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Abstract Peer-to-peer (P2P) networks have become a
powerful means for online data exchange. Currently,
users are primarily utilizing these networks to perform
exact-match queries and retrieve complete files. How-
ever, future more data intensive applications, such as
P2P auction networks, P2P job-search networks, P2P
multi-player games, will require the capability to respond
to more complex queries such as range queries involving
numerous data types including those that have a spa-
tial component. In this paper, a distributed quadtree
index that adapts the MX-CIF quadtree is described
that enables more powerful accesses to data in P2P
networks. This index has been implemented for various
prototype P2P applications and results of experiments
are presented. Our index is easy to use, scalable, and
exhibits good load-balancing properties. Similar indices
can be constructed for various multi-dimensional data
types with both spatial and non-spatial components.
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1 Introduction

Internet users are ready to adapt new Peer-to-Peer (P2P)
applications to exchange a greater variety of data than
just music files. Some examples of such applications in-
clude P2P auctions, P2P job-search networks, and P2P
multi-player games, to name a few. These applications,
without requiring a central service provider nor a single
point of failure and control, can form low-cost, easy to
deploy, and scalable medium of data exchanges. Access-
ing many resources in a coherent manner and finding
data on such highly dynamic distributed environments
is a challenging problem. Researchers have been working
on various indices that can be used to efficiently access
data on P2P networks. Examples of this work are [23,
27,28,35,38]. The bottleneck for the new P2P applica-
tions is that often these indices cannot provide the nec-
essary functionality to perform many types of complex
queries on complex data that users have come to expect
from conventional client-server based database systems.
These indices generally hash a given unique-value/key
(e.g., a file name) to a peer address-space (i.e., using
IP addresses) and hence cannot perform many queries
such as range queries on various data types. For exam-
ple, a spatial object commonly has an extent and cannot
be easily represented by a single point/data value, and
popular spatial queries, such as spatial range queries, are
not exact match queries. In this paper we focus on the
use of P2P networks for applications with spatial data
and queries. Such applications are greatly enhanced by
the availability of a spatial index which speeds up the
retrieval capabilities of the application. In particular, in
this paper, we introduce and analyze a distributed spa-
tial index that is based on the quadtree data structure
(e.g., [30–32]).

One of the most common spatial queries is the spa-
tial range query. In this case, the results of a conven-
tional query are further constrained by being restricted
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to a particular spatial region, also known as a window
query when viewed from a computer graphics perspec-
tive. On the other hand, from a database perspective,
this query is referred to as a spatial selection query [3].
This query can arise in a number of applications ranging
from a distributed database of real estate ads (such as
those found in many online newspapers) where we want
to find all ads involving certain properties in a given re-
gion of a city. Clearly, many other variants of this query
could be formulated and also in terms of combinations
of other attributes of the data. In particular, window
queries can also be formulated for nonspatial attributes
such as finding all individuals whose height, weight, and
age are within a given set of value ranges. In this paper,
our focus is on two-dimensional spatial data although the
methods that we present are generalizable to higher di-
mensions. In fact, we have incorporated our methods in
a P2P 3D virtual world application where users can up-
date the world without central administration [36]. We
have also tested the methods described in this paper us-
ing a realistic two-dimensional spatial setting and the
results are reported in this paper. These results demon-
strate that our distributed spatial index and the associ-
ated algorithms work well under a wide range of param-
eter settings and also exhibit a promising load-balancing
behavior.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of our contributions and reviews
related work. Section 3 presents our distributed quadtree
index in detail. Section 4 reports the results of experi-
ments using our index. Section 5 contains concluding re-
marks as well as provides directions for future research
involving possible extensions of our work.

2 Approach and Related Work

2.1 Approach

We separate the details of the P2P protocol (e.g., [35])
implementation from the spatial index by using a layered
approach proposed in [18], called the Open P2P Network
(OPeN) architecture. The OPeN architecture consists of
three layers; the Application layer, Core Services layer,
and Connectivity layer. The Application layer is where
all the application logic is confined. The Core Services
layer ensures consistency and ease of development for a
large range of applications using common services. The
Connectivity layer enables P2P protocols to be devel-
oped transparently. In particular, the architecture ab-
stracts the method by which the P2P protocol under-
takes key-based routing. The performance of our spatial
index, named as Spatial Data Service, is dependent on
the performance of the protocol, but not on the protocol
implementation details. The layered approach allows us
to optimize either the spatial index or the protocol in-
dependently of one another, if needed. This brings the

flexibility to transparently exchange the protocol with-
out changing the spatial index. It also allows the use of
such methods as object replication and migration, trans-
parently to the spatial index. Quality of service param-
eters can be used to influence migration and replication
processes. In summary, our index is built on a P2P pro-
tocol implementation that can be easily replaced and
influenced. The layers of OPeN are shown in Fig. 1.

Application Layer

Core Services Layer

Connectivity Layer
E.g., Key−based Routing

E.g., Data Indexing

E.g., Graphical User Interface
Objects are inserted/deleted/queried
by the user.

a virtual index is maintained.

Messages are routed to peers

Data buckets are computed and

and replicas are maintained.

Fig. 1 Our spatial index is implemented in the Core Services
Layer, between the Application Layer (top) and the Connec-
tivity Layer (bottom).

Our distributed spatial index assigns responsibilities
for regions of space to the peers in the system. Us-
ing a quadtree, each sub-region is uniquely identified by
its centroid where the recursive space subdivision lines
meet. We call this centroid a control point. We then pass
this information as a key and use a key-based routing
protocol (e.g., Chord [35]) at the Connectivity Layer to
hash these control points to peers.

