The V*-Diagram: A Query-Dependent Approach to
Moving KNN Queries

Sarana Nutanong® Rui Zhang® Egemen Tanin® Lars Kulik'
{sarana,rui,egemen,larsy@csse.unimelb.edu.au

TDepartment of Computer Science and Software Engineering
University of Melbourne
Victoria, Australia

¥NICTA Victoria Laboratory
Australia

ABSTRACT answers to location-based spatial queries. In a safe-region-based

The movingk nearest neighbofM&NN) query finds thet nearest ~ Method, an answer is returned with a safe region. As long as the
neighbors of a moving query point continuously. The high potential query point stays in the safe region, the answer remains the same.

of reducing the query processing cost as well as the large spectrumWhen the query point moves out of the safe region, another answer

with its associated region is returned. Therefore, a safe-region-

of associated applications have attracted considerable attention tob d method al that i i | i h
this query type from the database community. This paper presents?@S€d method always (that is, continuously) provides accurate an-
swers without the need for sampling. This approach also requires

an incremental safe-region-based technique for answeritig\ ook ; .
queries, called th&/*-Diagram. In general, a safe region is a set much less frequent communication between the mobile client and
. . X the server.

f poi h h i ith hanging th
of points where the query point can move without changing the A classic example of safe-region-based techniques igaghanoi

qguery answer. Traditional safe-region approaches compute a safeDiagram[14] The Voronoi Diagram is a well known space decom-

region based on the data objects but independent of the query lo-""“3. ; . . : !
cation. Our approach exploits the current knowledge of the query position determined by distances to a given discrete set of objects,

point and the search space in addition to the data objects. As a re-YPically, a set of points. Specifically, the Voronoi Diagram of a set
sult, the V*-Diagram has much smaller 10 and computation costs ©f POINSP = {p1, pz, ..., px } is defined as a set of cells where
than existing methods. The experimental results show that the v+~ €ach cellV (p) is a region of space that consists of all points of

Diagram outperforms the best existing technique by two orders of the data Space tha.‘t are closelzipthan any o_ther point i'P'. An .
magnitude example is given in Figure 1. Figure 1(a) is a set of points in a

2-dimensional D) space and Figure 1(b) is the Voronoi Diagram.

1. INTRODUCTION

Current location-based services provide accurate position infor- | d®
mation with a high degree of temporal precision. Consider the fol-
lowing two scenarios. A driver in a GPS-equipped car issues a con-
tinuous query to find the nearest gas station while driving in a city.
A tourist uses a location-aware mobile device to issue a continuous
query for the nearest restaurant while walking to a museum. The as €°
gueries are sent to a server that processes the queries and regurns th fe
answers. In these scenarios, the server has to continuously maintain *b
the answer set which may change depending on the location of thga) Pointse, {a, b, c,d, e, f} (b) Voronoi Diagram ofS
query point. These queries adiecation-based continuous spatial

queries[23] and the scenarios above are typical examplesmi- Figure 1: The Voronoi Diagram
ing k nearest neighbor querigd1kNN). A straightforward way to
process a MNN query is using asampling-basednethod, which Processing NN query using the Voronoi Diagram involves:

processes the MNN query as a KNN query at sampled locations. (i) locating which Voronoi cell the query point falls into; and (ii)
This method does not provide answers between sampled locationsidentifying the associated object. In the above exampldalls in
In order to provide an (almost) continuous answer to the query, a V(a) (the grey region) and therefoteis the nearest neighbor of
high sampling rate is required, which makes the method inefficient g1. The answer remains valid as long as the query point stays in
due to the frequent processing of kNN queries. The concept of the V' (a). When the query point moves across the boundary/ @f)
safe regionprovides a more effective way to achieve continuous to V' (c), ¢ becomes the NN.
The Voronoi Diagram can be generalized to th&-order

Voronoi Diagram VD). In akVD, each region is associated with

Permission to copy without fee all or part of this material mged provided the set ofk nearest neighbors, terméN setor k& NNs rather

that the copies are not made or distributed for direct commieadiantage, than only the nearest one. TR¥D can handle MNN queries in
the VLDB copyright notice and the title of the publicationdaits date the same manner as the basic first order VD haridié queries.
appear, and notice is given that copying is by permissioneitry Large Another useful generalization of the Voronoi Diagram is order

Data Base Endowment. To copy otherwise, or torepublish,sogoservers gansitivity. TheorderedkVD partitions the space into cells where
or to redistribute to lists, requires a fee and/or speciahpgsion from the

' each cell is associated to a particular ordering ofitN&l set. The
publisher, ACM. : .
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand orde_redeD can be used to ar)swerlMIN queries that require the
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/GD/0 ranking of thek: NNs by their distances to the query point.

ThekVD has the following shortcomings: such that for anyp, € H and anyp: € D — H, dist(p1,q) <
1. Expensive precomputation.The kVD requires precomput- dist(p2,q).
ing all thekVD cells and access to all the data points. Both The movingk nearest neighbor query MNN) is defined as fol-

computation and storage costs are high. lows: given D and a moving query poirg, find thek NNs ofq for
2. No support for dynamically changing k values.The kVD every position of.

can only accommodateNN queries with a specifig value; Due to the nature of location-based application&NWl queries

the orderedcVVD can only accommodateNN queries with are discussed in the context of two settings:Géntralized pro-

k values no larger than the order of the diagram. As a result, cessing paradigm Both the query issuer and the processor are on
the technique is not suitable for situations where the value of the same machine. Then the main performance measure is the query

k is unknown in advance or can change dynamically. processing cost. (iilClient-server paradigm. The query is issued
3. Inefficient update operations.Many cells have to berecom- by a client to a server through a wireless network (such as a mo-
puted for each insertion or deletion on the dataset. bile phone network). The performance measure involves both com-

The expensive precomputation is especially not justified if the munication and query processing costs on the server side, and the
query point is confined to a small region of the whole data space. former one is more important in delay-sensitive applications.
For example, if a car is moving in a small part of a city, then it is We assume an unknown trajectory which means that the location
unnecessary to compute tk¥D for the entire city. Furthermore, of g gets updated in a periodic manner. We also assume that no
one may require differeritVDs for different needs. For example,a kVD is maintained but there is a generic spatial index such as the
driver may need to find a gas station with a restroom facility while R-tree [4] built on the data objects, since it can be used for various
another driver needs one with a special type of fuel. Precomputing query types and is efficient to maintain. This is also argued as a
kVDs for all possible scenarios may be prohibitive. valid assumption in previous work [23].

In [23], Zhang et al. proposed an algorithm to locally compute
a kVD cell, which mitigates the precomputation and update prob-
lems (shortcomings 1 and 3). However, the algorithm is still rela- 3. RELATED WORK
tively expensive and does not address the problem of dynamically

changingk values (shortcoming 2). 3.1 KNN algorithms
In this paper, a technique called th-Diagram for MANN Many kNN search algorithms have been proposed based on spa-
queries is proposed. The V*-Diagram has the following key ad- tial hierarchical structures. One of their common features is the
vantages: application of the branch-and-bound strategy on the tree struc-
1. It requires no precomputation. ture. The tree can be traversed in a depth-fits-¢NN) [16] or

2. It incrementally computes answers and therefore efficiently a best-first BF-kNN) [5] manner. BFkNN can retrieve more near-
adapts to changes — such as insertions and deletions of ob-est neighbors incrementally ifincreases.
jects, as well as, dynamically changing valueg of
The V*-Diagram is based on the safe-region concept, but dif-
fers from any previous technique for®IN queries in the follow-
ing aspect: previous safe-region-based techniques compute safe re
gions purely based on the data (for example, you can compute the
kVD without referring to the query pointjhe V*-Diagram com-

Step Priority Queue pg Retrieved NN

putes safe regions based on not only the data objects, but also ! SRI> <
. , W, 1, X>

the query point and the current knowledge of the search space. 3 <V,W,LX,U> <
This is one of the main novelties of the technique. By doing so, T e S
both computation and data retrieval of the V*-Diagram are more 6 <STgXceU> <>
. . 7 <T,g,X,c,e,U> <d.f>
economical than those of the other techniques. s TgXeelrs <l
. . . . >

The contributions of this paper are summarized as follows: 1 Setaaliib of

S

<g.X,c,e, Uk, Z,I> <d fj>

(b)

e We propose the V*-Diagram technique and the associated
algorithm, called V*(NN, to support efficient processing of
MENN queries. ; P :

e We show how the V*-Diagram technique can be applied to Figure 2: R-tree and BF-LNN
the domain of spatial networks.

e We perform an extensive experimental study with the results Fi
showing that the V*-Diagram outperforms the best existing a
technique [23] by two orders of magnitude.

