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ABSTRACT
The movingk nearest neighbor(MkNN) query finds thek nearest
neighbors of a moving query point continuously. The high potential
of reducing the query processing cost as well as the large spectrum
of associated applications have attracted considerable attention to
this query type from the database community. This paper presents
an incremental safe-region-based technique for answering MkNN
queries, called theV*-Diagram. In general, a safe region is a set
of points where the query point can move without changing the
query answer. Traditional safe-region approaches compute a safe
region based on the data objects but independent of the query lo-
cation. Our approach exploits the current knowledge of the query
point and the search space in addition to the data objects. As a re-
sult, the V*-Diagram has much smaller IO and computation costs
than existing methods. The experimental results show that the V*-
Diagram outperforms the best existing technique by two orders of
magnitude.

1. INTRODUCTION
Current location-based services provide accurate position infor-

mation with a high degree of temporal precision. Consider the fol-
lowing two scenarios. A driver in a GPS-equipped car issues a con-
tinuous query to find the nearest gas station while driving in a city.
A tourist uses a location-aware mobile device to issue a continuous
query for the nearest restaurant while walking to a museum. The
queries are sent to a server that processes the queries and returns the
answers. In these scenarios, the server has to continuously maintain
the answer set which may change depending on the location of the
query point. These queries arelocation-based continuous spatial
queries[23] and the scenarios above are typical examples ofmov-
ing k nearest neighbor queries(MkNN). A straightforward way to
process a MkNN query is using asampling-basedmethod, which
processes the MkNN query as a kNN query at sampled locations.
This method does not provide answers between sampled locations.
In order to provide an (almost) continuous answer to the query, a
high sampling rate is required, which makes the method inefficient
due to the frequent processing of kNN queries. The concept of the
safe regionprovides a more effective way to achieve continuous
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answers to location-based spatial queries. In a safe-region-based
method, an answer is returned with a safe region. As long as the
query point stays in the safe region, the answer remains the same.
When the query point moves out of the safe region, another answer
with its associated region is returned. Therefore, a safe-region-
based method always (that is, continuously) provides accurate an-
swers without the need for sampling. This approach also requires
much less frequent communication between the mobile client and
the server.

A classic example of safe-region-based techniques is theVoronoi
Diagram[14]. The Voronoi Diagram is a well known space decom-
position determined by distances to a given discrete set of objects,
typically, a set of points. Specifically, the Voronoi Diagram of a set
of pointsP = {p1, p2, ..., pn} is defined as a set of cells where
each cellV (pi) is a region of space that consists of all points of
the data space that are closer topi than any other point inP . An
example is given in Figure 1. Figure 1(a) is a set of points in a
2-dimensional (2D) space and Figure 1(b) is the Voronoi Diagram.

(a) Point setS, {a, b, c, d, e, f} (b) Voronoi Diagram ofS

Figure 1: The Voronoi Diagram

Processing a1NN query using the Voronoi Diagram involves:
(i) locating which Voronoi cell the query point falls into; and (ii)
identifying the associated object. In the above example,q1 falls in
V (a) (the grey region) and thereforea is the nearest neighbor of
q1. The answer remains valid as long as the query point stays in
V (a). When the query point moves across the boundary ofV (a)
to V (c), c becomes the NN.

The Voronoi Diagram can be generalized to thekth-order
Voronoi Diagram (kVD). In akVD, each region is associated with
the set ofk nearest neighbors, termedkNN setor k NNs, rather
than only the nearest one. ThekVD can handle MkNN queries in
the same manner as the basic first order VD handles1NN queries.

Another useful generalization of the Voronoi Diagram is order
sensitivity. TheorderedkVD partitions the space into cells where
each cell is associated to a particular ordering of thekNN set. The
orderedkVD can be used to answer MkNN queries that require the
ranking of thek NNs by their distances to the query point.



ThekVD has the following shortcomings:
1. Expensive precomputation.ThekVD requires precomput-

ing all thekVD cells and access to all the data points. Both
computation and storage costs are high.

2. No support for dynamically changing k values.ThekVD
can only accommodatekNN queries with a specifick value;
the orderedkVD can only accommodatekNN queries with
k values no larger than the order of the diagram. As a result,
the technique is not suitable for situations where the value of
k is unknown in advance or can change dynamically.

3. Inefficient update operations.Many cells have to be recom-
puted for each insertion or deletion on the dataset.

The expensive precomputation is especially not justified if the
query point is confined to a small region of the whole data space.
For example, if a car is moving in a small part of a city, then it is
unnecessary to compute thekVD for the entire city. Furthermore,
one may require differentkVDs for different needs. For example, a
driver may need to find a gas station with a restroom facility while
another driver needs one with a special type of fuel. Precomputing
kVDs for all possible scenarios may be prohibitive.

In [23], Zhang et al. proposed an algorithm to locally compute
a kVD cell, which mitigates the precomputation and update prob-
lems (shortcomings 1 and 3). However, the algorithm is still rela-
tively expensive and does not address the problem of dynamically
changingk values (shortcoming 2).

In this paper, a technique called theV*-Diagram for MkNN
queries is proposed. The V*-Diagram has the following key ad-
vantages:

1. It requires no precomputation.
2. It incrementally computes answers and therefore efficiently

adapts to changes – such as insertions and deletions of ob-
jects, as well as, dynamically changing values ofk.

The V*-Diagram is based on the safe-region concept, but dif-
fers from any previous technique for MkNN queries in the follow-
ing aspect: previous safe-region-based techniques compute safe re-
gions purely based on the data (for example, you can compute the
kVD without referring to the query point);the V*-Diagram com-
putes safe regions based on not only the data objects, but also
the query point and the current knowledge of the search space.
This is one of the main novelties of the technique. By doing so,
both computation and data retrieval of the V*-Diagram are more
economical than those of the other techniques.

The contributions of this paper are summarized as follows:
• We propose the V*-Diagram technique and the associated

algorithm, called V*-kNN, to support efficient processing of
MkNN queries.
• We show how the V*-Diagram technique can be applied to

the domain of spatial networks.
• We perform an extensive experimental study with the results

showing that the V*-Diagram outperforms the best existing
technique [23] by two orders of magnitude.

The rest of the paper is organized as follows: Section 2 describes
the problem setup. Related work is discussed in Section 3. We for-
mulate the V*-Diagram in Section 4 and present the algorithm for
MkNN queries based on the V*-Diagram in Section 5. In Sec-
tion 6, we show how the V*-Diagram technique can be applied
to the domain of spatial networks. A performance analysis of the
V*-Diagram is given in Section 7. Section 8 presents experimental
results and Section 9 concludes the paper.

2. PROBLEM SETUP
Let D be a set of data objects (represented by points) in ad-

dimensional space anddist( . ) be the distance function. Thek
nearest neighbor (kNN) query is defined as follows:givenD and a
static query pointq, find a setH that consists ofk objects fromD

such that for anyp1 ∈ H and anyp2 ∈ D − H, dist(p1, q) ≤
dist(p2, q).

The movingk nearest neighbor query (MkNN) is defined as fol-
lows: givenD and a moving query pointq, find thek NNs ofq for
every position ofq.

Due to the nature of location-based applications, MkNN queries
are discussed in the context of two settings: (i)Centralized pro-
cessing paradigm. Both the query issuer and the processor are on
the same machine. Then the main performance measure is the query
processing cost. (ii)Client-server paradigm. The query is issued
by a client to a server through a wireless network (such as a mo-
bile phone network). The performance measure involves both com-
munication and query processing costs on the server side, and the
former one is more important in delay-sensitive applications.