2.2 Key-based Routing

In a key-based P2P routing protocol, given a
(key,message) pair and a hash function that maps keys to
address locations, the protocol routes the message from
any given source peer to the destination peer; the des-
tination is the peer assigned to the key’s address loca-
tion. A hash function is commonly used to randomize the
mapping from keys to address locations. Roughly equal,
contiguous blocks of address locations are assigned to
each peer. Assuming the key represents an object to be
accessed according to the message, then the destination
peer is responsible for maintaining that object’s details
in its memory. In some cases the object details may be a
reference to some other peer where further details about
the object can be found.

We use the Chord protocol [35] as a key-based routing
protocol at our base. Other key-based routing protocols
exist such as the CAN protocol [27] and can be used with
our work.

Fig. 2 shows a simplified example of the Chord
routing algorithm. Keys and IP addresses of peers are
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mapped to virtual locations in the range from 0 through
2t − 1. The shaded area in Fig. 2 shows the range of the

interval of locations
owned by 10.28.1.5

2t − 1 0

128.56.32.1

10.28.1.5

128.56.32.5

apple

prog1

foo

bar
d.htm

Fig. 2 Details from the Chord method.

address space corresponding to the locations of keys for
which peer 10.28.1.5 is responsible. For n peers, each peer
maintains O(log n) routing information, i.e., the routing
table size, and it can be shown that a request to locate
a file will be forwarded O(log n) times with high prob-
ability. Entries in the routing table define exponentially
increasing intervals in the address space and each en-
try is associated with a peer that occurs next, traversing
clockwise, in that interval. Messages continue to be for-
warded from peer to peer until the request reaches the
destination peer. In Fig. 2, a message with key prog1
can be routed from 10.28.1.5 to 128.56.32.1 and finally
to 128.56.32.5. Only some of the routing table entries are
shown in our figure.

2.3 P2P Complex Queries and Complex Data

2.3.1 P2P Range Queries

The implementation of range queries on P2P networks
has rapidly emerged as an area of interest. PePer [12]
supports range queries in one dimension by subdividing
the underlying space into regular intervals. MAAN [9]
uses locality preserving hashing to map a range of data
space to Chord. This approach uses either a direct map-
ping of the data domain to the Chord space or assumes
that the input data range and distribution are known
in advance to create a balanced mapping. Other related
work includes [20] which uses directed acyclic graphs to
create a range addressable topology and [4,14] which
use methods that group data points with skip-graphs [5]
or utilize range-partitioning with online balancing algo-
rithms. CLASH [24] has introduced variable-length keys
and clustered content-related objects on peers. It can
change the length of the keys to adjust for load. Also, [26]
uses a trie-based scheme and hashes prefixes of keys to
peers. Similar to CLASH, when a certain threshold is ex-
ceeded, a split occurs with two new prefixes. P-trees are
introduced in [11]. The P-tree concept is very similar to

the B+-tree concept but P-trees are decentralized struc-
tures. In [17], Gupta et al. use caching and also local-
ity preserving hashing to approximate answers for range
queries. Also, in [8], authors introduce a multi-attribute
range query system with explicit load-balancing mea-
sures. In essence, they use multiple circular overlays and
organize the peers of the system into these overlays.

Various approaches (e.g., [2,29]) have been proposed
using the CAN [27] key-based routing protocol. A two-
dimensional CAN space can be viewed as a grid of cells
and the peer addresses and keys for the data can be
hashed onto this space. Each peer knows about its four
adjacent neighbors and this knowledge is used for rout-
ing. Recent approaches for range queries rely on the di-
rect mappings of the data space onto the CAN names-
pace. Such a direct mapping can have load-balancing is-
sues with skewed data distributions. The peers that take
ownership of regions of space where there are many data
items can suffer from load-balancing problems. Even if
these regions are subdivided, the CAN method is based
on connecting neighboring cells to facilitate routing of
queries in the P2P network. Hence, the neighbors can be
congested. More importantly, routing using only neigh-
boring cells takes time for a large network without a
method (e.g., a hierarchy) to enable large jumps in the
network.

In CAN, virtual peers could be placed in areas of high
load and this may be preferred to the case where the load
easily spreads to neighboring peers. In fact, if the load
is spread to randomly selected peers, then the load bal-
ancing is similar to what is achieved using our approach.
An interesting observation is: A d-dimensional CAN net-
work has a lookup time of d

2
n1/d with 2d neighbors at

each of n peers. Setting the lookup time to log
2
n (like

Chord) and hence solving d
2
n1/d = log

2
n for d yields

d = log
2
n and this leads to the same topological prop-

erties as Chord. This can be used for indirect mappings
of the data space to the namespace which would be fun-
damentally equivalent to our work.

In comparison to our index, none of these approaches
consider the case where data may have multiple dimen-
sions attached to each other with extents in each of these
dimensions, as it is the case with spatial data, and com-
plex queries on this data, such as window queries.

2.3.2 P2P Spatial Data

Recently, Mondal et al. in [25] reported on their prelim-
inary work on using a P2P R-tree index. Our approach
is different than theirs in that we are using a quadtree
spatial index which is based on a regular decomposition
of the underlying space. The benefits of our approach
are: a quadtree decomposition is implicitly known by all
the peers in the system without a need for any commu-
nications, and future work can benefit from our work
by facilitating operations between separate data sets as
the partitions are in registration with each other which
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is not the case in R-trees. Also [15] describes two ap-
proaches for accommodating window queries. First, they
use space-filling curves with range partitioning to reduce
multi-dimensional data into one dimension. Next, they
utilize skip-graphs for efficient range queries. Ganesan et
al. [14] also point out that load-balance can be an issue
for such direct mappings and it needs to be fixed with
external techniques such as the one described in [14]. In
our work, we do not require explicit load-balancing algo-
rithms. Second, they introduce a P2P version of the k-d
tree [7] that is similar to the direct CAN approach to
address point data. The routing again utilizes the neigh-
boring cells of the data structure. For this second ap-
proach, they also argue that load-balance is an issue that
needs to be addressed although they leave its resolution
for future work. Finally, [6] recently described a method
based on using a Voronoi diagram to address multidi-
mensional objects on P2P networks. Their work is sim-
ilar to the CAN approach. In comparison to a regular,
grid like, space division, they subdivide the space using
a Voronoi diagram. They use random graphs for rout-
ing which can connect remote peers/regions. However,
the random graph method does not have the determin-
istic behavior of a quadtree. Also, Voronoi diagrams are
harder to manage with high dimensional data due to, in
part, their large space requirements as the dimension of
the underlying space increases.