The rest of the paper is organized as follows: Section 2 describes
the problem setup. Related work is discussed in Section 3. We for-
mulate the V*-Diagram in Section 4 and present the algorithm for
MENN queries based on the V*-Diagram in Section 5. In Sec-
tion 6, we show how the V*-Diagram technique can be applied
to the domain of spatial networks. A performance analysis of the
V*-Diagram is given in Section 7. Section 8 presents experimental
results and Section 9 concludes the paper.

Figure 2 shows an example R-tree and the BN algorithm.

gure 2(a) shows a set of points and how they can be grouped in
n R-tree, where objects are indexed in a hierarchynisimum
bounding rectangle$MBRs). The corresponding R-tree is shown
in the upper part of Figure 2(b). Starting from the root, BRN
traverses all the entries in increasing order of tiaindist where

the mindistof an entry is the minimum distance between the entry
and the query poing. To do so, a priority queue is maintained to
keep all the retrieved data points aattivenodes. A node is active

if its parent has been accessed but itself has not. The traversal stops
if the first k elements retrieved from the priority queue are all data

points.
An example run of BHeNN is shown in the lower part of Fig-
2. PROBLEM SETUP ure 2(b). At step 1, all entries in the root are inserted into the prior-
Let D be a set of data objects (represented by points)dh a ity queuepq. Then the entries are dequeued and the corresponding
dimensional space andist(.) be the distance function. The nodes are retrieved in order. The first dequeued ite &d its

nearest neighbok(N) query is defined as followgiivenD and a two child entriesX and W are put back intgpg. ThenR is de-
static query poing, find a setH that consists ok objects fromD queued. Node#/ and V' are put inpg and so on. At step 4, data

point d is the head ofyg. Data pointd must be the first NN be-
cause all other entries has distanceg ttwhich are bounded by
mindist of their nodes) larger thadist(q, d). d can be retrieved

as the first NN. If another NN is needed, the process continues un-
til another data point is the head pf. At step 6, f is discovered

as the second NN. By this means, an arbitrary number of NNs can
be incrementally obtained. If the value bfis fixed, an aggres-

sive pruning can be performed on the nodegqdnto reduce the
gueue size, though the page access cost cannot be further reduced
due to the search-space optimality of the algorithm [6]. Other tech-
nigues such as iDistance [10] has superior performance than these
hierarchical structure based algorithms in high dimensional space.
However, it cannot retrievk NNs in an incremental manner.

3.2 Techniques for processing MNN queries

We have discussed two approaches fatNWN queries in Sec-
tion 1: one is sampling based and the other one is safe-region based.
SR-4NN. Song and Roussopoulos [18] introduced a method
which will be referred to aSR4NN in this paper. SReNN re-

duces the access costs in the sampling-based approach by retriev- (c) Steps 4 and 5 (d) Final steps
ing redundant data entries and caching. It greatly reduces the cost
of query reevaluation, but does not solve the problem of inaccu- Figure 3: Computing a Voronoi cell locally

rate answers between sampled locations. ThuskSR-does not
providetruly continuousanswers.

The k'"-order Voronoi Diagram (kVD). Safe-region based
techniques produce continuous answers and reduce processing al
communication costs. The Voronoi Diagram [14] is a classic exam-
ple and can be used to processMN queries as described in Sec-
tion 1. For MkNN queries, thekVD is used. However, th&éVD
the shortcomings described in Section 1.

TPENN and CKNN. Tao and Papadias [19] proposed thee-
parameterizedNN (TPENN) query. Assuming a linear trajectory
of the query point, a TENN query finds (i) the curreritNN set, (ii)

a position on the trajectory where thBIN set changes and (iii) the
objects that cause the change. This is done by finding the earlies
point on the trajectory that has a differéfiN set from the current
one. This point is also known as thidluence poinfor equivalently
influence timavhen the speed is known), which can be considered
as the boundary of a safe region.

Tao and Papadias [20] also consideredG@oatinuouscNN
(CkNN) query, which finds th&NN for every single point on a pre-
defined linear trajectory. This is achieved by identifying all influ-
ence points on the trajectory. The main difference betweedNC
and TRNN is that G:NN obtains all the influence points on the
trajectory but TRNN finds only the first one. Both T#®NN and
CENN are limited to known linear trajectories.

RIS-ENN. Zhang et al. [23] proposed an algorithm called
Retrieve-Influence-SétNN (RIS£NN) to locally computekVD
cells using a spatial index. RIBNN uses th&'PkNN query[19] to
find each edge of AVD cell, 360 degrees around the query point.

Figure 3 shows how RISNN discovers all edges df (a) from
the example in Figure 1(a). Initially is found to be the NN of
q; the cell is initialized to the whole data space, that is, rectangle swapped and the list of rank-adjacent bisectors are updated
ABCD. Atstep 1, a TPNN query is eﬁf:uted W!th the trajeciory An example is given in Figure 4, where the grey region is the cur-
from ¢ to the top left corner of the spacg4) andd isreturned as rent FRR thays is in. Let us assume thatis the location of a mov-
the object that changes the NN result algng. The perpendicular ing query point which starts gt and stops ag2. In Figure 4(a)g
bisector ofa andd, B4, contributes one edge to the cell. The cell is atg: and the ranking is initiallya, ¢, b, f, e, d) and the corre-
is updated to the polygoBC D EF'. At steps 2 and 3, two TPNN sponding list of bisectors i§ Bac, Bev, Bof, Bfe, Bea). Then
queries are executed with the trajectories fi@io the new corners I -)) o

In this paper, the rank of an object means the object’s position in

— — B

(& an.d qF). Two new edges are found according 1, ; and . alist of objects sorted by their distances to some other object. We

Bae. SincekVD cells for data points are convex polygons, this yse “ranking” and “ordering” interchangeably due to the usage of

process continues until all corners of the cell have been checkedboth in the literature.

and they all have the same NN @s 2Thebisectorof two objectsa andb is the set of points where each
RIS-(NN mitigates the precomputation problem (shortcoming point is equidistant ta andb.

1) of thekVD because it only accesses local data, but this algorithm
is still expensive because it performs multiple (on average 12 [23])

PENN queries, where each ERIN query involves a costly tree
traversal. RISkNN does not solve the problem of dynamically
changingk values (shortcoming 2); changirigto a larger value
incurs recalculation of théVD cell. The computation of the pre-
vious kVD cell cannot be reused and hence this algorithm is not
incremental

Due to the fact that only onkVD cell is maintained at a time,
RIS-(NN handles dataset updates (insertions and deletions of ob-
ljects) more efficiently than the traditionaVD technique. How-
ever, in a case where an update effectgilBl answers, the current
kVD cell has to be recalculated.

IRU. Kulik and Tanin [13] introduced an algorithm callettre-
mental rank updatedRU) to compute regions where the ranking
of all the objects (based on their distances) is the same. This is
equivalent to computing the order&¥D cell with k¥ = n, where
n is the total number of objects. Rather than computing the whole
nVD, IRU incrementally computes a neighboringyD cell from
the current cell. In [13], amVD cell is termed dixed-rank region
(FRR) since for any point in the region, the ranking of all the ob-
jects based on their distances is fixed. Based on the observation
that only rank-adjacent objects can swap their ranttefining the
FRR of n objects requires at most — 1 bisector$ of then — 1
pairs of rank-adjacent objects. Continuous monitoring of the rank-
ing of the objects is done by maintaining a rank-sorted list of ob-
jects and its corresponding list of bisectors of pairs of rank-adjacent
objects (ank-adjacent bisectojs Each time a bisector is crossed
by the query point, the ranks of the two corresponding objects are

(a) Initial step

(b) First update

(c) Second update

Figure 4: Incremental rank update

g crosses B¢ in Figure 4(b). This causes and f to swap their
ranks. ThereforeBys and Bg. are replaced byBy. and Bay,
respectively. In Figure 4(c)Ba. is crossed. This causasandc to
swap their ranks and3s. is replaced byBgp. It is shown in [13]
that only O(n) instead ofO(n?) bisectors are maintained during
the iterations in the IRU algorithm. However, IRU still accesses all
data objects to obtain the sorted list and checks 1 bisectors
every timeqg moves.