We assume an unknown trajectory which means that the location
of q gets updated in a periodic manner. We also assume that no
kVD is maintained but there is a generic spatial index such as the
R-tree [4] built on the data objects, since it can be used for various
query types and is efficient to maintain. This is also argued as a
valid assumption in previous work [23].

3. RELATED WORK

3.1 KNN algorithms
ManykNN search algorithms have been proposed based on spa-

tial hierarchical structures. One of their common features is the
application of the branch-and-bound strategy on the tree struc-
ture. The tree can be traversed in a depth-first (DF-kNN) [16] or
a best-first (BF-kNN) [5] manner. BF-kNN can retrieve more near-
est neighbors incrementally ifk increases.

Figure 2: R-tree and BF-kNN

Figure 2 shows an example R-tree and the BF-kNN algorithm.
Figure 2(a) shows a set of points and how they can be grouped in
an R-tree, where objects are indexed in a hierarchy ofminimum
bounding rectangles(MBRs). The corresponding R-tree is shown
in the upper part of Figure 2(b). Starting from the root, BF-kNN
traverses all the entries in increasing order of theirmindist, where
themindistof an entry is the minimum distance between the entry
and the query pointq. To do so, a priority queue is maintained to
keep all the retrieved data points andactivenodes. A node is active
if its parent has been accessed but itself has not. The traversal stops
if the first k elements retrieved from the priority queue are all data
points.

An example run of BF-kNN is shown in the lower part of Fig-
ure 2(b). At step 1, all entries in the root are inserted into the prior-
ity queuepq. Then the entries are dequeued and the corresponding
nodes are retrieved in order. The first dequeued item isS and its
two child entriesX andW are put back intopq. ThenR is de-
queued. NodesU andV are put inpq and so on. At step 4, data



point d is the head ofpq. Data pointd must be the first NN be-
cause all other entries has distances toq (which are bounded by
mindist of their nodes) larger thandist(q, d). d can be retrieved
as the first NN. If another NN is needed, the process continues un-
til another data point is the head ofpq. At step 6,f is discovered
as the second NN. By this means, an arbitrary number of NNs can
be incrementally obtained. If the value ofk is fixed, an aggres-
sive pruning can be performed on the nodes inpq to reduce the
queue size, though the page access cost cannot be further reduced
due to the search-space optimality of the algorithm [6]. Other tech-
niques such as iDistance [10] has superior performance than these
hierarchical structure based algorithms in high dimensional space.
However, it cannot retrievek NNs in an incremental manner.

3.2 Techniques for processing MkNN queries
We have discussed two approaches for MkNN queries in Sec-

tion 1: one is sampling based and the other one is safe-region based.
SR-kNN. Song and Roussopoulos [18] introduced a method

which will be referred to asSR-kNN in this paper. SR-kNN re-
duces the access costs in the sampling-based approach by retriev-
ing redundant data entries and caching. It greatly reduces the cost
of query reevaluation, but does not solve the problem of inaccu-
rate answers between sampled locations. Thus, SR-kNN does not
providetruly continuousanswers.

The kth-order Voronoi Diagram (kVD). Safe-region based
techniques produce continuous answers and reduce processing and
communication costs. The Voronoi Diagram [14] is a classic exam-
ple and can be used to process M1NN queries as described in Sec-
tion 1. For MkNN queries, thekVD is used. However, thekVD
the shortcomings described in Section 1.

TPkNN and CkNN. Tao and Papadias [19] proposed thetime-
parameterizedkNN (TPkNN) query. Assuming a linear trajectory
of the query point, a TPkNN query finds (i) the currentkNN set, (ii)
a position on the trajectory where thekNN set changes and (iii) the
objects that cause the change. This is done by finding the earliest
point on the trajectory that has a differentkNN set from the current
one. This point is also known as theinfluence point(or equivalently
influence timewhen the speed is known), which can be considered
as the boundary of a safe region.

Tao and Papadias [20] also considered theContinuouskNN
(CkNN) query, which finds thekNN for every single point on a pre-
defined linear trajectory. This is achieved by identifying all influ-
ence points on the trajectory. The main difference between CkNN
and TPkNN is that CkNN obtains all the influence points on the
trajectory but TPkNN finds only the first one. Both TPkNN and
CkNN are limited to known linear trajectories.

RIS-kNN. Zhang et al. [23] proposed an algorithm called
Retrieve-Influence-SetkNN (RIS-kNN) to locally computekVD
cells using a spatial index. RIS-kNN uses theTPkNN query[19] to
find each edge of akVD cell, 360 degrees around the query point.

Figure 3 shows how RIS-kNN discovers all edges ofV (a) from
the example in Figure 1(a). Initially,a is found to be the NN of
q; the cell is initialized to the whole data space, that is, rectangle
ABCD. At step 1, a TPNN query is executed with the trajectory
from q to the top left corner of the space (

−→
qA) andd is returned as

the object that changes the NN result along
−→
qA. The perpendicular

bisector ofa andd, Bad , contributes one edge to the cell. The cell
is updated to the polygonBCDEF . At steps 2 and 3, two TPNN
queries are executed with the trajectories fromq to the new corners
(
−→
qE and

−→
qF ). Two new edges are found according toBaf and

Bae . SincekVD cells for data points are convex polygons, this
process continues until all corners of the cell have been checked
and they all have the same NN asq.

RIS-kNN mitigates the precomputation problem (shortcoming

(a) Step 1 (b) Steps 2 and 3

(c) Steps 4 and 5 (d) Final steps

Figure 3: Computing a Voronoi cell locally

1) of thekVD because it only accesses local data, but this algorithm
is still expensive because it performs multiple (on average 12 [23])
TPkNN queries, where each TPkNN query involves a costly tree
traversal. RIS-kNN does not solve the problem of dynamically
changingk values (shortcoming 2); changingk to a larger value
incurs recalculation of thekVD cell. The computation of the pre-
vious kVD cell cannot be reused and hence this algorithm is not
incremental.

Due to the fact that only onekVD cell is maintained at a time,
RIS-kNN handles dataset updates (insertions and deletions of ob-
jects) more efficiently than the traditionalkVD technique. How-
ever, in a case where an update effects thekNN answers, the current
kVD cell has to be recalculated.

IRU. Kulik and Tanin [13] introduced an algorithm calledincre-
mental rank updates(IRU) to compute regions where the ranking
of all the objects (based on their distances) is the same. This is
equivalent to computing the orderedkVD cell with k = n, where
n is the total number of objects. Rather than computing the whole
nVD, IRU incrementally computes a neighboringnVD cell from
the current cell. In [13], annVD cell is termed afixed-rank region
(FRR) since for any point in the region, the ranking of all the ob-
jects based on their distances is fixed. Based on the observation
that only rank-adjacent objects can swap their ranks1, defining the
FRR of n objects requires at mostn − 1 bisectors2 of the n − 1
pairs of rank-adjacent objects. Continuous monitoring of the rank-
ing of the objects is done by maintaining a rank-sorted list of ob-
jects and its corresponding list of bisectors of pairs of rank-adjacent
objects (rank-adjacent bisectors). Each time a bisector is crossed
by the query point, the ranks of the two corresponding objects are
swapped and the list of rank-adjacent bisectors are updated.

An example is given in Figure 4, where the grey region is the cur-
rent FRR thatq1 is in. Let us assume thatq is the location of a mov-
ing query point which starts atq1 and stops atq2. In Figure 4(a),q
is atq1 and the ranking is initially〈a, c, b, f , e, d〉 and the corre-
sponding list of bisectors is〈 Bac , Bcb , Bbf , Bfe , Bed〉. Then

1In this paper, the rank of an object means the object’s position in
a list of objects sorted by their distances to some other object. We
use “ranking” and “ordering” interchangeably due to the usage of
both in the literature.
2Thebisectorof two objectsa andb is the set of points where each
point is equidistant toa andb.