2.3.3 Related Work from Wireless Networks

Recently, [13] introduced an R-tree index in wireless sen-
sor networks. Their work uses explicit cluster heads for
maintaining connectivity between peers responsible for
parts of the data while in our work we try to decentral-
ize this concept and maintain connectivity more implic-
itly. They also only focus on performing nearest neighbor
queries. The work reported in [21] introduces a location
service for ad hoc networks. Although they also use a
recursive subdivision of space, their main concern is on
locating and routing to point objects in this space rather
than facilitating general spatial queries on spatial data.
In [22], Li et al. introduce a distributed data structure
that depends on locality preserving geographic hashing.
They report addressing skewed data as future work and
their structure is constructed for addressing concerns re-
lated to point data rather than data with extents. Hence,
the data structure can be viewed as a distributed k-d
tree. In [16], Gao et al. use a quadtree-based scheme to
store sensor data. They use this structure to aggregate
data over a large area in a fractionally cascaded manner
with respect to distance.

In summary, wireless sensor and mobile ad hoc net-
works are concerned with mostly point data, and al-
gorithms are driven by a desire to utilize the physi-
cal network connectivity given certain constraints such
as power. Also, mappings between processors and data
is commonly bound by the fact that processing units

share the same physical space with the data. P2P net-
works over the Internet are hence fundamentally different
than these networks in many aspects, although they have
other similarities such as their decentralized nature.

3 Distributed Quadtree-based Hashing

Spatial objects are objects with extents in a multidi-
mensional setting. The generality of the shapes of the
objects and the query regions means that the process
of intersecting them is more complex than finding ex-
act matches when dealing with file names in the case of
documents or music files. Spatial queries are often ex-
ecuted by recursively subdividing the underlying space
and then solving possibly simpler intersection problems.
This recursive subdivision process lies at the heart of
implementations that make use of some variants of the
quadtree representation (e.g., [31]). (For our work, we
also consider the situation when additional data, such as
pictures of a house for a P2P auction network, can be
associated with a spatial object. We keep a reference to
the original owner peer of the spatial object where the
additional data is stored.)

There are many variants of the quadtree data struc-
ture, with the region quadtree being the most common.
In this case, the underlying two-dimensional square-
shaped space is recursively decomposed into four con-
gruent square blocks until each block is contained in one
of the objects in its entirety or is not contained in any of
the objects. The advantage of the quadtree representa-
tion lies in part in reducing the complexity of the inter-
section process by enabling the pruning of certain objects
or portions of objects from the query. In another common
subdivision method, for each object o, the decomposition
of the underlying space halts upon encountering a block
b such that o overlaps at least two of the child blocks
of b or upon reaching a maximum level of decomposi-
tion of the underlying space. In both cases, the object is
associated with b upon halting. This method has been
widely used in applications ranging from VLSI design
where it is known as an MX-CIF quadtree [19] to spatial
databases where it is known as a filter tree [1,33] and in
game programming where a variant in 3D is known as
a loose octree [37]. We choose MX-CIF quadtrees to ex-
hibit our P2P index and associated algorithms although
other quadtree types could have also been utilized.

If we can attach a peer to a region of space, then
that peer is responsible for all query computations that
intersect that region, and for storing the objects that are
associated with that region. To this end, we make the ob-
servation that each quadtree block can be uniquely iden-
tified by its centroid, named a control point and we can
use the Chord method to hash these control points so
that the responsibility for a quadtree block is associated
with a peer. For example, H(“(5, 2)”) is the location of
the control point (5, 2) on the Chord. The control points
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Fig. 3 Spatial objects/queries {W, X, Y, Z}, control points, and some of the hashings to the Chord, i.e., the coordinate
values of a control point are used as the key and hashed onto the Chord. Dark dots are the peers that are currently in the
system. Light dots are the control points hashed on to the Chord. For this figure, fmin = 2.

can be determined using the globally known quadtree
subdivision method to recursively subdivide the under-
lying space. Multiple control points and hence quadtree
blocks can be hashed to the same peer and multiple ob-
jects can be stored with each control point. The use of
a control point in our algorithms is analogous to that
of a bucket for storing objects and also for performing
intersection calculations associated with that block.

With a good base hash function we can achieve a uni-
formly random mapping of the quadtree blocks to the
peers of the network. For example, SHA-1 is a good can-
didate hash function that is used with Chord. It will
map two quadtree blocks that are close to each other,
as well as two peers with similar IP addresses, to to-
tally different locations on the Chord space. Hence, as
quadtree subdivisions create new blocks for crowded re-
gions of the space, we will be assigning the responsibili-
ties of these blocks to different peers, creating an implic-
itly load-balanced method that can handle skewed data
distributions. A perfect load-balance for our purposes is
defined as having all of the peers in the network sustain
an average load throughout their existence in the net-
work. The average load can be defined as processing an
average number of messages. Thus a good load-balance
is when very few peers process many more messages than
the average number.

Fig. 3 depicts some control points and example hash-
ings using the Chord method. Objects are inserted into
the distributed structure by mapping them into quadtree
blocks and hashing the control points of those blocks
on to the Chord. In the example, control point CC is
mapped to peer t and the object Z is stored with that
control point.