Related spatial-network queries.SeveralkNN techniques for

static query points were proposed in [8,9,15,17]. There are also

MENN techniques specific to the domain of spatial networks. Ko-
lahdouzan et al. [12] proposed an algorithm that utilizedAfvenoi
Network Nearest NeighbdivN?3) [11]. Cho et al. [3] proposed a
technique that issues sta@itNN queries at the intersection points
on the query path.

Related moving-object queriesHu et al. [7] proposed a safe-
region-based technique for static window &N queries on mov-
ing objects. Each moving object maintains its own safe region and
only report if its new location changes the results of any of the
queries. Yu et al. [22] presented a query-indexing technique for
monitoring kNN queries for moving objects and a given set of
queries, where each query object maintain its @nitical region
to keep track of th&NN set. The similarity between [7,22] and the
MENN techniques [13,14,18-20,23] including the V*-Diagram is
the use of the safe-region concept to reduce the access cost.

4. THE V*-DIAGRAM

We formulate the V*-Diagram in this section. The V*-Diagram
is a safe-region-based technique. Previous techniques compute safe
regions purely based on the data. The V*-Diagram computes safe
regions based on not only the data, but also the query point and the
current knowledge of the search space.

The V*-Diagram assumes a metric space and a spatial hierarchi-
cal index on the dataset. Hence the BF-kNN algorithm can be used
to retrieve NNs incrementally as discussed in Section 3.1.

In the V*-Diagram, the(k +) NNs of the moving query poirg
are maintained, where is the number of auxiliary objects to help
the V*-Diagram work effectively (more analysis anis in Sec-
tion 5.1). The V*-Diagram comprises two types of regions, which
are discussed in Section 4.1 and Section 4.2. These regions are
then put together to form a combined safe region, discussed in Sec-
tion 4.3. Commonly used symbols are summarized in Table 2.

Table 2: Symbols

Symbol Meaning
n The number of objects in the database.
k The number of requested nearest neighbors.
T The number of auxiliary objects.
q The movingkNN query point.
qb The position where the latest BENN call is made.
q The current position of the query point.
p A data object.
Dk The current’” NN of q.
z The (k 4 z)*" NN of g, whenq is atqs.
Sk The safe region with regard fa. .
psp; 1he bisector of two objects; andp;.

4.1 Safe region with regard to a data object

To help explain the concept of safe region with regard to a
data object the notions ofsearch sphereknown regionandreli-
able regionare first introduced. Recall the BENN algorithm in
Section 3.1. Each object/node retrieved from the priority queue
corresponds to an implicsearch spherdcentered at the query

Benetis et al. [2] presented algorithms to process NN and reversepoint), which delimits the current search coverage, and the sphere

NN queries for moving objects with known trajectories. Result va- expands gradually as more nodes/objects are accessed. Numbers
lidity is thus expressed as a function of time. Similar to our work, are assigned to those spheres in Figure 2(a) according to the steps
Benetis et al. included methods to handle insertions and deletionsin Figure 2(b) that access the corresponding nodes. For example,

of data points.

sphere 2 corresponds to step 2 where n8ds retrieved; sphere

These techniques [2, 7, 22] focus on monitoring changes causeds corresponds to step 5 where objdds retrieved. Intuitively, the

by location updates of data objects. The emphasis of th&llM

search sphere denotes the region we have full knowledge of, be-

techniques, on the other hand, is on the changes caused by locatioause all the objects in the sphere are already retrieved.

updates of the query point.

Summary. The MkNN techniques are summarized in Table 1
on five features: providingontinuous answer,ncremental eval-
uation,accessingnly local data (instead of all data), working on
unknown querypath, and providingorder-sensitivek NNs. Only
our proposed algorithm, VENN, has all these features.

Table 1: Comparison of MkNN techniques

) “\a\ 0655 a pa\‘(\e 5\\\\|
Technique (;0“““8(\0‘6‘“\%003\ a\g’“\q\o‘g@e‘—s
SB-NN [18] x v v v Y
kVD [14] v X X v X
OrderedkVD [14] Vv X X v v
TPENN [19] v ox v x x
CKkNN [20] v X v X X
RIS-.NN [23] S ox v v x
IRU [13] N S
V*- kNN v v v v v

In the V*-Diagram, BFiNN is called repeatedly to help main-
tain (k + =) NNs. Letg, be the position ofg where the latest
BF-kNN call is made. Let be the(k 4)™ NN to g5. The search
sphere corresponding to centered at, is the latest one (since
BF-kNN stops wherx is obtained), and we call this search sphere
the known region denoted byW (gs, z). We highlightz because
it determines the boundary of the known region. Figure 5 gives an
exampleW (qs, z) is actually a sphere centeredgtwith the ra-
diusdist(gs, z). Pointp is one of the(k + = — 1) NNs of g, and
other objects iV (g, z) are not shown.

Next, we formulate a region within whictp can move whilep
remains one of thék + =) NNs ofg. Let g’ denote a later position
of g after g». Supposey’ is at the position as shown in Figure 5.

We extend the line segmegtq’ and it exitsW (q», 2) at x. Let
sph(v,1) denote a sphere with centerand radiud. As long asp
isinsph(q’,dist(q’,x)), itis one of the(k + =) NNs of ¢’. This
is because any object outsideh(q’, dist(q’, x)) must be farther
to ¢’ thanp to ¢’ and there are at mo$k + x) objects inside
sph(q’,dist(q’,x)). Since any object irph(q’, dist(q’,x)) re-
mains one of thék + x) NNs of ¢, we callsph(q’, dist(q’, x))

~Reliable Region

with regard to q'
~N Oz
Safe region N
Stapop) \\‘-._,,
dist(qs,z) | J /
/ Known region
< = ./ W(gs,z)
dist(qs,2)-dist(qs,q") N _ | X
qv,2)-d1st(qs,q Sy

Figure 5: The known, reliable, and safe regions

thereliable regionwith regard tog ® and any object in the reliable
region areliable object If p is a reliable objectp is said to beeli-
able otherwise, it is said to benreliable Mathematicallyp being
in the reliable region with regard g is expressed as

dist(q',p) < dist(gv, z) — dist(qy, q"), 1)
wheredist(qv, z) — dist(qw, q’) is the length ofg"x.

If we view q’ as a variable, then Equation (1) actually describes
all the possible positions @f’ that guarante@ remaining among
the (k + =) NNs. Consequently, we can formulate the safe region
with regard top as follows.

DEFINITION 1 (SAFE REGION WITH REGARD TO A POINT.
Given a known regionW (gs,2) and a data pointp within
W(gs, z), the safe region with regard tp is:

S(qv,z,p) = {q’ : dist(q',p) + dist(qs,q") < dist(qv, z)}.

For Euclidean distance inZD space, the boundary 6f(gs, 2, p)

is an ellipse as illustrated in Figure 5. The two foci of the ellipse
areqp andp; the sum of the distances froga andp to any point

on the ellipse islist(gs, z). We further have the following results.

COROLLARY 1. In Euclidean space, the safe region with re-
gard toz, S(qs, 2, 2), is the line segmenf, z.

PrROOF Foranyq’ in S(qs, 2, 2), dist(q’, z)+dist(qs,q") <
dist(gw, z). By the triangular inequality, we havwé&st(q’,z) +
dist(qs,q’) > dist(qs, z). The set of points that satisfies both
inequalities is{q’ : dist(q’, z) + dist(qp, q") = dist(qs, 2)}. In
Euclidean space, this is the line segmege. [

COROLLARY 2. p isunreliable iff ¢’ is outside 0f5(gs, 2, p).
The proof is straightforward and we omit it.

4.2 Fixed-rank region

As discussed in Section 3.2, the fixed-rank region (FRR) was
introduced in [13] to denote a set of possible query-point locations
that share a specific ranking of all objects. For the V*-Diagram, the
FRR is applied to a subset of all objects, specifically(fexz)NN.

The IRU algorithm is used to incrementally maintain the FRR.

Given a listL of objects,(p1, p2, .., pm), the FRR ofL is the
set of all points such that for any poiatin the setp1, p2, ..., Pm
are already in sorted (ascending) order by their distances ltet
Hp,p; be defined ajv € DS : dist(v,p;) < dist(v,pj)},
where DS is the data space. An FRR is a function of a list and is
formulated as follows.

DEFINITION 2 (FIXED-RANK REGION).

m—1

F<p17p27 7pm> = ﬂ

i=1

H,

PiPi41-°

3We omit “with regard tag” when the context is clear.