(a) Initial step (b) First update (c) Second update

Figure 4: Incremental rank update

q crossesBef in Figure 4(b). This causese andf to swap their
ranks. ThereforeBbf and Bde are replaced byBbe and Bdf ,
respectively. In Figure 4(c),Bac is crossed. This causesa andc to
swap their ranks andBbc is replaced byBab . It is shown in [13]
that onlyO(n) instead ofO(n2) bisectors are maintained during
the iterations in the IRU algorithm. However, IRU still accesses all
data objects to obtain the sorted list and checksn − 1 bisectors
every timeq moves.

Related spatial-network queries.SeveralkNN techniques for
static query points were proposed in [8, 9, 15, 17]. There are also
MkNN techniques specific to the domain of spatial networks. Ko-
lahdouzan et al. [12] proposed an algorithm that utilizes theVoronoi
Network Nearest Neighbor(VN3) [11]. Cho et al. [3] proposed a
technique that issues statickNN queries at the intersection points
on the query path.

Related moving-object queries.Hu et al. [7] proposed a safe-
region-based technique for static window andkNN queries on mov-
ing objects. Each moving object maintains its own safe region and
only report if its new location changes the results of any of the
queries. Yu et al. [22] presented a query-indexing technique for
monitoring kNN queries for moving objects and a given set of
queries, where each query object maintain its owncritical region
to keep track of thekNN set. The similarity between [7,22] and the
MkNN techniques [13,14,18–20,23] including the V*-Diagram is
the use of the safe-region concept to reduce the access cost.

Benetis et al. [2] presented algorithms to process NN and reverse
NN queries for moving objects with known trajectories. Result va-
lidity is thus expressed as a function of time. Similar to our work,
Benetis et al. included methods to handle insertions and deletions
of data points.

These techniques [2,7,22] focus on monitoring changes caused
by location updates of data objects. The emphasis of the MkNN
techniques, on the other hand, is on the changes caused by location
updates of the query point.

Summary. The MkNN techniques are summarized in Table 1
on five features: providingcontinuousanswer,incremental eval-
uation,accessingonly local data (instead of all data), working on
unknown querypath, and providingorder-sensitivek NNs. Only
our proposed algorithm, V*-kNN, has all these features.

Table 1: Comparison of MkNN techniques

Technique Continuous

Incremental

Local access

Unknown path

Order-sensitive

SB-kNN [18] × X X X X

kVD [14] X × × X ×
OrderedkVD [14] X × × X X

TPkNN [19] X × X × ×
CkNN [20] X × X × ×
RIS-kNN [23] X × X X ×
IRU [13] X X × X X

V*- kNN X X X X X

4. THE V*-DIAGRAM
We formulate the V*-Diagram in this section. The V*-Diagram

is a safe-region-based technique. Previous techniques compute safe
regions purely based on the data. The V*-Diagram computes safe
regions based on not only the data, but also the query point and the
current knowledge of the search space.

The V*-Diagram assumes a metric space and a spatial hierarchi-
cal index on the dataset. Hence the BF-kNN algorithm can be used
to retrieve NNs incrementally as discussed in Section 3.1.

In the V*-Diagram, the(k+x) NNs of the moving query pointq
are maintained, wherex is the number of auxiliary objects to help
the V*-Diagram work effectively (more analysis onx is in Sec-
tion 5.1). The V*-Diagram comprises two types of regions, which
are discussed in Section 4.1 and Section 4.2. These regions are
then put together to form a combined safe region, discussed in Sec-
tion 4.3. Commonly used symbols are summarized in Table 2.

Table 2: Symbols
Symbol Meaning

n The number of objects in the database.
k The number of requested nearest neighbors.
x The number of auxiliary objects.
q The movingkNN query point.
qb The position where the latest BF-kNN call is made.
q′ The current position of the query point.
p A data object.
pk The currentkth NN of q.
z The(k + x)th NN of qb whenq is atqb .
Sk The safe region with regard topk .

Bpipj
The bisector of two objectspi andpj .

4.1 Safe region with regard to a data object
To help explain the concept of asafe region with regard to a

data object, the notions ofsearch sphere, known regionand reli-
able regionare first introduced. Recall the BF-kNN algorithm in
Section 3.1. Each object/node retrieved from the priority queue
corresponds to an implicitsearch sphere(centered at the query
point), which delimits the current search coverage, and the sphere
expands gradually as more nodes/objects are accessed. Numbers
are assigned to those spheres in Figure 2(a) according to the steps
in Figure 2(b) that access the corresponding nodes. For example,
sphere 2 corresponds to step 2 where nodeS is retrieved; sphere
5 corresponds to step 5 where objectd is retrieved. Intuitively, the
search sphere denotes the region we have full knowledge of, be-
cause all the objects in the sphere are already retrieved.

In the V*-Diagram, BF-kNN is called repeatedly to help main-
tain (k + x) NNs. Let qb be the position ofq where the latest
BF-kNN call is made. Letz be the(k +x)th NN to qb . The search
sphere corresponding toz centered atqb is the latest one (since
BF-kNN stops whenz is obtained), and we call this search sphere
the known region, denoted byW (qb , z). We highlightz because
it determines the boundary of the known region. Figure 5 gives an
example.W (qb , z) is actually a sphere centered atqb with the ra-
diusdist(qb , z). Pointp is one of the(k + x− 1) NNs ofqb and
other objects inW (qb , z) are not shown.

Next, we formulate a region within whichq can move whilep
remains one of the(k +x) NNs ofq. Letq′ denote a later position
of q afterqb . Supposeq′ is at the position as shown in Figure 5.
We extend the line segmentqbq′ and it exitsW (qb , z) at χ. Let
sph(v, l) denote a sphere with centerv and radiusl. As long asp
is in sph(q′, dist(q′, χ)), it is one of the(k + x) NNs ofq′. This
is because any object outsidesph(q′, dist(q′, χ)) must be farther
to q′ than p to q′ and there are at most(k + x) objects inside
sph(q′, dist(q′, χ)). Since any object insph(q′, dist(q′, χ)) re-
mains one of the(k + x) NNs of q′, we callsph(q′, dist(q′, χ))



Figure 5: The known, reliable, and safe regions

thereliable regionwith regard toq 3 and any object in the reliable
region areliable object. If p is a reliable object,p is said to bereli-
able; otherwise, it is said to beunreliable. Mathematically,p being
in the reliable region with regard toq′ is expressed as

dist(q′, p) ≤ dist(qb , z)− dist(qb , q′), (1)

wheredist(qb , z)− dist(qb , q′) is the length ofq′χ.
If we view q′ as a variable, then Equation (1) actually describes

all the possible positions ofq′ that guaranteep remaining among
the (k + x) NNs. Consequently, we can formulate the safe region
with regard top as follows.

DEFINITION 1 (SAFE REGION WITH REGARD TO A POINT).
Given a known regionW (qb , z) and a data pointp within
W (qb , z), the safe region with regard top is:

S(qb , z, p) = {q′ : dist(q′, p) + dist(qb , q′) ≤ dist(qb , z)}.
For Euclidean distance in a2D space, the boundary ofS(qb , z, p)
is an ellipse as illustrated in Figure 5. The two foci of the ellipse
areqb andp; the sum of the distances fromqb andp to any point
on the ellipse isdist(qb , z). We further have the following results.

COROLLARY 1. In Euclidean space, the safe region with re-
gard toz, S(qb , z, z), is the line segmentqbz.

