Data Eng.

16(10), 1169–1184 (2004)

31. U.S. Census Bureau: Economic census (retail trade United States)

(2002)

32. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor

queries over moving objects. In: ICDE, pp. 631–642 (2005)

33. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-

based spatial queries. In: SIGMOD, pp. 443–454 (2003)