F(p1,p2, ..., pm) May be written in the compact format 6%).

In Figure 4(a), the ranking of the objects according to their dis-
tancestay: is L = (a,c, b, f,e,d). The FRRF(L) is defined as
HoeNHepNHpg NHye N Heq. The boundary of'(L) is defined
by five bisectors,Bac, Beb, Bog, Bfe and Begq.

We use the IRU algorithm described in Section 3.2 to incremen-
tally computeF' (L) in which g currently resides for thék + x)
maintained objects. An FRR is represented as (i) aBistf the
(k+z — 1) rank-adjacent bisectord3p, p, ,, fori = 1,2, ..., k+
2 — 1, and (ii) a reference point (which could be any poinFi(L),
gp inour case). The FRR is incrementally maintained by (i) check-
ing whetherg crosses a bisector i, and (ii) if yes, performing
updates accordingly.

The purpose of maintaining the FRR using the IRU algorithm is
to keep the(k + z) objects sorted according to their distances to
g. One alternative solution to IRU is to computing distances be-
tween the(k + x) objects andy for every position ofg, which is
sampling-based. Although both methods have the same complex-
ity, the FRR is important to the formulation of a region where the
(order-sensitivekNN does not change.

4.3 Integrated safe region

We are now ready to formulate the safe region for theNWl
query, called théntegrated safe regioSR). The ISR is the inter-
section of the current FRR of th& + =) maintained objects and
the safe regions with regard to thenearest objects. We will first
define the ISR formally and then prove that ISR satisfies tk&IM
safe-region requirements.

Let O denote the(k + z)NN set ofgs, L be the list of these
(k + x) objects sorted by their distancesg¢pandz still be the
farthest retrieved object tqs, which is prt-. The ISR is then
formulated as: X

F(L)N () S(gs, z,pi))

i=1

The computation of the ISR can be greatly reduced based on
Lemma 1 and Theorem 3 below.

@)

LEMMA 1. F(p;,p;) N S(qb, z,p;) N S(ab, 2, i)
F{pi,p;) N S(qv, z,p;).

PROOF For any pointy € F(p;, p;), v satisfies

dist(v,p;) < dist(v,pj).)
For any pointw € S(qs, 2z, p;), by definitionv satisfies
dist(v,p;) + dist(gw,v) < dist(qw, 2). (4)

For anyv € F(p;,p;) N S(qw, z,p:), it satisfies inequalities (3)
and (4). By adding the two inequalities,

dist(v,pi) + dist(ge,v) < dist(qp, 2). (5)

Inequality (5) shows thab € S(q», 2,p:), given thatv €
F(pi,p;) N S(gs, z,pj;). It can be concluded thaf (p;, p;) N
S(gw, z,p;) C S(gw,z,p;) and henceS(qw, 2, p;) can be dis-
carded inF'(p;,p;) N S(qv, z,p;) N S(qv, z,p:). [

An example is given in Figure 6. The grey regibita, ¢, b, f)N
S(q1, f,c) N S(q1, f,a) is exactly the same aB(a,c,b, f) N
S(q17 .f7 C).

THEOREM 3. For k& > 2, A

F(p1,p2,..pk) N ([S(av, z,p:))
i=1

F<p17p27 7pk> N S(qbyzvpk)

PROOF Lemma 1 shows the caselof= 2, thatis,F'(p1, p2)N

S(qv, z,p2) N S(gv, z,p1) = F(p1,p2) N S(qv, 2, p2).
If the theorem holds fok = [, that is,
l

F(p1,p2,...p1) N ([] S(gb, 2, pi)) =
=1

F<p17p27 "'7pl> N S(qb7 Z,pl),
then the theorem can be v%h;ied for=1 + 1 as follows.
F<p17p27 "'7pl+1> N (m S(qt;,Z,pi))
i=1

= F<p17p2a"'7pl>mF<plypl+1>
l

N((1) S(gvs z,p:)) N S(as, 2, Pi+1)

=1
= F<p1,p2,...,pl>ﬂF(pl,p[+1>ﬂS(qb,z,pl)
NS(qov, 2, Pr+1)-

By applying Lemma 15(gs, z, p1) can be removed from the

above expression. Hence, we obtain a final result of

F(p1,p2,....,p1) N F(p1,pi+1) N S(qv, 2, P1+1)
= F<p1,p2,...,pz+1>ﬂS(qb,z,pH—l).

The theorem therefore holds for any integer valué: @jreater
than orequalt@. [

Since F(L) = F(p1,p2,...,Pk) N F(Pk,Pr+1..., Pk+ta),
based on Theorem 3, expression (2) can be reducdd(fo N
S(gw, z, pr.)- Therefore, the ISR can be defined as follows.

DEFINITION 3 (INTEGRATED SAFE REGION(ISR)). Let O
be the(k 4+ z)NN set ofgs, L be the list of thesék +) objects

sorted by their distances @, z be the farthest retrieved object to
qs, andps, be thekt" object inL. The integrated safe region with

respect tags, z, pr. and L is defined as:
I(gv, z,px, L) = F(L) N S(qb, 2, Px) (6)

recent point wher€k +) NNs are retrieved from the database. As
long asq’ remains inF(a, c, b, f)NS(q1, f, ¢) (the grey region),
then: (i) no object outsid®& (g1, f) is nearer to the two objecta:
andc; and (ii) the ranking of a, ¢, b, f) is unchanged.

The diagram that contains the information used in computing
the ISR is called th&*-Diagram . It consists of: (i) the bisectors
of the rank-adjacent pairs ih; and (ii) the boundary of the safe
region with regard t@:. We may also use the V*-Diagram to refer
generally to the whole technique based on it, including the algo-
rithms. Although the V*-Diagram in the example of Figure 6 only
computes a single ISR, it actually allows incremental computation
of new ISRs, which is further discussed in Section 5.

5. ALGORITHMS

In this section, we present VENN, an algorithm for McNN
queries based on the V*-Diagram, followed by a discussion on the
effect ofz, the number of auxiliary objects. We also present the al-
gorithms to handle insertions/deletions and dynamically changing
k values.

The V*-ENN algorithm uses the following data structures and
variables to compute and maintain the ISR.

1. L: alist of (k 4+ z) objects always sorted in ascending order
by their distances tg; these objects are thg + =) NNs
retrieved aigs.

2. z: the farthest retrieved object in the known region wigen
is atgep.

3. pi: thek!™ objectinL.

4. Si: the safe region with regard ja. .

5. B: alist of bisectors of pairs of rank-adjacent objectnk-
adjacent bisecto)sn the order corresponding to.

We do not explicitly maintair¥' (L) because it is represented By
and checking whether moves out of the currerft (L) is also done
by checking whetheq crosses any bisector i.

V*-ENN produces answers continuously as shown in Algo-
rithm 1. It has an initialization part (lines 1 to 3) and a continuous
processing part (lines 4 to 19). The initialization part calls the algo-

Next, we prove that the ISR defined above satisfies the require- Algorithm 1: V*- kNN(qo, &, x)

ments of being a safe region for the&MN query, that is, thé& NNs
as well as their order do not change whgremains in the ISR.

THEOREM 4. Ifthe ISRI(gs, 2, pk, L) is not an empty set, ev-

ery pointg’ in I(qw, 2, pr, L) has the same order-sensitike\NNs.

PrRoOFR According to Definition 3, (1) sincé C F'(L) (param-
eters ofl omitted), the ranking of thék + x) objects is fixed for

all points inI, which satisfies the order-sensitivity requirement; (2)
every pointg’ in I is also in the safe regions with regard to the first

k objects inL. As a result, there can be no object outsiti¢gy, z)
nearer tag’ than any of the firsk objects inL. Therefore, for any
q’ in I, ¢’ has the same order-sensitivéNs asq,. [

de

Figure 6: Integrated safe region examplek = 2, z = 2)

As exemplified in Figure 6, four objects retrieved bylEN
query (& = 2 andx = 2) atqy are(a, ¢, b, f). Pointq; is the most

1 gy < Qo
(L, z, Sk, B, ISR «— Compute-V*@s, k, x)
ReportResultl..Headg))
while (Event«— GetEvent()do

2

3

4

5 q — Event.Position

6 switch Event. Typealo

7 caseRankUpdate

8 Bisector— Event.Bisector

9 L.OrderSwapBisector.Index

10 B.Update(,Bisector.Index

11 if Bisector.Index< k then

12 | ReportResultl,.Headt))

13 if Bisector.Indexc [k — 1, k] then
14 pr — L.Item(k)

15 L Sk < S(qv, 2, pr)

16 ISR« ConstructISR§,B,q)

17 caseReliabilityUpdate

18 qv <— q

19 (L, z, Sk, B, ISR «— Compute-V*@s, k, x)

rithm Compute-V*(Algorithm 2) to compute the initial ISR using
the starting poinygo of the trajectory ag,. Then the continuous
processing part starts.