PROOF. For anyq′ in S(qb , z, z), dist(q′, z)+dist(qb , q′) ≤
dist(qb , z). By the triangular inequality, we havedist(q′, z) +
dist(qb , q′) ≥ dist(qb , z). The set of points that satisfies both
inequalities is{q′ : dist(q′, z) + dist(qb , q′) = dist(qb , z)}. In
Euclidean space, this is the line segmentqbz.

COROLLARY 2. p is unreliable iff q′ is outside ofS(qb , z, p).

The proof is straightforward and we omit it.

4.2 Fixed-rank region
As discussed in Section 3.2, the fixed-rank region (FRR) was

introduced in [13] to denote a set of possible query-point locations
that share a specific ranking of all objects. For the V*-Diagram, the
FRR is applied to a subset of all objects, specifically, the(k+x)NN.
The IRU algorithm is used to incrementally maintain the FRR.

Given a listL of objects,〈p1, p2, ..., pm〉, the FRR ofL is the
set of all points such that for any pointv in the set,p1, p2, ..., pm

are already in sorted (ascending) order by their distances tov. Let
Hpipj

be defined as{v ∈ DS : dist(v, pi) ≤ dist(v, pj )},
whereDS is the data space. An FRR is a function of a list and is
formulated as follows.

DEFINITION 2 (FIXED-RANK REGION).

F 〈p1, p2, ..., pm〉 =

m−1
\

i=1

Hpipi+1
.

3We omit “with regard toq” when the context is clear.

F 〈p1, p2, ..., pm〉may be written in the compact format ofF (L).
In Figure 4(a), the ranking of the objects according to their dis-

tances toq1 is L = 〈a, c, b, f , e, d〉. The FRRF (L) is defined as
Hac ∩Hcb ∩Hbf ∩Hfe ∩Hed . The boundary ofF (L) is defined
by five bisectors,Bac , Bcb , Bbf , Bfe and Bed .

We use the IRU algorithm described in Section 3.2 to incremen-
tally computeF (L) in which q currently resides for the(k + x)
maintained objects. An FRR is represented as (i) a listB of the
(k+x−1) rank-adjacent bisectors,Bpipi+1

, for i = 1, 2, ..., k+

x−1, and (ii) a reference point (which could be any point inF (L),
qb in our case). The FRR is incrementally maintained by (i) check-
ing whetherq crosses a bisector inB, and (ii) if yes, performing
updates accordingly.

The purpose of maintaining the FRR using the IRU algorithm is
to keep the(k + x) objects sorted according to their distances to
q. One alternative solution to IRU is to computing distances be-
tween the(k + x) objects andq for every position ofq, which is
sampling-based. Although both methods have the same complex-
ity, the FRR is important to the formulation of a region where the
(order-sensitive)kNN does not change.

4.3 Integrated safe region
We are now ready to formulate the safe region for the MkNN

query, called theintegrated safe region(ISR). The ISR is the inter-
section of the current FRR of the(k + x) maintained objects and
the safe regions with regard to thek nearest objects. We will first
define the ISR formally and then prove that ISR satisfies the MkNN
safe-region requirements.

Let O denote the(k + x)NN set ofqb , L be the list of these
(k + x) objects sorted by their distances toq, andz still be the
farthest retrieved object toqb , which is pk+x . The ISR is then
formulated as:

F (L) ∩ (

k
\

i=1

S(qb , z, pi)) (2)

The computation of the ISR can be greatly reduced based on
Lemma 1 and Theorem 3 below.

LEMMA 1. F 〈pi , pj 〉 ∩ S(qb , z, pj ) ∩ S(qb , z, pi) =
F 〈pi , pj 〉 ∩ S(qb , z, pj ).

PROOF. For any pointv ∈ F 〈pi , pj 〉, v satisfies

dist(v, pi) ≤ dist(v, pj ). (3)

For any pointv ∈ S(qb , z, pj ), by definitionv satisfies

dist(v, pj ) + dist(qb , v) ≤ dist(qb , z). (4)

For anyv ∈ F 〈pi , pj 〉 ∩ S(qb , z, pi), it satisfies inequalities (3)
and (4). By adding the two inequalities,

dist(v, pi) + dist(qb , v) ≤ dist(qb , z). (5)

Inequality (5) shows thatv ∈ S(qb , z, pi), given thatv ∈
F 〈pi , pj 〉 ∩ S(qb , z, pj ). It can be concluded that:F 〈pi , pj 〉 ∩
S(qb , z, pj ) ⊆ S(qb , z, pi) and henceS(qb , z, pi) can be dis-
carded inF 〈pi , pj 〉 ∩ S(qb , z, pj ) ∩ S(qb , z, pi).

An example is given in Figure 6. The grey regionF 〈a, c, b, f 〉∩
S(q1, f , c) ∩ S(q1, f , a) is exactly the same asF 〈a, c, b, f 〉 ∩
S(q1, f , c).

THEOREM 3. For k ≥ 2,

F 〈p1, p2, ..., pk〉 ∩ (
k

\

i=1

S(qb , z, pi)) =

F 〈p1, p2, ..., pk〉 ∩ S(qb , z, pk)



PROOF. Lemma 1 shows the case ofk = 2, that is,F 〈p1, p2〉∩
S(qb , z, p2) ∩ S(qb , z, p1) = F 〈p1, p2〉 ∩ S(qb , z, p2).

If the theorem holds fork = l, that is,

F 〈p1, p2, ..., pl〉 ∩ (

l
\

i=1

S(qb , z, pi)) =

F 〈p1, p2, ..., pl〉 ∩ S(qb , z, pl),

then the theorem can be verified fork = l + 1 as follows.

F 〈p1, p2, ..., pl+1〉 ∩ (

l+1
\

i=1

S(qb , z, pi))

= F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉

∩(
l

\

i=1

S(qb , z, pi)) ∩ S(qb , z, pl+1)

= F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉 ∩ S(qb , z, pl)

∩S(qb, z, pl+1).

By applying Lemma 1,S(qb , z, pl) can be removed from the
above expression. Hence, we obtain a final result of

F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉 ∩ S(qb , z, pl+1)

= F 〈p1, p2, ..., pl+1〉 ∩ S(qb , z, pl+1).

The theorem therefore holds for any integer value ofk greater
than or equal to2.

Since F (L) = F 〈p1, p2, ..., pk〉 ∩ F 〈pk , pk+1..., pk+x〉,
based on Theorem 3, expression (2) can be reduced toF (L) ∩
S(qb , z, pk). Therefore, the ISR can be defined as follows.

DEFINITION 3 (INTEGRATED SAFE REGION(ISR)). Let O
be the(k + x)NN set ofqb , L be the list of these(k + x) objects
sorted by their distances toq, z be the farthest retrieved object to
qb , andpk be thekth object inL. The integrated safe region with
respect toqb , z, pk andL is defined as:

I(qb , z, pk , L) = F (L) ∩ S(qb , z, pk) (6)

Next, we prove that the ISR defined above satisfies the require-
ments of being a safe region for the MkNN query, that is, thek NNs
as well as their order do not change whenq remains in the ISR.

THEOREM 4. If the ISRI(qb , z, pk , L) is not an empty set, ev-
ery pointq′ in I(qb , z, pk , L) has the same order-sensitivek NNs.

PROOF. According to Definition 3, (1) sinceI ⊆ F (L) (param-
eters ofI omitted), the ranking of the(k + x) objects is fixed for
all points inI, which satisfies the order-sensitivity requirement; (2)
every pointq′ in I is also in the safe regions with regard to the first
k objects inL. As a result, there can be no object outsideW (qb , z)
nearer toq′ than any of the firstk objects inL. Therefore, for any
q′ in I, q′ has the same order-sensitivek NNs asqb .