At first glance, query execution starts at the root
of the quadtree and propagates down through some
branches of the tree, testing for the intersection of data
objects with the query object as it proceeds. For a P2P

system, the tree traversal becomes a sequence of peer
visits. The query is transmitted from a parent block b
in the quadtree (i.e., from the peer to which the control
point maps) to the child blocks (i.e., to the peers that
store the child blocks) by utilizing the Chord P2P lookup
method.

Unfortunately, there is a single point of failure that
occurs when all tree operations begin at the peer that
stores the control point associated with the root. If that
peer is very busy or the ownership of that control point
has to change hands with peer departures, then the whole
tree will become unavailable for some time. On the other
hand, as we have a distributed structure, there is no rea-
son for us to start the operations at the root of the tree.
Therefore, we introduce the concept of the fundamental
minimum level, fmin. This modification means that ob-
jects can only be stored at levels l ≥ fmin, and likewise
all query processing occurs at levels l ≥ fmin. Hence,
for our quadtrees, no objects can be stored at levels
0 ≤ l < fmin. For example, in Fig. 3, fmin is set to
2. Hence, the object X is subdivided at level 0 into an
upper and a lower part, and then further subdivided at
level 1 into 8 different parts. 4 out of the 8 parts of X are
stored at level 2 (i.e., associated with control points AC,
AD, CA, and CB, respectively). Note that these 4 parts
cannot be stored at a deeper level of the tree without
having to be subdivided again, which would contradict
the original definition of an MX-CIF quadtree. The re-
maining 4 parts are inserted at the next (deeper) level
as they are smaller. In particular, they are stored at con-
trol points AAD, ABC, CCB, and CDA, respectively,
although, in the interest of keeping the figure simple,
they are not shown in detail. Again, these parts cannot
be inserted at a deeper level of the tree as this would re-
quire that they be subdivided. As another example, the
smallest part of object Y is inserted at level 4.
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Note that the concept of fmin also helps distribute
the initial processing of a query to lower levels and hence
implicitly further balance the load. In addition, we con-
tinue to use the concept of a maximum depth for a MX-
CIF quadtree and name it as the fundamental maximum
level, fmax. Values for fmax and fmin are constant and
globally known. When fmin = 0, our structure reverts to
the standard MX-CIF quadtree, but a distributed ver-
sion of it. When fmin = fmax, our structure degener-
ates to a distributed regular grid structure thereby com-
pletely collapsing the tree structure into a single level.

3.1 Distributed Spatial Algorithms

Our basic operations include:

1. When an insertion operation or query is initi-
ated at a peer, the peer calls the InsertObject() or
ReceiveClientsQuery() which in turn calls Subdivide()

to compute the intersecting control point(s) at the
fmin level. It then broadcasts the insertion operation
or the query to the peer(s) that owns the control
point(s).

2. When a peer receives an insertion operation or query
that was initiated on another peer, it calls either
DoInsert() or DoQuery() which determines the place-
ment of the spatial object or finds any relevant re-
sults, respectively, and finally decides whether the
operation needs to continue by descending through
the distributed tree.

Each control point u has the following data structure
associated with it: D(u) = ({d1, d2, d3, d4}, list). di ∈ N

are downward counts used to indicate the number of ob-
jects that exist at or below child i. list is a list of objects
that intersect the region R(u) and that could not be in-
serted at a deeper level in the tree. The default values
for D(u) are ({0, 0, 0, 0}, empty) which means that there
are no objects below u and no objects stored at u. We do
not create a control point until an insertion operation re-
quires it. Throughout the paper, R(u) = (x1, y1, x2, y2)
denotes the region defined by a quadtree block centered
at control point u =

(

((x2 + x1)/2), ((y2 + y1)/2)
)

. Also,
we let L(u) denote the level or depth of the quadtree at
which control point u is present, and C(u, i) to repre-
sent the ith child of control point u, where i = 1, 2, 3, 4.
Finally, D(u).field is used to access field of D(u).

Operations on our index are decentralized. We use
Delegate(u)→Func() to mean that a peer sends a mes-
sage that invokes Func() on another peer that stores
control point u. With delegation, operations can propa-
gate through the tree. They work in parallel on multiple
branches on different peers.

A peer calls InsertObject(object X) to insert an ob-
ject into the tree. Procedure InsertObject(), given below,
concurrently delegates procedure DoInsert() over all con-
trol points at level fmin that intersect with the object.

Procedure DoInsert() delegates recursively and also con-
currently through the distributed tree until the object is
inserted. If DoInsert() is invoked on a control point that
does not exist, then the control point is allocated with
default parameters.

Our algorithms make use of auxiliary procedures
Ints(X, Y ) and Subdivide(X, root, G). Ints(X, Y ) com-
putes the intersection of X with Y . Subdivide(X, root, G)

is initially called with G = {} when inserting X (also
used when deleting or starting a query). This initial
subdivision of an object (or query) down to level fmin

is performed by the recursive invocation of Subdivide():
The procedure modifies G by adding control points to it.
First, root is used to call this procedure where L(root) =
0 and R(root) is a bounding box that bounds all data
and query objects. For this algorithm, it is assumed that
all X’s are contained within R(root). The list G of con-
trol points at level fmin is then computed locally on the
peer that will start the insertion operation, and process-
ing is then delegated to the peers that store these control
points.