Algorithm Compute-V* (Algorithm 2) runs as follows. It first (k+ =) maintained objects are reliable again. The new ISR is

calls the BFENN algorithm to retrievg k +) objects withg, as constructed accordingly. This event does not cause result up-
the query point; with the retrieved objects, it setandp, accord- date because neither thBIN set nor their ordering changes.
ingly; then, it computesS(qs, z, pr) and rank-adjacent bisectors If another object really becomes nearer thantHeNN, a
based o, and assigns them 8, and B, respectively; finally, the RankUpdatewill be triggered, which will update the result.

current ISR is computed. To determine the correct half plane for Next, we give a running example of the algorithm. Recall the

each bisector irB, gy is used as the reference point. Readers may example in Figure 6. At the starting poigt, 4 NNs are retrieved

notice that symbat is explained differently here from Table 2. Ob- in the order of(a, ¢, b, f). The ISR isF(a, ¢, b, f) N S(q1, f,).

jectz is used to determine the known region and it is the-)" On the trajectory ofy (starting atg:), two events happen when

NN of g, whengq is at g». When deletion is taken into account,

if the (k 4+ 2)™™ NN of ¢, gets deleted, we still use the deleted

object to determine the known region. Therefore, we make it more

accurate here than in Table 2 when we did not consider deletions.
The continuous processing part of eNN is event driven. It ba-

sically maintains the ISR agmoves. An event is triggered when

exits the current ISR. There are two types of events with this regard,

RankUpdateindReliabilityUpdate These events are generated by

a separate inexpensive process that constantly checks the current

position ofq against the ISR. When an event is generated, itis as- (a) F{c,a,b, f) N S(q1, f,a) (b) F{c,a,b,e) N S(v2,e,a)

sociated with a timestamp and the corresponding query position.

Figure 7: Example for Algorithm 1, (k = 2, z = 2)

Algorithm 2 : Compute-V*@s, k,) crossesBq. aty: and exitsS(qu, f, a) at+y2. Figure 7 shows the
1 L — BF-kNN(qo, k +) effects of these two events.
v, z Figure 7(a) shows how the ISR changes afjesrosses Ba..

; Z L‘thﬁ?rgg(]:)' z) At the instant thay is crossing Ba. at~1, a RankUpdatesvent

2 g’“ - S. is triggered, which causes and c to swap their ranks. The list
. Bk:CrEa(géaggc)torLisl() L becomes(c,a,b, f), and this causes botf'(L) and Sj to

6 ISR ConstructiSRx, B.qs) change. Nowa becomeg, (2"?NN), and hence the ISR becomes
7 return (L, z, Sy, B, ISR) F{c,a,b, f) N S(q1, f,a) (the grey region). The curre@tNNs,

c anda, are reported to the user in that order.
Figure 7(b) shows how the ISR changes aftgr exits
Given that the query trajectory is unknown, the query positions S(q1, f,a). At the instant thay is exiting S(q1, f,a) atvyz, a
are updated discretely and checking for new events has to be doneReliabilityUpdateevent is triggered, which calSompute-V*o re-
based on these discrete updates. To provide accurate answers, thigieve more objects. The nefk + «) NNs are(c, a, b, e), with the
checking should be performed at a high frequency, which is accept- corresponding ISRE(c, a, b, e) N S(v2, €, a) (the grey region).
able because of the low cost. Note that this is different fpo - .
cessing the querased on sampling, which requires frequent tree 2.1~ On the number of auxiliary objects
searches instead of event checking. The answer we provide is con- Auxiliary objects are an important part of the V*-Diagram tech-
tinuous, not based on sampled locations. Since the query positionsnique. They allowg to move away fromg, while retaining the
are updated discretely, the events could happen anytime betweercurrentk NNs by providing the knowledge beyond the coverage
two consecutive query updates. To compute the exact time (posi-of the search sphere of the originfalNNs. This makes it possi-
tion) the events happen, we assume a linear trajectory between twable to continuously evaluate the MiIN query. In this subsection,
consecutive query positions. we discuss possible values of the number of auxiliary objects.
We describe the two event typé&ankUpdatendReliabilityUp- Generally, we find that should not assume the values of 0 and 1,
datebelow and discuss how to handle them with reference to Al- which are explained below.
gorithm 1 (in the algorithmgq is used to denote the position of the Having z equal to0 implies thatz and thek'" object inL, py,
query point when an event happens). are the same object. According to Corollary 1, in Euclidean space,
RankUpdate This event is triggered wheg exits the current the safe region with regard to (which is S) is the line segment
F(L), that is, crossing a rank-adjacent bisector. Besides the g»z. Unlessq moves alonggyz, g exits Sy as it starts moving.

timestamp and query positionRankUpdatesvent also con- Probabilistically, it is highly unlikely thag moves along, z since
tains the information of the bisector crossed ¢yline 8). gvz IS just one direction among the infinite possible directigns
For this event, the ranks of the two objects corresponding to can move towards. Therefore, it is probable thalways exitsS
the bisector are swapped (line 9) and the bisectorBiss as it moves and it triggers theeliabilityUpdateevent infinitely. As

updated accordingly (line 10) as explained in the IRU algo- a result,z should not be set td for Euclidean space.

rithm (Section 3.2). If the event affects the rank of any of the ~ Whenz is a positive integer, the problem of infinitely triggering

k NNs (line 11), then the new NNs are reported. Moveover, the ReliabilityUpdateevent does not happen except under the co-
if the rank update changes. (line 13), S, also needs to be incidence described in the next paragraph. Therefore, any integer
updated (lines 14 to 15). Changes are reported to the user if greater than 1 is a valid value fer The effect of the value of on

at least one of thé nearest objects is affected. performance is further investigated in Sections 7 and 8.
ReliabilityUpdate This event is triggered wheg is leaving Si In theory, the problem of, being a line segment may hap-
(that is, on the boundary ;). It means that thé&*" NN pen with any value ofr when the last(z + 1) objects in

is about to become unreliable and hence the number of re- L have the same distance tp, which is dist(gs, z). In this
liable objects is about to become less thamherefore, the case,dist(qw, pr) equals todist(gs,z). By definition, S, =
ReliabilityUpdateevent calls Compute-V* using the event {q’ : dist(q’,px) + dist(qw,q’) < dist(qs,z)}. If we replace
position, q, to obtainz new auxiliary objects so that all the dist(qs, 2) by dist(qs, px) in the inequality of the definition, we

getSy = {q’ : dist(q',pr) + dist(qv,q') < dist(qw,pr)},
which is a line segment in Euclidean space. To completely avoid
this problem, we can check whethdist(gs,pr) is equal to
dist(qw, z) after we retrieve(k + =) objects by a BR:NN call.
If they are equal, then we increase the value aftil dist(qgs, pr)
is different fromdist(gs,).

In general, a larger value af provides a largeSi, and hence

19).
(iii) The update has no effects to thEN set (line 20)Only the
ISR is updated to reflect the changeBn

5.3 M&kNN with dynamically changing x values

The ability to gracefully handle changes to the valué & cru-
cial for the distance browsindunctionality [6]. For statickNN

the less frequent we need to retrieve new objects from the databasequeries, distance browsing is a feature that allows NNs to be in-

Having the value of: too small will result in highly frequent BF-
kNN calls. On the other hand, a too largevalue also incurs the
overhead of retrieving more objects in every BRN call and more
computation for maintaining them.