Figure 6: Integrated safe region example (k = 2, x = 2)

As exemplified in Figure 6, four objects retrieved by a4NN
query (k = 2 andx = 2) atq1 are〈a, c, b, f 〉. Pointq1 is the most

recent point where(k+x) NNs are retrieved from the database. As
long asq′ remains inF 〈a, c, b, f 〉∩S(q1, f , c) (the grey region),
then: (i) no object outsideW (q1, f ) is nearer to the two objects:a
andc; and (ii) the ranking of〈a, c, b, f 〉 is unchanged.

The diagram that contains the information used in computing
the ISR is called theV*-Diagram . It consists of: (i) the bisectors
of the rank-adjacent pairs inL; and (ii) the boundary of the safe
region with regard topk . We may also use the V*-Diagram to refer
generally to the whole technique based on it, including the algo-
rithms. Although the V*-Diagram in the example of Figure 6 only
computes a single ISR, it actually allows incremental computation
of new ISRs, which is further discussed in Section 5.

5. ALGORITHMS
In this section, we present V*-kNN, an algorithm for MkNN

queries based on the V*-Diagram, followed by a discussion on the
effect ofx, the number of auxiliary objects. We also present the al-
gorithms to handle insertions/deletions and dynamically changing
k values.

The V*-kNN algorithm uses the following data structures and
variables to compute and maintain the ISR.

1. L: a list of (k + x) objects always sorted in ascending order
by their distances toq; these objects are the(k + x) NNs
retrieved atqb .

2. z: the farthest retrieved object in the known region whenq
is atqb .

3. pk : thekth object inL.
4. Sk: the safe region with regard topk .
5. B: a list of bisectors of pairs of rank-adjacent objects (rank-

adjacent bisectors) in the order corresponding toL.
We do not explicitly maintainF (L) because it is represented byB,
and checking whetherq moves out of the currentF (L) is also done
by checking whetherq crosses any bisector inB.

V*- kNN produces answers continuously as shown in Algo-
rithm 1. It has an initialization part (lines 1 to 3) and a continuous
processing part (lines 4 to 19). The initialization part calls the algo-

Algorithm 1 : V*- kNN(q0, k, x)

qb ← q01

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)2

ReportResult(L.Head(k))3

while (Event← GetEvent())do4

q← Event.Position5

switch Event.Typedo6

caseRankUpdate7

Bisector← Event.Bisector8

L.OrderSwap(Bisector.Index)9

B.Update(L,Bisector.Index)10

if Bisector.Index≤ k then11

ReportResult(L.Head(k))12

if Bisector.Index∈ [k − 1, k] then13

pk ← L.Item(k)14

Sk ← S(qb , z, pk)15

ISR← ConstructISR(Sk,B,q)16

caseReliabilityUpdate17

qb ← q18

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)19

rithm Compute-V*(Algorithm 2) to compute the initial ISR using
the starting pointq0 of the trajectory asqb . Then the continuous
processing part starts.



Algorithm Compute-V* (Algorithm 2) runs as follows. It first
calls the BF-kNN algorithm to retrieve(k + x) objects withqb as
the query point; with the retrieved objects, it setsz andpk accord-
ingly; then, it computesS(qb , z, pk) and rank-adjacent bisectors
based onL and assigns them toSk andB, respectively; finally, the
current ISR is computed. To determine the correct half plane for
each bisector inB, qb is used as the reference point. Readers may
notice that symbolz is explained differently here from Table 2. Ob-
jectz is used to determine the known region and it is the(k +x)th

NN of qb whenq is at qb . When deletion is taken into account,
if the (k + x)th NN of qb gets deleted, we still use the deleted
object to determine the known region. Therefore, we make it more
accurate here than in Table 2 when we did not consider deletions.

The continuous processing part of V*-kNN is event driven. It ba-
sically maintains the ISR asq moves. An event is triggered whenq
exits the current ISR. There are two types of events with this regard,
RankUpdateandReliabilityUpdate. These events are generated by
a separate inexpensive process that constantly checks the current
position ofq against the ISR. When an event is generated, it is as-
sociated with a timestamp and the corresponding query position.

Algorithm 2 : Compute-V*(qb , k, x)

L← BF-kNN(qb , k + x)1

z← L.Item(k + x)2

pk ← L.Item(k)3

Sk ← S(qb , z, pk)4

B← CreateBisectorList(L)5

ISR← ConstructISR(Sk,B,qb)6

return (L, z, Sk, B, ISR)7

Given that the query trajectory is unknown, the query positions
are updated discretely and checking for new events has to be done
based on these discrete updates. To provide accurate answers, the
checking should be performed at a high frequency, which is accept-
able because of the low cost. Note that this is different frompro-
cessing the querybased on sampling, which requires frequent tree
searches instead of event checking. The answer we provide is con-
tinuous, not based on sampled locations. Since the query positions
are updated discretely, the events could happen anytime between
two consecutive query updates. To compute the exact time (posi-
tion) the events happen, we assume a linear trajectory between two
consecutive query positions.

We describe the two event types,RankUpdateandReliabilityUp-
datebelow and discuss how to handle them with reference to Al-
gorithm 1 (in the algorithm,q is used to denote the position of the
query point when an event happens).
RankUpdate This event is triggered whenq exits the current

F (L), that is, crossing a rank-adjacent bisector. Besides the
timestamp and query position, aRankUpdateevent also con-
tains the information of the bisector crossed byq (line 8).
For this event, the ranks of the two objects corresponding to
the bisector are swapped (line 9) and the bisector listB is
updated accordingly (line 10) as explained in the IRU algo-
rithm (Section 3.2). If the event affects the rank of any of the
k NNs (line 11), then the newk NNs are reported. Moveover,
if the rank update changespk (line 13),Sk also needs to be
updated (lines 14 to 15). Changes are reported to the user if
at least one of thek nearest objects is affected.

ReliabilityUpdate This event is triggered whenq is leavingSk

(that is, on the boundary ofSk). It means that thekth NN
is about to become unreliable and hence the number of re-
liable objects is about to become less thank. Therefore, the
ReliabilityUpdateevent calls Compute-V* using the event
position,q, to obtainx new auxiliary objects so that all the

(k+x) maintained objects are reliable again. The new ISR is
constructed accordingly. This event does not cause result up-
date because neither thekNN set nor their ordering changes.
If another object really becomes nearer than thekth NN, a
RankUpdatewill be triggered, which will update the result.

Next, we give a running example of the algorithm. Recall the
example in Figure 6. At the starting pointq1, 4 NNs are retrieved
in the order of〈a, c, b, f 〉. The ISR isF 〈a, c, b, f 〉∩S(q1, f , c).
On the trajectory ofq (starting atq1), two events happen whenq

(a) F 〈c, a, b, f 〉 ∩ S(q1, f , a) (b) F 〈c, a, b, e〉 ∩ S(γ2, e, a)

Figure 7: Example for Algorithm 1, (k = 2, x = 2)

crossesBac atγ1 and exitsS(q1, f , a) atγ2. Figure 7 shows the
effects of these two events.

Figure 7(a) shows how the ISR changes afterq crosses Bac .
At the instant thatq is crossing Bac at γ1, a RankUpdateevent
is triggered, which causesa and c to swap their ranks. The list
L becomes〈c, a, b, f 〉, and this causes bothF (L) and Sk to
change. Nowa becomespk (2ndNN), and hence the ISR becomes
F 〈c, a, b, f 〉 ∩ S(q1, f , a) (the grey region). The current2 NNs,
c anda, are reported to the user in that order.

Figure 7(b) shows how the ISR changes afterq exits
S(q1, f , a). At the instant thatq is exiting S(q1, f , a) at γ2, a
ReliabilityUpdateevent is triggered, which callsCompute-V*to re-
trieve more objects. The new(k +x) NNs are〈c, a, b, e〉, with the
corresponding ISR,F 〈c, a, b, e〉 ∩ S(γ2, e, a) (the grey region).