In s e r tOb j e c t ( ob j e c t X ) {

c on t r o l po int l i s t G:={}
Subdivide (X, root, G)
for each u in G do in p a r a l l e l

Delegate (u)→DoInsert (X ,u)
}

DoInsert ( ob j e c t X ,
c on t r o l po int u ) {

i f (X i s not with in exac t l y one R(C(u, i)))
or (L(u) = fmax ) then
s e t D(u) . list to in c lude X

else
for i :=1 to 4 do in p a r a l l e l

i f ( Ints(X, R(C(u, i))) i s not empty ) then
increment D(u) . di by 1
Delegate (C(u, i))→DoInsert (X ,C(u, i))

}

Subdivide ( ob j e c t X ,
c on t r o l po int u ,
c on t r o l po int l i s t G ) {

i f (L(u) = fmin ) then
add u to G
return

for i :=1 to 4 do s e q u e n t i a l l y
i f ( Ints(X, R(C(u, i))) i s not empty ) then
Subdivide (X, C(u, i), G)

}

Procedures for DeleteObject() and DoDelete() are al-
most identical to InsertObject() and DoInsert() and thus
are not given here. The main difference is that objects
are removed from D(u).list and that D(u).di is decre-
mented by 1.

We allow peers to receive a query from any node on
the Internet (i.e., a client may or may not be a peer in the
system) via the ReceiveClientsQuery() procedure. Similar
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to insertion (deletion), this procedure takes in an object
(named Q for query in this case) and then finds the con-
trol points at level fmin and delegates the query to the
relevant peers. The results of a query can then be sent
back to the client. This requires that a message from any
peer that computed a piece of the query intersection be
sent to the peer that stores/owns the extra data related
to the hit which in turn sends this data to the client.

Rece iveCl ientsQuery ( query Q ) {

c on t r o l po int l i s t G:={}
Subdivide (Q, root, G)
for each u in G do in p a r a l l e l

Delegate (u)→DoQuery (Q ,u)
}

DoQuery ( query Q ,
c on t r o l po int u ) {

i n t e r s e c t ob j e c t s in D(u) . list with Q
send r e s u l t s to c l i e n t
for i :=1 to 4 do in p a r a l l e l

i f ( Ints(Q, R(C(u, i))) i s not empty )
and (D(u) . di > 0 ) then

Delegate (C(u, i))→DoQuery (Q ,C(u, i))
}

Note that in Fig. 3, Y is bucketed in 6 different con-
trol points that span 4 different peers. This means that
a query which covers these multiple control points may
return the same object a multiple number of times, and
thus we have to eliminate such superfluous hits. In fact,
it is more important to prevent repetitive large down-
loads to a client from the owner of the object. The peer
who is the original owner of the object and the extra data
associated with it is responsible for this elimination task.
Also, for concurrency control and tracking the progress
of the tree operations, this owner peer can again be used.

Delegation is achieved using the Chord method, and
thus it ordinarily takes O(log n) messages for the dele-
gation to reach its destination where n is the number of
peers in the system. Since each node of our distributed
MX-CIF quadtree has a fixed number of children, we can
allow each node to maintain a cache of addresses for its
children and thereby reduce the delegation message com-
plexity to O(1). This is only true when the operation is
a regular tree traversal. Note that the number of peers
that are initially contacted is a function of fmin and can
consist of a large number of addresses. Hence, we do not
cache the addresses of the peers of level fmin. When the
set of peers in the P2P network changes, the server tables
of the peers and the ownership of control points are up-
dated by the Chord method. However, with this change,
our caches may also need to be updated. We delay such
updates until there is a cache miss. An addition to our
caching strategy could be to propagate the positive re-
sults to the fmin level although this is not investigated
with our current implementations.

3.2 Index Latency and Load Balancing

We assume that the latency of sending a delegation mes-
sage from one peer to another peer is the dominant factor
in our index, e.g., in comparison to internal processing
costs of peers. We also assume that the different branches
of a single query can proceed in parallel through the sys-
tem. Therefore, under light load the maximum index la-
tency is the time for a longest branch of the distributed
quadtree to be traversed. By light load we mean that the
time taken for a message to be processed and forwarded
by a peer is independent of the number of messages re-
ceived and sent by the peer. Under a heavy load this is
not true because each peer has limited bandwidth and
messages will suffer delays due to queuing. For n peers,
under light load, index latency is proportional to the
number of message hops on the longest path:

O(log n + fmax − fmin).

Note that the O(log n) component cannot be avoided
because the root(s) of the tree(s) must be located re-
gardless of the value of fmin using the underlying Chord
method. For fmin = 0, we have to locate the root of
the distributed quadtree and traverse the tree until the
maximum allowable depth of the tree, fmax, is reached.
The traversal of the tree itself does not need to use the
Chord method due to caching. This traversal would then
be analogous to marching along the longest path of a
classical quadtree on a centralized system where memory
accesses rather than messages are used. A quick analysis
suggests that fmin = fmax should be the most optimal
value for a minimum index latency. This would also mean
that all the queries will not go through a single root and
hence we would increase the load balance in the system.
Unfortunately, increasing fmin to be equal to fmax has
its side effects. The pruning capability of the tree would
diminish and we would have a regular grid with increased
load. Hence, given a quadtree, with an fmax, finding the
right fmin value is our goal.

From a load balancing point of view, to find a value
for fmin, we first ask what value of fmin ensures that
all peers in the system contribute to the query process-
ing at level fmin. If only a fraction of the peers at level
fmin participate, then some peers will potentially have
larger message loads than others. The number of control
points at level fmin is 4fmin and these control points are
distributed uniformly at random over the peers using a
hash function. From basic probability theory, it is known
that if we consider m balls that are to be distributed uni-
formly at random over n bins, then it can be shown that
the average number of bins that will receive at least one
ball is:

φ(n, m) = n − ((n − 1)m · n1−m).

The intuition behind this formula is that the probability
that a bin receives none of the m balls is ((n − 1)/n)m.
Therefore, the probability that a bin receives at least one
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of the m balls is 1 − ((n − 1)m/nm), which is multiplied
by n to obtain the average number of the n bins that
will receive any of the balls. When throwing only m = n
balls,

lim
n→∞

φ(n, n)

n
=

e − 1

e
≈ 0.63

while for m = n log
2
n balls,

lim
n→∞

φ(n, n log
2
n)

n
= 1.