5.2 Insertions and deletions of objects

Algorithm 3: DatasetUpdatef(,p,Operatior)
1 if p € W(qs, z) then

2 if Operation= Insertionthen

3 | L« Insert(,p,q)

4 else

5 | L < Delete,p)

6 B.Update(.)

7 if & > L.Length()then

8 a» —¢q

9 (L, z, Sk, B, ISR «— Compute-V*@s, k, x)
10 | ReportResultl,.Headf))

11 else ifdist(q,p) < dist(q, px) then

12 pr — L.Item(k)

13 Sk < S(qv, 2, Pr)

14 if ¢ ¢ Sk then

15 gy <— q

16 (L, z, Sk, B, ISR «— Compute-V*@y, k, x)
17 else

18 | ISR« ConstructiSR$},B,q)

19 | ReportResultl,.Headf))

20 else

21 | ISR« ConstructiSR§},,B,q)

In this subsection, we describe the algorithm to perform updates

(that is, insertions and deletions) to the dataset forkdN. The
algorithm is calledDatasetUpdatand is presented in Algorithm 3.
In this algorithm,q denotes the position of the query point when
the update happens and it is passed in as an inpup betthe ob-

ject to be inserted or deleted. First, the algorithm checks whether

thep is in W (qy,). If not, the update can be safely ignored be-
cause it cannot affect the ISR. Otherwise, an insertion/deletipn of
into/from L is performed andB is updated accordingly (lines 2 to
6): insertion ofp needsg for computing distances from and the
maintained objects to find the correct insertion slokjrdeletingp
from L requires only a simple lookup operation. After the bisector
update, the ISR andl could be in one of the following three cases:

(i) The length ofL becomes smaller thanas a result of a dele-
tion (line 7).In this casegs is set tog and Compute-V* is
called to retrieve more objects and compute the new ISR ac-
cordingly (lines 8 and 9). The new result is reported (line 10).
The length ofL is still greater thank but the update affects
the kNN set (line 11)We updatepi, andSj, (lines 12-13) and
check ifq is inside the news, (line 14). If q is not inside the
new S, then Compute-V* is called (line 16). Otherwise, the
ISR is updated to reflect the changegHmnd.Sy. Since thek

(ii)

crementally retrieved without having to specify the valuekah
advance. In this paper, we allow the valugkdb be changed with-
out incurring heavy computation.

Algorithm KUpdate(Algorithm 4) shows how V*(NN handles
dynamically changing values. The algorithm has two inputs: the
current locationg of the query point and the neiwvalue. We first
check if the newk is greater than the length @f. If yes, g is set
to ¢ and Compute-V* is called. Otherwispi. andSy are updated
for the newk (lines 5 and 6). Ifg is not inside the nevsy, gs is
set tog and Compute-V* is called. Otherwise, only the ISR has to
be updated to incorporate the nély (line 11). Finally, the new:
NNs are reported (line 12). As we can see, theRRN algorithm
can easily accommodate dynamically chandingalues due to its
incremental nature.

Algorithm 4 : KUpdateg,k)

1 if k> L.Length()then
2 qv < q
| (L, z, Sk, B, ISR « Compute-V*@gs, k, x)
Ise
pr < L.Item(k)
Sk — S(quapk)
if g ¢ Sk then
q» —¢q
(L, z, Sk, B, ISR «— Compute-V*@s, k, x)
else
| ISR« ConstructiSR§},B,q)

12 REportResuItL.Head(c))

0]

© 00N U~ W

10
11

6. THE V*-DIAGRAM IN SPATIAL NET-
WORKS

When the movement af is constrained by network connectivity,
NN problems should be solved based on the network distance. For
example, a car is travelling on a road and it keeps track ofcthe
nearest gas stations based on the road network distance.

In this section, we show how the V*-Diagram technique can be
applied to the domain of spatial networks, which also satisfies our
metric space assumption. Due to the space limitation, we could
not fully elaborate the application of V*-Diagram in the spatial-
network model, but only present the essential components of the
technique.

The essence of the V*-Diagram is the ISR, which consists of
two key components: safe regions with regard to data objects and
the fixed-rank region (FRR). Hence, we focus our discussions on
how to determine these two components in spatial networks, while
the algorithms to compute the ISR and procegs\\ queries can
be reused. To avoid an exhaustive discussion, we use an example to
illustrate the main idea.

A spatial network is usually represented as a set of vertices and a
set of edges, where an edge is defined by two vertices. Given points
p1 andpz in the networkdist(p1, p2) is the length of the shortest
path betweem; andp-. Figure 8 shows a spatial network of eight

NNs have changed, the new result is reported to the user (line nodesga to h. Distancedist(gs, p) is 2 using the path vid.

We usepnt(p1,p2,!) to denote a point on the eddeq, p2)
with distancéd to p1, andseg(p1, p2,!) to denote a section on the
edge(p1, p2) with the starting poinp: and lengthl. For exam-
ple, z is atpnt(a, e, 3), and all points between and z can be
represented asg(a, e, 3).

Consider an MNN query withk = 1. Supposer is 2 for the
V*-Diagram andgs is atpnt(a, b, 3). The 3 NNs forg, are:p, r
andz. We can use angNN technique for spatial networks (such as
those described in [8,9, 15, 17]) to retrieve the+) NNs atqgy.
The algorithm also returns the edges in the rang& ef(qs, 2) to
UL (that isz(qu Z)), (CL, b)* (aa C), (aa 6), (b7 d)’ (b7 f)! (da C)’
(d, g), and the distances from the vertices of these edggs.to

® Object

o Vertex
"""Edge

Wi(gs,2)

— S(qv,2,p)

" F<prz>
1(gs ,2,p,<p,1,2>)

Figure 8: V*-Diagram in a spatial network (k = 1 and z = 2)

Next, we determine the safe region fpr (which isp in this
example). The safe regio#i(gs, 2, p) is the region where for any
point ¢’ in the region, the sum afist(qs, q’) anddist(p, q’) is
less than or equal t@ist(qgs,), which is 6. We need to explore all
the edges it (g», 2, p) to identify its boundary. Sinc® (gs, z)
enclosesS(gs, z, p), and we already know the edges that are in
W (g, z) viathekNN query executed afs, we only need to con-
sider those edges. We use edgef) as an example. For a point
g’ on (b, f) to be inS(qs, 2, p), dist(qs,q’) + dist(p,q’) has
to be less tha® according to the definition. Sina&st(qs, q’) +
dist(p,q’) is equal tadist(gs, b) + dist(p, b) +2dist(b,q’), and
both dist(qs, b) anddist(p, b) are 1,q’ is in S(qv, z, p) When
dist(b,q’) is less than or equal t8. Consequentlypnt(b, f,2)
forms part of the boundary &(gs, 2, p). The boundary points on

other edges can be computed in a similar manner. After obtaining

all boundary points, we ge¥(gs, z, p), which consists of edge
(b,d), seg(b,a,3) and seg(b, f,2), plotted as grey thick seg-
ments in the figure.

As discussed in Section 4.2, the FRR is determined by the rank-

be extended to higher dimensional spaces. We also assume that the

data objects are uniformly distributed.

V*- kENN only has node accesses in the calls to/B¥N, which
are triggered by theReliabilityUpdateevent (line 19 of Algo-
rithm 1). We analyze the frequency &eliabilityUpdateevents,
f», as follows. AReliabilityUpdateevent happens whegq exits
S(gs, z, pr.). We denote the point of exit @ . TheReliabilityUp-
dateevent happens only once during the procesg mioving away
from gp until reachingg.. Then a BFEKNN is performed andj.
becomes the newy,. A ReliabilityUpdateevent will happen again
when the next timg exits S(qs, z, pr). Therefore f;, is inversely
proportional to the distancg travels fromgs to ge. In the worst
case,g moves in a straight line, anf, is inversely proportional
to dist(gs, ge). The expected value @fist(qs, ge) is Obtained as
follows. Wheng moves tog., p is on the boundary of the reliable
region (with regard t@.). For a better understanding, imagine in
Figure 5,p is pk, q’ is qe and it is on the boundary & (qs, 2, p).
We can see thatist(gsw, ge) equalsdist(qgs, x) — dist(ge,X)-
Note thatdist(gs, X) is the radius of¥/(q, =), which is a sphere
that containgk+x) points;dist(qe, x) is the radius of the reliable
region with regard t@., which is a sphere that contaihgoints.

According to [21], the distance between the query pgintand

the k* NN is 2/C, (1 — —+/k/n), whereC, is the vicin-

ity constant [21]. Therefordist(qo, ge), Which isdist(gs, x) —
dist(qe, x), can be expressed as

W=V = 1= VET /).

Sincef; is inversely proportional tdist(qs, ge),

O(fy) = O00/(1~ Vijn—/1 = VE+o)/m).