5.1 On the number of auxiliary objects
Auxiliary objects are an important part of the V*-Diagram tech-

nique. They allowq to move away fromqb while retaining the
currentk NNs by providing the knowledge beyond the coverage
of the search sphere of the originalk NNs. This makes it possi-
ble to continuously evaluate the MkNN query. In this subsection,
we discuss possible values ofx, the number of auxiliary objects.
Generally, we find thatx should not assume the values of 0 and 1,
which are explained below.

Havingx equal to0 implies thatz and thekth object inL, pk ,
are the same object. According to Corollary 1, in Euclidean space,
the safe region with regard toz (which isSk) is the line segment
qbz. Unlessq moves alongqbz, q exits Sk as it starts moving.
Probabilistically, it is highly unlikely thatq moves alongqbz since
qbz is just one direction among the infinite possible directionsq
can move towards. Therefore, it is probable thatq always exitsSk

as it moves and it triggers theReliabilityUpdateevent infinitely. As
a result,x should not be set to0 for Euclidean space.

Whenx is a positive integer, the problem of infinitely triggering
the ReliabilityUpdateevent does not happen except under the co-
incidence described in the next paragraph. Therefore, any integer
greater than 1 is a valid value forx. The effect of the value ofx on
performance is further investigated in Sections 7 and 8.

In theory, the problem ofSk being a line segment may hap-
pen with any value ofx when the last(x + 1) objects in
L have the same distance toqb , which is dist(qb , z). In this
case,dist(qb , pk) equals todist(qb , z). By definition, Sk =
{q′ : dist(q′, pk) + dist(qb , q′) ≤ dist(qb , z)}. If we replace
dist(qb , z) by dist(qb , pk) in the inequality of the definition, we



get Sk = {q′ : dist(q′, pk) + dist(qb , q′) ≤ dist(qb , pk)},
which is a line segment in Euclidean space. To completely avoid
this problem, we can check whetherdist(qb , pk) is equal to
dist(qb , z) after we retrieve(k + x) objects by a BF-kNN call.
If they are equal, then we increase the value ofx until dist(qb , pk)
is different fromdist(qb , z).

In general, a larger value ofx provides a largerSk, and hence
the less frequent we need to retrieve new objects from the database.
Having the value ofx too small will result in highly frequent BF-
kNN calls. On the other hand, a too largex value also incurs the
overhead of retrieving more objects in every BF-kNN call and more
computation for maintaining them.

5.2 Insertions and deletions of objects

Algorithm 3 : DatasetUpdate(q,p,Operation)

if p ∈W (qb , z) then1

if Operation= Insertionthen2

L← Insert(L,p,q)3

else4

L← Delete(L,p)5

B.Update(L)6

if k > L.Length()then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

ReportResult(L.Head(k))10

else ifdist(q, p) ≤ dist(q, pk) then11

pk ← L.Item(k)12

Sk ← S(qb , z, pk)13

if q /∈ Sk then14

qb ← q15

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)16

else17

ISR← ConstructISR(Sk,B,q)18

ReportResult(L.Head(k))19

else20

ISR← ConstructISR(Sk,B,q)21

In this subsection, we describe the algorithm to perform updates
(that is, insertions and deletions) to the dataset for V*-kNN. The
algorithm is calledDatasetUpdateand is presented in Algorithm 3.
In this algorithm,q denotes the position of the query point when
the update happens and it is passed in as an input. Letp be the ob-
ject to be inserted or deleted. First, the algorithm checks whether
thep is in W (qb , z). If not, the update can be safely ignored be-
cause it cannot affect the ISR. Otherwise, an insertion/deletion ofp
into/from L is performed andB is updated accordingly (lines 2 to
6): insertion ofp needsq for computing distances fromq and the
maintained objects to find the correct insertion slot inL; deletingp
from L requires only a simple lookup operation. After the bisector
update, the ISR andL could be in one of the following three cases:

(i) The length ofL becomes smaller thank as a result of a dele-
tion (line 7). In this case,qb is set toq and Compute-V* is
called to retrieve more objects and compute the new ISR ac-
cordingly (lines 8 and 9). The new result is reported (line 10).

(ii) The length ofL is still greater thank but the update affects
thekNN set (line 11).We updatepk andSk (lines 12-13) and
check ifq is inside the newSk (line 14). If q is not inside the
newSk, then Compute-V* is called (line 16). Otherwise, the
ISR is updated to reflect the changes inB andSk. Since thek
NNs have changed, the new result is reported to the user (line

19).
(iii) The update has no effects to thekNN set (line 20).Only the

ISR is updated to reflect the change inB.

5.3 MkNN with dynamically changingk values
The ability to gracefully handle changes to the value ofk is cru-

cial for the distance browsingfunctionality [6]. For statickNN
queries, distance browsing is a feature that allows NNs to be in-
crementally retrieved without having to specify the value ofk in
advance. In this paper, we allow the value ofk to be changed with-
out incurring heavy computation.

Algorithm KUpdate(Algorithm 4) shows how V*-kNN handles
dynamically changingk values. The algorithm has two inputs: the
current locationq of the query point and the newk value. We first
check if the newk is greater than the length ofL. If yes,qb is set
to q and Compute-V* is called. Otherwise,pk andSk are updated
for the newk (lines 5 and 6). Ifq is not inside the newSk, qb is
set toq and Compute-V* is called. Otherwise, only the ISR has to
be updated to incorporate the newSk (line 11). Finally, the newk
NNs are reported (line 12). As we can see, the V*-kNN algorithm
can easily accommodate dynamically changingk values due to its
incremental nature.

Algorithm 4 : KUpdate(q,k)

if k > L.Length()then1

qb ← q2

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)3

else4

pk ← L.Item(k)5

Sk ← S(q, z, pk)6

if q /∈ Sk then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

else10

ISR← ConstructISR(Sk,B,q)11

ReportResult(L.Head(k))12

6. THE V*-DIAGRAM IN SPATIAL NET-
WORKS

When the movement ofq is constrained by network connectivity,
NN problems should be solved based on the network distance. For
example, a car is travelling on a road and it keeps track of thek
nearest gas stations based on the road network distance.

In this section, we show how the V*-Diagram technique can be
applied to the domain of spatial networks, which also satisfies our
metric space assumption. Due to the space limitation, we could
not fully elaborate the application of V*-Diagram in the spatial-
network model, but only present the essential components of the
technique.

The essence of the V*-Diagram is the ISR, which consists of
two key components: safe regions with regard to data objects and
the fixed-rank region (FRR). Hence, we focus our discussions on
how to determine these two components in spatial networks, while
the algorithms to compute the ISR and process MkNN queries can
be reused. To avoid an exhaustive discussion, we use an example to
illustrate the main idea.

A spatial network is usually represented as a set of vertices and a
set of edges, where an edge is defined by two vertices. Given points
p1 andp2 in the network,dist(p1, p2) is the length of the shortest
path betweenp1 andp2. Figure 8 shows a spatial network of eight
nodes,a to h. Distancedist(qb , p) is 2 using the path viab.



We usepnt(p1, p2, l) to denote a point on the edge(p1, p2)
with distancel to p1, andseg(p1, p2, l) to denote a section on the
edge(p1, p2) with the starting pointp1 and lengthl. For exam-
ple, z is at pnt(a, e, 3), and all points betweena andz can be
represented asseg(a, e, 3).