Thus we can write, with constant c0:

4fmin ≥ c0 n log
2
n

fmin ≥ log
4
(c0 n log2n)

fmin = Ω(log n + log log n).

(1)

So long as fmin meets the requirement in Eq. (1) then
each of the peers in the system has an equal opportunity
to handle the message load at level fmin. For a uniform
distribution of queries over the data space, this is the
minimum value of fmin required to make sure that load
is distributed in an unbiased manner over the peers. For
skewed data distributions, higher values of fmin may be
necessary to achieve a perfect load distribution.

From an overall load point of view, the magnitude
of fmin is limited from above. For higher values of fmin,
queries will be unnecessarily subdivided and sent to mul-
tiple peers. Assuming that the average query rectangle
size is a constant fraction ξ of the space in each dimen-
sion, then ξ2 is the fraction of the total space that a
query covers. In this case, the number of control points
at level fmin that are covered by a query is no more than

(

dξ 2fmine + 1
)2

<
(

ξ 2fmin + 2
)2

.

Therefore, we can maintain a O(log n) messages per
query at the initial lookup phase for fmin level peers
so long as

fmin = O(log 1/ξ),

which gives an upper bound on fmin if we do not want
to increase the message load in the system. Higher val-
ues of fmin will start dividing the queries into smaller
subqueries.

For example, for n = 1000 peers (and setting all con-
stants to 1), we need fmin to be at least 7 for a perfect
load balance. However, for ξ = 0.04, fmin should not be
larger than 4 in order to ensure that there is no increase
in message load due to the value of fmin.

4 Experiments

4.1 Experimental Environment

We used the Network Simulator, ns-2
(www.isi.edu/nsnam/ns), in tandem with the Georgia-
Tech Internetwork Topology Generator, GT-ITM
(www.cc.gatech.edu/projects/gtitm) in our experi-
ments. Each experiment examines a different aspect of
our index and consists of multiple observation points.
Each observation point is obtained after 5 consecutive
runs with the same input parameters given to the simu-
lation environment. We averaged these 5 runs to obtain
an observation point value. Before each run, we created
a transit-stub type network at random using GT-ITM
(Fig. 4). Each transit domain can be considered as rep-
resenting a different metropolitan area network. Transit
nodes can be considered as the main Internet service
provider nodes in the metropolitan areas. Stub domains
can be considered as representing different campus or
company or such similar entity networks. A stub node
is used to represent a small local area network. We did
not allow for extra transit to stub edges or stub to
stub edges across domains. The links between transit
domains had a lower capacity than regular transit nodes
in order to properly represent the most congested links
in such networks. A summary of values used with ns-2
and GT-ITM is available from Table (1) All of these
parameter values were chosen to be comparable to the
ones used in other similar studies that deployed ns-2
with GT-ITM [10].

Parameter Value
No of transit domains 2
Transit nodes per domain 8
Stub domains per transit node 6
Stub nodes per stub domain 12
Probability of connecting transit nodes 0.6
Probability of connecting stub nodes 0.2
Bandwidth between stub nodes 2.5Mbps
Stub to transit node bandwidth 2.5Mbps
Bandwidth between transit nodes 80Mbps
Bandwidth between transit domains 40Mbps

Table 1 Summary of parameters used to generate our sim-
ulated network topology.

We have placed our peers randomly on the stub
nodes. There is at least one spatial object associated with
each peer. For our experiments, we considered clients to
be separate from the P2P network, and they were also
placed randomly on the stub nodes. For a given scenario,
a number of clients arrive, with a single query each, as a
flash crowd to the P2P network.

Our simulated networks were generated in the con-
text of a P2P real estate application. The data was gen-
erated using US Census Bureau data on postal codes
over the Washington, D.C. and Baltimore metropolitan
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Fig. 4 An example transit-stub type network.

corridor. We have generated small rectangles represent-
ing houses and land using the given population distri-
bution over postal codes. Queries were generated using
the centroids of the regions corresponding to the postal
codes, the population distribution information, and the
area size information on the area of the two metropoli-
tan cities and their surrounding suburbs. A sample set
of queries is shown in Fig. 5. The clients were assumed
to be making area selections from a map for searching
houses or land for sale or rent. Similar applications are
commonly available from online newspapers where users
can enter the postal codes in text form for their queries.
Each object also had some extra data, e.g., a picture of
the house/land for sale, attached to it.

The simulation environment is controlled by using
the following parameters: The number of queries that
formed the flash client crowd, the number of data ob-
jects that are in the P2P network, the number of peers
in this network, the query rectangle size (as a parameter
that varies the original postal-code-based query rectan-
gle size), the data size attached to an object, fmin, fmax,
and the percentage value of misses in the system for our
caching scheme.

4.2 Results

4.2.1 Changing fmin

We first varied the fmin parameter value to see how our
index behaves with increasing fmin values. The hypoth-

Fig. 5 A set of queries submitted to a P2P network. The
data is for the Washington, D.C.– Baltimore corridor.

esis is that with increasing fmin values we will first see
a decrease in the index latency and also a better load
balance among peers. However, eventually we should see
an increase in the overall load of the system.

For this experiment, there are 1000 peers in the net-
work hosting 1000 spatial objects, and the amount of
data attached to these objects is assumed to be 100
KBytes. The fmax value is 10 and our cache is assumed
to have no misses. The query rectangle sizes are kept
equal to the postal code area information without scal-
ing. The number of queries that come as a flash crowd is
20.