The expression aD(f,) can be relaxed as follows:

) 1= E/mt\1i—/(kta)/n
\/1—\/k/n—\/1—\/(k+z)/n \/(k‘F‘L')/"*\/ k/n
< 24/1—+/k/n < 2
= V(k+a)/n—/k/n T \/(k+tz)/n—+/k/n
—9 (k+x)/n++/k/n _ 2\/(k+£)/n+\/ < 4\/(k+m)/n

(k+z)/n—k/n

ThereforeO(f5) is O(y/ £12™). Typically, - is comparable to

adjacent bisectors the maintained objects. In a spatial network, a bi- and(k + =) is much smaller thamk. Thus, we obtain thaf,, is

sector reduces to points on edges. For exaniple,has two bisect-
ing points, one ompnt(b, d,2.5) and the other opnt(a,c,0.5).
The FRRF(p,r, z) is the region with B,, and B,. as the
boundary and containings. It consists of(b, f), seg(b, a,1.5)
andseg(b, d, 2.5), shown as the segments in the dashed triangle.

As a result, the ISR {(gs,2,p) N F(p,r,z)) consists of
seg(b,a,1.5), seg(b,d,2.5) andseg(b, f,2). It is shown as the
segments in the grey region. According to Algorithm 1, exiting the
ISR viapnt(b,a,1.5) (B,.) or seg(b,d,2.5) (Bpr) triggers a
RankUpdateevent, and exiting the ISR vient(b, f, 2) triggers a
ReliabilityUpdateevent.

7. PERFORMANCE ANALYSIS

Among all techniques listed in Table 1, only REBIN by Zhang
et al. [23] and V*%£NN provide continuous answers for thekMN

O(1/%2). Let Cyr be the cost of a BRNN call. Then we obtain

the total 10 cost of V*kNN, Cy O(4/ 22).

The RIS£NN processes the MNN query as follows. Every time
q exits the currenkVD cell, RIS&NN is executed to obtain the
new kVD cell and the corresponding\N. The total cost depends
on the frequency of crossingvD cells and the cost of each RIS-
kNN run. In the worst caseg moves along a straight line. The
frequency ofq crossingkVD cells is proportional to the average
linear densit§ of the kVD cells. The number of théVD cells is
O(kn — k) in 2D space [14]. We assume thiatis much smaller
thann. Thus, the density okVD cells is O(kn), which corre-
sponds to a linear density 6f(+/kn). Each RISkENN run requires
12 TPENN queries on average [23]. L&t;,,, be the cost of a
TPENN call. Then the total 10 cost of RISNN for the MkNN

query with unknown query trajectory and without accessing all the query is12C;pn. O(VEn).

data. Therefore, this section focuses on a comparative perfoemanc

analysis on RISeNN and V*-kNN in terms of tree node accesses
(that is, IO cost). We assume2® space, although the analysis can

4The number ofVD cells crossed per unit length along a straight
line.

We now compare the costs of VNN and RISKNN. For the is a small increase when becomes large (around 30). The num-

frequency component, VENN is smaller than RIS:NN espe- ber of page accesses always decreasesinsreases. This is be-
cially whenz is large. For the cost-pérNN-algorithm-call com- cause ag becomes largel§, becomes larger and hence BRN
ponent, the first TRNN call of an RISKNN run is always more is called less frequently. This reduces both CPU time and 1O cost.

expensive than a BENN call because TENN has to retrieve at Whenx becomes too large, the computational overhead of main-
least thekNN and it needs to access more nodes to obtain the in- taining more objects becomes more significant and may overweigh

fluence object. In addition, there are 11 subsequektNNPcalls of the savings in CPU time. Therefore, the CPU time increases for a

an RISANN run, where each call is much more expensive than a largex value. The number of page accesses mainly depends on the

BF-k£NN call in practice. Consequently, the 10 cost of ¥NN is frequency of BFENN calls and hence always decreases. These re-

much lower than that of RISNN. sults confirms our discussion in Section 5.1 and the analysisin 7. In
In terms of the CPU cost, VENN maintains the rank ofk + all these experiment, thevalue of9 provides a good performance,

z) objects, which causes more computation than R\®¢ on the s09 is used as the default value ofor the rest of the experiments.

client side. However, given today’s mobile devices and trends (e.g., As we can see, some variations around the valuedi not affect
phones with multimedia and graphical functionalities), we argue the performance much.

that the CPU power of these devices is adequate to clieck

x — 1) bisectors at a reasonably high frequency (e.g., once every L R v 10000 g

second) for practical values éfandz. In many realistic settings, o oo 18 -
1k N - 4 F X8 N E

the benefits from the communication-cost reduction will outweigh

¥
¥

time (sec)
=}
Page Access
*¥0
*0

this overhead on the client side. S g meeas 100 L e =

On the server side, VENN has a lower CPU cost than RIS- S A
kNN. It is because RI&NN uses the TRNN query which incurs o 3 25 ; iz is is él 24 27 3:0 3:3 36 3 ;a ; iz is is 21 24 27 3:0 is 36
a much higher computational cost than BRN. X X

(a) Total Cost (D) (b) Page Access (D)

8. EXPERIMENTAL STUDY 10 gy 20000

This section presents the results of our experimental study. Inour o 2 1000
implementaion, the R*-tree [1] is used to index the data objects. % ey N8 100
The page size is 1 KB, which has a node capacity of 50 entries. £ O %

We used both synthetic and real datasets in our experiments. All 01 E* < 10
datasets span the spacel06f 000 x 10,000 square units. We gen- 3 6 9 12 15 18 21 24 27 30 33 3 3 6 9 121518 2124 27 30 33 3
erated synthetic datasets with uniform (U) and Zipfian (Z) distri- X x
butions with the default cardinality &5, 000 data points. The real (c) Total Cost (R) (d) Page Access (R)
datasets aré5, 743 and119, 897 postal addresses from California
(C) and North-Eastern USA (N), respectively. Figure 10: Effect of

5400 ———————— 5050 8.2 Comparative study: centralized

5300 - 1 Among all the techniques discussed in the related work, RIS-

kNN by Zhang et al. [23] is the only algorithm that is comparable
to our work. Therefore, we perform a comparative experimental
study on V*%4NN and RISANN. The next four sets of experiments
P compare these two techniques using different experimental param-

5025 -
5200

100
5 5000

5000 B

49091900 50‘00 SJfDO 5200 5?:00 5400 4973975 5000 5025 5050 5075 5100 eters.
(a) Directional (D) (b) Random (R) The effect of the buffer size.In this set of experiments, we use
) _ the buffer sizes od, 8, 16, 24 and32 pages. Figure 11 shows the re-
Figure 9: Trajectory types sults for two synthetic datasets with the default dataset size and the

two real datasets. VENN outperforms the RISNN in all settings
We generated two different types of query trajectories, random in terms of both total response time and number of page accesses.

(R) and directional (D), as shown in Figure 9. Each trajectory con- |n most cases, the improvement factor is two orders of magnitude.
sists of1, 001 points. Between two points, the trajectory is assumed For both methods, the page access cost decreases as the buffer size
to be a straight line segment. The length of each segmeantist. increases as expected.
For each type of trajectory, we generafildifferent trajectories. The effect of the number of query location updatesln this
We run theseO trajectories as a query set for each experiment and set of experiments, we vary the number of location updates in the
present the average result. We measured both the cumulative tOtahuery trajectory from 0 to 1000. Figure 12 shows the response time
response time and the cumulative number of page accesses for @n the four datasets. In all experiments, ¥XIN outperforms RIS-

whole trajectory as the performance metric. kNN and the improvement factor is two orders of magnitude in
. most cases. The results of the number of page accesses have very
8.1 Choosing the value of similar behavior as those of the total response time. Therefore we
In the first set of experiments, we study the impact of the value do not present them for the remaining experiments due to space
of x on the performance of V&NN. We variedr from 3 to 36 with limitation. For both techniques, the total response time increases as
k set to20 and no buffer space. We did not use the values less than the number of location updates increases.
3 for x because too small values:ofdo not yield a reasonable size The effect of the dataset sizeln this set of experiments, we

of S, to make V*4NN effective. Figure 10 shows result of the vary the number of objects in the dataset from 5,000 to 25,000 for
response time and number of page accesses as functianfoof the synthetic datasets. Figure 13 shows the response time results.
both query trajectory types. The response time first decreases as Again, V*-kNN outperforms RISeNN in all settings and the im-
increases but becomes more constant &seps increasing. There provement factor is two orders of magnitude in most cases. For

-
Q
=}

time (sec)