Consider an MkNN query withk = 1. Supposex is 2 for the
V*-Diagram andqb is atpnt(a, b, 3). The 3 NNs forqb are:p, r
andz. We can use anykNN technique for spatial networks (such as
those described in [8, 9, 15, 17]) to retrieve the(k + x) NNs atqb .
The algorithm also returns the edges in the range ofdist(qb , z) to
qb (that is,W (qb , z)), (a, b), (a, c), (a, e), (b, d), (b, f ), (d, c),
(d, g), and the distances from the vertices of these edges toqb .

Figure 8: V*-Diagram in a spatial network ( k = 1 and x = 2)

Next, we determine the safe region forpk (which is p in this
example). The safe regionS(qb , z, p) is the region where for any
point q′ in the region, the sum ofdist(qb , q′) anddist(p, q′) is
less than or equal todist(qb , z), which is 6. We need to explore all
the edges inS(qb , z, p) to identify its boundary. SinceW (qb , z)
enclosesS(qb , z, p), and we already know the edges that are in
W (qb , z) via thekNN query executed atqb , we only need to con-
sider those edges. We use edge(b, f ) as an example. For a point
q′ on (b, f ) to be inS(qb , z, p), dist(qb , q′) + dist(p, q′) has
to be less than6 according to the definition. Sincedist(qb , q′) +
dist(p, q′) is equal todist(qb , b)+dist(p, b)+2dist(b, q′), and
both dist(qb , b) anddist(p, b) are 1,q′ is in S(qb , z, p) when
dist(b, q′) is less than or equal to2. Consequently,pnt(b, f , 2)
forms part of the boundary ofS(qb , z, p). The boundary points on
other edges can be computed in a similar manner. After obtaining
all boundary points, we getS(qb , z, p), which consists of edge
(b, d), seg(b, a, 3) and seg(b, f , 2), plotted as grey thick seg-
ments in the figure.

As discussed in Section 4.2, the FRR is determined by the rank-
adjacent bisectors the maintained objects. In a spatial network, a bi-
sector reduces to points on edges. For example,Bpr has two bisect-
ing points, one onpnt(b, d, 2.5) and the other onpnt(a, c, 0.5).
The FRRF 〈p, r, z〉 is the region with Bpr and Brz as the
boundary and containingqb . It consists of(b, f ), seg(b, a, 1.5)
andseg(b, d, 2.5), shown as the segments in the dashed triangle.

As a result, the ISR (S(qb , z, p) ∩ F 〈p, r, z〉) consists of
seg(b, a, 1.5), seg(b, d, 2.5) andseg(b, f , 2). It is shown as the
segments in the grey region. According to Algorithm 1, exiting the
ISR via pnt(b, a, 1.5) ( Brz ) or seg(b, d, 2.5) ( Bpr ) triggers a
RankUpdateevent, and exiting the ISR viapnt(b, f , 2) triggers a
ReliabilityUpdateevent.

7. PERFORMANCE ANALYSIS
Among all techniques listed in Table 1, only RIS-kNN by Zhang

et al. [23] and V*-kNN provide continuous answers for the MkNN
query with unknown query trajectory and without accessing all the
data. Therefore, this section focuses on a comparative performance
analysis on RIS-kNN and V*-kNN in terms of tree node accesses
(that is, IO cost). We assume a2D space, although the analysis can

be extended to higher dimensional spaces. We also assume that the
data objects are uniformly distributed.

V*- kNN only has node accesses in the calls to BF-kNN, which
are triggered by theReliabilityUpdateevent (line 19 of Algo-
rithm 1). We analyze the frequency ofReliabilityUpdateevents,
fb, as follows. AReliabilityUpdateevent happens whenq exits
S(qb , z, pk). We denote the point of exit asqe . TheReliabilityUp-
dateevent happens only once during the process ofq moving away
from qb until reachingqe . Then a BF-kNN is performed andqe

becomes the newqb . A ReliabilityUpdateevent will happen again
when the next timeq exitsS(qb , z, pk). Therefore,fb is inversely
proportional to the distanceq travels fromqb to qe . In the worst
case,q moves in a straight line, andfb is inversely proportional
to dist(qb , qe). The expected value ofdist(qb , qe) is obtained as
follows. Whenq moves toqe , pk is on the boundary of the reliable
region (with regard toqe). For a better understanding, imagine in
Figure 5,p is pk , q′ is qe and it is on the boundary ofS(qb , z, p).
We can see thatdist(qb , qe) equalsdist(qb , χ) − dist(qe , χ).
Note thatdist(qb , χ) is the radius ofW (q, z), which is a sphere
that contains(k+x) points;dist(qe , χ) is the radius of the reliable
region with regard toqe , which is a sphere that containsk points.

According to [21], the distance between the query pointqb and

the kth NN is 2/Cv(1 −
q

1−
p

k/n), whereCv is the vicin-
ity constant [21]. Thereforedist(qb , qe), which isdist(qb , χ) −
dist(qe , χ), can be expressed as

2
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(

q
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p

k/n−
q

1−
p

(k + x)/n).

Sincefb is inversely proportional todist(qb , qe),

O(fb) = O(1/(

q

1−
p

k/n−
q

1−
p

(k + x)/n)).

The expression ofO(fb) can be relaxed as follows:

1
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√
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√
k/n

≤ 2
q

1−
√

k/n√
(k+x)/n−

√
k/n
≤ 2√

(k+x)/n−
√

k/n

= 2

√
(k+x)/n+

√
k/n

(k+x)/n−k/n
= 2

√
(k+x)/n+

√
k/n

x/n
≤ 4

√
(k+x)/n

x/n
.

ThereforeO(fb) isO(
q

(k+x)n

x2 ). Typically,x is comparable to

k and(k + x) is much smaller thanxk. Thus, we obtain thatfb is

O(
q

kn
x

). Let Cnn be the cost of a BF-kNN call. Then we obtain

the total IO cost of V*-kNN, CnnO(
q

kn
x

).
The RIS-kNN processes the MkNN query as follows. Every time

q exits the currentkVD cell, RIS-kNN is executed to obtain the
newkVD cell and the correspondingkNN. The total cost depends
on the frequency of crossingkVD cells and the cost of each RIS-
kNN run. In the worst case,q moves along a straight line. The
frequency ofq crossingkVD cells is proportional to the average
linear density4 of thekVD cells. The number of thekVD cells is
O(kn − k) in 2D space [14]. We assume thatk is much smaller
than n. Thus, the density ofkVD cells isO(kn), which corre-
sponds to a linear density ofO(

√
kn). Each RIS-kNN run requires

12 TPkNN queries on average [23]. LetCtpnn be the cost of a
TPkNN call. Then the total IO cost of RIS-kNN for the MkNN
query is12CtpnnO(

√
kn).

4The number ofkVD cells crossed per unit length along a straight
line.



We now compare the costs of V*-kNN and RIS-kNN. For the
frequency component, V*-kNN is smaller than RIS-kNN espe-
cially whenx is large. For the cost-per-kNN-algorithm-call com-
ponent, the first TPkNN call of an RIS-kNN run is always more
expensive than a BF-kNN call because TPkNN has to retrieve at
least thekNN and it needs to access more nodes to obtain the in-
fluence object. In addition, there are 11 subsequent TPkNN calls of
an RIS-kNN run, where each call is much more expensive than a
BF-kNN call in practice. Consequently, the IO cost of V*-kNN is
much lower than that of RIS-kNN.

In terms of the CPU cost, V*-kNN maintains the rank of(k +
x) objects, which causes more computation than RIS-kNN on the
client side. However, given today’s mobile devices and trends (e.g.,
phones with multimedia and graphical functionalities), we argue
that the CPU power of these devices is adequate to check(k +
x − 1) bisectors at a reasonably high frequency (e.g., once every
second) for practical values ofk andx. In many realistic settings,
the benefits from the communication-cost reduction will outweigh
this overhead on the client side.