As fmin increases (Fig. 6), we do observe a grad-
ual decrease in the average query processing time for a
query. The number of levels of the distributed MX-CIF
quadtree that need to be traversed decreases with each
increase in the value of fmin. Finally, the last few obser-
vation points for the fmin experiment shows an increase.
This is due to increased load. The message counts for this
experiment is given in Fig. 7. As expected, this graph
has a very steep increase in the number of messages per
query as fmin reaches its peak. The increase is due to the
increase in the number of initial fmin level messages per
query and hence due to the loss of the pruning capabil-
ity of the distributed MX-CIF quadtree when it becomes
more and more like a regular grid.

When we analyzed the trace data for this experi-
ment, we saw that there were actually only a few queries
that create the drastic increase in query processing time.
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Fig. 6 Average query processing time as fmin increases
(standard deviations are also shown).
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Fig. 7 Average number of messages per query as fmin in-
creases.

These queries are from the regions of space where almost
no data objects exist but we saw that the query rectan-
gle size in these regions is much larger than the average
query rectangle size. These are the areas of the postal
codes corresponding to the outer suburbs which were
found to contain very few houses or land for sale. The
pruning capability of the distributed MX-CIF quadtree
in these cases is very important. Otherwise, i.e., with a
large fmin value, a large number of messages for fmin

level nodes can be generated for these queries. Hence,
the peers that initiate these queries started to fail first
under the load.

We can also see the change in the load distribution
for this experiment by looking at Fig. 8. This graph looks
at the standard deviation in normalized load for differ-

ent fmin values. As expected, we see a decrease first, as
the number of peers contributing at level fmin increases,
with increasing values of fmin. Later, we see an increase
due to the fact that the query initiating peers started to
generate many redundant messages that overload these
peers.
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Fig. 8 Standard deviation in normalized load for different
fmin values.

Fig. 9 provides the actual load per peer. In this figure,
bars indicate the number of peers that observe a certain
load indicated by the buckets on the x-axis. Each bar for
a given bucket maps to an fmin value from the range 0
to 9 (left most bar maps to fmin = 0). The first bucket
indicates how many peers with up to (and including) 5
messages existed in the system. The second bucket in-
dicates the number of peers with 6 to 10 messages. The
third corresponds to peers with 11 to 20 messages. The
rest of the buckets are organized in a logarithmic man-
ner. As the value of fmin increases, we see a gradual im-
provement in participation at fmin level. For example,
for small values of fmin there are a few peers with more
than 20 messages. Then, for larger values of fmin, we
see that no peers do actually process more than 20 mes-
sages. Later, with a further increase in fmin, we see an
increase in load and many peers start serving more than
40 messages, many of which are redundant messages as
the tree started to lose its pruning capability.

4.2.2 Elasticity

We also wanted to run experiments to see how our index
behaves with changing values of the parameters such as
the number of peers in the system. The following gives
the results of these experiments.

The first elasticity experiment gives a base in scale
and runtime behavior for the distributed MX-CIF
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Fig. 9 Load for different fmin values.

quadtree index in comparison to a client-server system
(Fig. 10) by increasing the number of queries given to
the system. There are 1000 peers in the network host-
ing 1000 spatial objects, and the amount of data at-
tached to these objects is assumed to be 100 KBytes.
The fmin value is 3 and the fmax value is 10. For this
experiment, our cache is assumed to have no misses. The
query rectangle sizes are kept equal to the postal code
area information without scaling. As expected, the dis-
tributed MX-CIF quadtree index scales well in compari-
son to a client-server system. The time needed to down-
load a large number of hits determines the performance
when we have a large number of queries. The P2P sys-
tem basically has a vast amount of unused bandwidth
that easily dominates a server bottleneck.

Second, we see how the distributed index scales with
the increasing number of peers in the system (Fig. 11).
The number of queries is fixed at 100 for this experi-
ment. The number of objects is 3000. The remaining ex-
periment parameters have the same values as in the first
elasticity experiment. We also altered the cache miss ra-
tio to 5, 10, and 15 percent for our caching scheme and
repeated the experiment. This was done in order to sim-
ulate the fact that some peers in the P2P system may
have disappeared (or just appeared) and hence some of
the cached information became outdated. The part of
our index that is to be most affected by increasing the
number of peers is the part where we first connect to
the fmin level peers. We use O(log n) steps for this, for
n peers, and hence this should have a negligible effect
on the performance. From Fig. 11, we see that the dis-
tributed MX-CIF quadtree index scales well with the
increasing number of peers. Also, for the cases where the
cache miss ratio is 5, 10, and 15 percent, there is only a
slight change in the behavior of the index.

Third, we see how the distributed index scales as the
size of the window query increases (Fig. 12). The num-
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Fig. 10 The average time per query for the distributed MX-
CIF quadtree index as the number of queries increases, in
comparison to a central index. The numbers on the line be-
long to the distributed MX-CIF quadtree index and they are
the corresponding y-axis values.
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Fig. 11 The average time per query for the distributed MX-
CIF quadtree index as the number of peers in the system
increases. There are multiple lines in this graph, for experi-
ments with 0, 5, 10, and 15 percent cache miss ratios.

ber of queries is fixed at 100 for this experiment. The
rectangular query objects are originally determined by
using the postal code data. We later scale these values
to increase the rectangle size by a given factor in each di-
mension for the different observation points of the exper-
iment. The remaining experiment parameters have the
same values as in the first elasticity experiment. Fig. 12
shows that the average query processing time increases
linearly as the size of the rectangle query object. This is
due to the increase in the number of hits found on the
average for a query, and the fact that there is more data
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to be downloaded by the clients from the P2P network
(Fig. 13). Note that the distributed MX-CIF quadtree
index works in parallel. Hence, although there is also
a sharp increase in the number of messages in the sys-
tem (Fig. 14) as the size of the rectangle query object
increases, these messages are processed in parallel. The
depth of the tree searches does not change. The quadtree
is totally independent of the query objects. Hence, as we
cover more space in parallel, we can find many hits with-
out increasing the query time. The increased load on the
P2P system, due to the increase in the number of mes-
sages for this experiment is negligible.
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Fig. 12 Average query processing time as the size of the
rectangle query object increases.
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Fig. 13 Average number of hits per query as the size of the
rectangle query object increases.
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Fig. 14 Average number of messages as the size of the rect-
angle query object increases.