On the server side, V*-kNN has a lower CPU cost than RIS-
kNN. It is because RIS-kNN uses the TP-kNN query which incurs
a much higher computational cost than BF-kNN.

8. EXPERIMENTAL STUDY
This section presents the results of our experimental study. In our

implementaion, the R*-tree [1] is used to index the data objects.
The page size is 1 KB, which has a node capacity of 50 entries.

We used both synthetic and real datasets in our experiments. All
datasets span the space of10, 000× 10, 000 square units. We gen-
erated synthetic datasets with uniform (U) and Zipfian (Z) distri-
butions with the default cardinality of25, 000 data points. The real
datasets are65, 743 and119, 897 postal addresses from California
(C) and North-Eastern USA (N), respectively.
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Figure 9: Trajectory types

We generated two different types of query trajectories, random
(R) and directional (D), as shown in Figure 9. Each trajectory con-
sists of1, 001 points. Between two points, the trajectory is assumed
to be a straight line segment. The length of each segment is1 unit.
For each type of trajectory, we generated20 different trajectories.
We run these20 trajectories as a query set for each experiment and
present the average result. We measured both the cumulative total
response time and the cumulative number of page accesses for a
whole trajectory as the performance metric.

8.1 Choosing the value ofx
In the first set of experiments, we study the impact of the value

of x on the performance of V*-kNN. We variedx from3 to36 with
k set to20 and no buffer space. We did not use the values less than
3 for x because too small values ofx do not yield a reasonable size
of Sk to make V*-kNN effective. Figure 10 shows result of the
response time and number of page accesses as functions ofx for
both query trajectory types. The response time first decreases asx
increases but becomes more constant asx keeps increasing. There

is a small increase whenx becomes large (around 30). The num-
ber of page accesses always decreases asx increases. This is be-
cause asx becomes larger,Sk becomes larger and hence BF-kNN
is called less frequently. This reduces both CPU time and IO cost.
Whenx becomes too large, the computational overhead of main-
taining more objects becomes more significant and may overweigh
the savings in CPU time. Therefore, the CPU time increases for a
largex value. The number of page accesses mainly depends on the
frequency of BF-kNN calls and hence always decreases. These re-
sults confirms our discussion in Section 5.1 and the analysis in 7. In
all these experiment, thex value of9 provides a good performance,
so9 is used as the default value ofx for the rest of the experiments.
As we can see, some variations around the value of9 do not affect
the performance much.
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Figure 10: Effect of x

8.2 Comparative study: centralized
Among all the techniques discussed in the related work, RIS-

kNN by Zhang et al. [23] is the only algorithm that is comparable
to our work. Therefore, we perform a comparative experimental
study on V*-kNN and RIS-kNN. The next four sets of experiments
compare these two techniques using different experimental param-
eters.

The effect of the buffer size.In this set of experiments, we use
the buffer sizes of0, 8, 16, 24 and32 pages. Figure 11 shows the re-
sults for two synthetic datasets with the default dataset size and the
two real datasets. V*-kNN outperforms the RIS-kNN in all settings
in terms of both total response time and number of page accesses.
In most cases, the improvement factor is two orders of magnitude.
For both methods, the page access cost decreases as the buffer size
increases as expected.

The effect of the number of query location updates.In this
set of experiments, we vary the number of location updates in the
query trajectory from 0 to 1000. Figure 12 shows the response time
on the four datasets. In all experiments, V*-kNN outperforms RIS-
kNN and the improvement factor is two orders of magnitude in
most cases. The results of the number of page accesses have very
similar behavior as those of the total response time. Therefore we
do not present them for the remaining experiments due to space
limitation. For both techniques, the total response time increases as
the number of location updates increases.

The effect of the dataset size.In this set of experiments, we
vary the number of objects in the dataset from 5,000 to 25,000 for
the synthetic datasets. Figure 13 shows the response time results.
Again, V*-kNN outperforms RIS-kNN in all settings and the im-
provement factor is two orders of magnitude in most cases. For
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Figure 11: Effect of buffer size
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Figure 12: Effect of the number of location updates
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Figure 13: Effect of dataset size
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Figure 14: Effect of k
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both techniques, the total response time increases as the number of
objects increases.

The effect of k. In this set of experiments, we vary the value
of k from 5 to 20 for the four datasets. Figure 14 shows the re-
sponse time results. We observe similar results as in previous ex-
periments. V*-kNN outperforms RIS-kNN in all settings and the
improvement factor is two orders of magnitude in most cases. For
both techniques, the total response time increases as the value ofk
increases, but the total response time of V*-kNN increases slower
than that of RIS-kNN.

8.3 Comparative study: client-server
In a high-latency client-server setting, communication costs be-

tween the mobile client and the server dominate the other costs.
The following experiments compare the communication costs of
V*- kNN and RIS-kNN. The number of times a client has to com-
municate with the server is used as the performance measure.

For V*-kNN, the communication cost is measured by the num-
ber of times the BF-kNN query is executed because other opera-
tions are local. For RIS-kNN, the communication cost is the num-
ber of times the query itself is executed, i.e., the number ofkVD
cells crossed.

Figure 15 shows the communication costs with the increasing
x values in the four datasets and two trajectory types. The default
buffer size of16 pages is used. Since the parameterx does not ap-
ply to RIS-kNN, its communication cost is constant asx changes.
For all datasets, we can see that the communication cost of V*-
kNN decreases as the value ofx increases. This conforms with the
cost analysis in Section 7, which states that the retrieval cost of the
V*- kNN with respect tox is x−1/2. The V*-kNN starts to outper-
form the RIS-kNN algorithm whenx is: 3 for the uniform dataset
(U), 3 for the Zipfian dataset (Z),6 for the California dataset (C),
and6 for the North-Eastern USA dataset (N).

The difference between the communication and total response
time costs (Figure 10) is notable. Unlike the total response time,
the communication cost measure disregards the CPU cost. Only the
database-access count is considered, and thus there is no penalty for
large values ofx.

The next experiment is a study on how the communication cost
changes ask is varied from5 to 20. For all datasets,x is set to9
and the buffer size is16 pages. Since a larger value ofk produces
denser Voronoi cells in the space, the cost of RIS-kNN increases
ask increases due to more frequent cell crossings. The commu-
nication cost of V*-kNN also has a positive correlation withk as
suggested by the analysis in Section 7. V*-kNN still outperforms
RIS-kNN in all settings, as shown in Figure 16. The effect ofk on
the communication and total costs are very similar. This is because
k has positive correlations with: communication, tree-traversal and
computation costs.

8.4 Summary
The V*-kNN algorithm consistently outperforms the RIS-kNN

algorithm for all settings using the measures of total response time,
number of page accesses and communication costs. V*-kNN is also
more scalable with increasingk values. There is a tradeoff between
CPU time and data retrieval costs for V*-kNN, controlled by the
value ofx. In other words,x provides the ability to tune the query
performance for different application domains.

9. CONCLUSIONS
In this paper, the V*-Diagram and the associated algorithm V*-

kNN have been introduced to efficiently process movingk near-
est neighbor queries (MkNN). A key difference between the V*-
Diagram and previous safe-region-based techniques for MkNN
queries is that, previous techniques only utilizes the knowledge on

the data while the V*-Diagram exploits also the query location and
the knowledge of the current search space. As a result, the V*-
Diagram is more economical in terms of both IO and CPU costs.
We also showed that the V*-Diagram can be applied to other use-
ful domains such as spatial networks. We performed an extensive
experimental study and the results show that our algorithm outper-
forms the best existing technique by two orders of magnitude.
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