Given our assumption on the size of each hit (i.e.,
100KBytes), for 7 hits (from Fig. 13), we have 700
KBytes of data to download. For 21 hits this increases
to 2100 KBytes. Although the downloads also occur in
parallel, the client bandwidth cannot be more than 2.5
Mbps on average. The degradation on the client’s con-
nection queue dictates the slope of Fig. 12. Confirming
this result, we also observed the same result with ad-
ditional experiments (not reported here) where we var-
ied the sizes of the data attached to the spatial objects
which, of course, had the same effect of increasing the
size of the downloads. The increase in the data size per
object cannot have an effect on the way that the object
is searched and located by a query but the experiment
shows the same level of degradation in time due to down-
loads. The bottleneck on the client’s connection has no
immediate solution.

Fourth, we ran an experiment where the parameter
that was varied, was the number of spatial objects in the
P2P system and obtained similar results to those ob-
tained when varying the query rectangle size parameter.
Fig. 15 shows a linear increase in time as the number
of objects per peer increases. The number of peers and
queries are fixed at 100 while the rest of the parameters
are the same with the first elasticity experiment. For
this experiment, we chose a setting where members of
the network maintain an order of magnitude more num-
ber of objects than the other experiments. This setting
is comparable to a setting where a network of real-estate
agents, rather than the sellers themselves, form a P2P
system.

Our final experiment considered the effects of fmax

(Fig. 16 and Fig. 17) which is commonly chosen in clas-
sical MX-CIF quadtrees to limit the depth of the tree.
This experiment also used the same parameter values as
the first elasticity experiment but the number of queries
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Fig. 15 Average query processing time as the number of
objects increases.
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Fig. 16 Average query processing time as fmax increases.

was fixed at 100. As expected, as we increased the value
of fmax, we first observed a gradual increase in the query
processing time as there are more levels in the distributed
MX-CIF quadtree to be traversed. This was followed by
a saturation as the objects (using a distributed MX-CIF
quadtree) cannot be inserted at any greater depth in the
tree. Therefore, having a very large fmax value is unnec-
essary. In comparison to the rate of increase in the num-
ber of messages as fmax increases, the rate of increase in
the query processing time is much lower as most of the
new messages are processed in parallel and only an in-
crease in the height of the distributed MX-CIF quadtree
can have a dramatic effect on the execution time. In fact,
having a shallow tree may be beneficial in some applica-
tions. Nevertheless, a very shallow tree where only a few
peers are used to store the entire distributed MX-CIF

quadtree will again result in the undesirable presence of
a single point of failure and load-imbalance as it is the
case with fmin.
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Fig. 17 Average number of messages per query as fmax in-
creases.

5 Conclusions and Future Work

P2P networks have become a common form of online
data exchange. However, users cannot perform many
types of queries on many attributes of the data on such
networks other than mostly exact-match queries on com-
plete files. In this paper, we introduced and analyzed
a distributed MX-CIF quadtree index to address this
problem for spatial data and queries. Our work can be
applied to higher dimensions by using high dimensional
control points. It can be applied to various data types,
i.e., other than spatial data. We can also use different
types of quadtrees, i.e., other than MX-CIF quadtrees.
Finally, we can use other key-based lookup methods than
the Chord method as our base P2P routing protocol. Our
experiments show that our algorithms and index work
well under many circumstances. The index benefits from
the underlying hashing-based methods and can achieve
a nice load distribution among peers.

One of the applications for our index is a P2P 3D
virtual world application [36]. A virtual world is a rep-
resentation of objects, along with their relationships in
a 3D setting. Users can participate in the virtual world
by locating themselves within it, rendering a view of the
world, and manipulating the objects in this world. Users
may themselves be represented in the virtual world as
objects. We are currently using our distributed index
with our P2P 3D virtual world application towards im-
plementing a P2P multi-player online game.
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For future work, we plan to experiment with a num-
ber of extensions to our work. Currently, each of the
tree operations we presented starts at a minimum level
of the distributed index and proceeds downwards. An al-
ternative approach is to allow tree operations to begin at
any level of the tree, i.e., starting operations at random
nodes of the tree and allow for bidirectional propagation
of operations. Also, we do not need to restrict the size of
the underlying space in which the distributed MX-CIF
quadtree is built. We can permit object insertions to oc-
cur out of the initial limits defined by the starting point
of the application. In this case, we must modify our orig-
inal algorithms so that if an object that is not encapsu-
lated within the initial space arrives, then the peer that
handles this request has to spiral out to encapsulate the
new object. Another direction for future research is dy-
namically adjusting the fmin parameter. Depending on
the workload, data can be pushed downwards or upwards
in the tree. But without global communication, access
to this part of the space may remain through fmin level
control points and their dedicated peers. To avoid this,
again, starting operations at a random level can be used.
Also, a simple binary search over 0 to fmax can help find
the new fmin value. Finally, peers can enter and leave
the system at any time and the underlying P2P routing
protocol, Chord in this case, is responsible for the trans-
parent handling of these events, but an issue of concern
is the lack of application level semantics represented at
the protocol level. For example, fmin level control points
are important and need special attention for replication.
One strategy we plan to utilize to safeguard these con-
trol points is to pass a quality of service parameter to
the protocol layer and increase the level of replication
for the entry level of the quadtree. Recently, a similar
approach was taken for the TerraDir distributed direc-
tory service [34]. Again, starting operations at a random
level may reduce or obviate the need for such an exten-
sion.
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