01 . . .
0 8 16 24 32
#buffer pages
(a) Total Cost (U)
100
gl R
2 RIS (D) -+
2 RIS (R) &
£ 1k
0.1 . L L
0 8 16 24 32
#buffer pages
(c) Total Cost (2)
100 | E
3 V¥ (D) —+—
& V* (R) ——%---
2.0 L RIS (D) %
g0 RIS () 5
e
,,,,,,,,, VSV
1 i I i
0 8 16 24 32
#buffer pages
(e) Total Cost (C)
1000
5100 | VE(D) —+— 5
3 V¥ (R) ===
b RIS (D) -+
E ol RIS (R) &
1 ! ! !
0 8 16 24 32
#buffer pages
(g) Total Cost (N)
°
8
Q
£ oo |
0.001
RIS (R)
0.0001 L . L L
0 200 400 600 800
Points Traveled
(a) Total Cost (V)
1000
100 F .
T 10 g E
3 :
T 1
£ o1
0.01
0.001
0 200 400 600 800

i
1S}

=

time (sec)

fire
o
T

-

Points Traveled

(c) Total Cost (C)

1000

1000

10000 -,

10000 & _

100000
10000
1000

100000 g— ‘ ‘
10000 - P ———

Page Access

Page Access

Page Access

=
o
S
S

Page Access
.
o
o

1000

10
1

=

=)
2 o 9
o & o

#buffer pages

(b) Page Access (U)

i
o

[

#buffer pages

(d) Page Access (Z2)

100 B
10

0.1

#buffer pages

(f) Page Access (C)

0
0

#buffer pages

(h) Page Access (N)
Figure 11: Effect of buffer size

100
10 B
g o1
0.01
0.001
0 200 400 600 800 1000
Points Traveled
(b) Total Cost (Z)
100000
10000 F I
£ 1000 | Vv (D) —— 1]
g - VFR)
= E RIS (D) -------- E
s RIS (R)
10

0 200 400 600
Points Traveled

(d) Total Cost (N)
Figure 12: Effect of the number of location updates

800 1000

w w \ 100 : : :
0 E I JOR— R 3 [P A—— M
VA <10 ¢ V* (D) —+—+
0k V* (R) ---x---] 3 VC p—
RIS(D) —x - RIS (D) -
RIS (R) & lg 1 RIS (R)
1 =
01k 1
. .) ‘ ‘ ‘
5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

n

(a) Total Cost (V)

n

(b) Total Cost (2)

Figure 13: Effect of dataset size

- ‘ — 100 |
ke
........ p—
B
: 8% » V*(D) —+—|
gio gl e
. 1 RIS (D) %
£ £t RISm %
01 ‘ ‘ i ‘ |
5 10 15 2 : - " |
k K
(b) Total Cost (2)
\
J—
100 100 [. e
s % e —
@ : RIS (D) --%---
g ey RIS 0
E .
1 L 7
‘ ‘ | ‘
5 10 15 2 ; . " |
k K

(c) Total Cost (C) (d) Total Cost (N)
Figure 14: Effect of k

100 100

7 N %) N
8§ 10F % 1 5 fFx]
© B 5 S

% 1F % E

e TR

E Koo E 01F Vv*(D) —— X3
g01¢F E] T
K £ 001 F E
ol ERS®

0.
3 6 9 121518 21 24 27 30 33 36 3 6 9 121518212427 30 33 36
X X

(@) Communication Cost (U)(b) Communication Cost (Z)

1000 1000

g S L S T

5100 5

2 2100 | E

€ 10 H ‘

2 2 T

£ 1 E10f VD) e

€01 g 7
) e RS®) v

3 6 9 121518 21 24 27 30 33 36 3 6 9 121518 21 24 27 30 33 36
X X

(c) Communication Cost (C)(d) Communication Cost (N)
Figure 15: Communication cost: effect ofx

=
o
=]
T
B
B
=

[N
o

#communications
I3
I

0.01

T .
2 FREXEE P R Hosnrninn "
&100F]e
g L] Zwo
R S e =
2 gk = €
E 10F v] 2
g VAL P -
® RIS (D) -~ g
RIS (R) @
1 . N
5 10 15 20 s - = !

(c) Communication Cost (C)(d) Communication Cost (N)
Figure 16: Communication cost: effect ofk

both techniques, the total response time increases as the number ahe data while the V*-Diagram exploits also the query location and

objects increases. the knowledge of the current search space. As a result, the V*-
The effect of k. In this set of experiments, we vary the value Diagram is more economical in terms of both 10 and CPU costs.

of k from 5 to 20 for the four datasets. Figure 14 shows the re- We also showed that the V*-Diagram can be applied to other use-

sponse time results. We observe similar results as in previous ex-ful domains such as spatial networks. We performed an extensive

periments. V*4NN outperforms RISENN in all settings and the experimental study and the results show that our algorithm outper-

improvement factor is two orders of magnitude in most cases. For forms the best existing technique by two orders of magnitude.

both techniques, the total response time increases as the value of

increases, but the total response time of ARN increases slower

than that of RISENN.
8.3 Comparative study' client-server We would like to thank the anonymous reviewers for their com-
') ments that improved our paper. This work is supported under the

In a high-latency client-server setting, communication costs be- zgiralian Research Councils Discovery funding scheme (project
tween the mobile client and the server dominate the other COStS. number DP0880215).

10. ACKNOWLEDGMENTS

The following experiments compare the communication costs of
V*- kNN and RISANN. The number of times a client has to com-
municate with the server is used as the performance measure.
For V*-kNN, the communication cost is measured by the num-
ber of times the BF:NN query is executed because other opera-
tions are local. For RI&NN, the communication cost is the num-

(1]

ber of times the query itself is executed, i.e., the numbes\dd (2]
cells crossed.

Figure 15 shows the communication costs with the increasing [3]
x values in the four datasets and two trajectory types. The default
buffer size of16 pages is used. Since the parameteloes not ap- (4]
ply to RIS%NN, its communication cost is constantashanges. [5]
For all datasets, we can see that the communication cost of V*-
kNN decreases as the valueaoincreases. This conforms with the 6]
cost analysis in Section 7, which states that the retrieval cost of the
V* kNN with respect taz is /2. The V*-kNN starts to outper- [7]
form the RIS&£NN algorithm whene is: 3 for the uniform dataset
(U), 3 for the Zipfian dataset (Z); for the California dataset (C), 8]
andé6 for the North-Eastern USA dataset (N).

The difference between the communication and total response
time costs (Figure 10) is notable. Unlike the total response time, [°]

the communication cost measure disregards the CPU cost. Only the
database-access count is considered, and thus there is no penalty fqig]
large values of.

The next experiment is a study on how the communication cost
changes a# is varied from5 to 20. For all datasetsy is set to9
and the buffer size i$6 pages. Since a larger value loproduces
denser Voronoi cells in the space, the cost of RNIN increases
ask increases due to more frequent cell crossings. The commu-
nication cost of V*4ANN also has a positive correlation withas
suggested by the analysis in Section 7. M3N still outperforms
RIS-NN in all settings, as shown in Figure 16. The effeckain
the communication and total costs are very similar. This is because
k has positive correlations with: communication, tree-traversal and
computation costs.

8.4 Summary

The V*-kNN algorithm consistently outperforms the RASIN
algorithm for all settings using the measures of total response time,
number of page accesses and communication costsNIK{s also
more scalable with increasirigvalues. There is a tradeoff between
CPU time and data retrieval costs for NN, controlled by the
value ofz. In other words; provides the ability to tune the query
performance for different application domains.

9. CONCLUSIONS

In this paper, the V*-Diagram and the associated algorithm V*-
kNN have been introduced to efficiently process movingear-
est neighbor queries (MNN). A key difference between the V*-
Diagram and previous safe-region-based techniques foNIM
queries is that, previous techniques only utilizes the knowledge on

[11]

[12]

(23]

[14]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

11.

REFERENCES
N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. Thaée:
an efficient and robust access method for points and rectarigle
SIGMOD, pages 322-331, 1990.
R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saliéeiest and
reverse nearest neighbor queries for moving obj&it®B J,
15(3):229-249, 2006.
H. J. Cho and C. W. Chung. An efficient and scalable apgrdac
CNN queries in a road network. MLDB, pages 865-876, 2005.
A. Guttman. R-trees: a dynamic index structure for spaggrching.
In SIGMOD, pages 47-57, 1984.
G. R. Hjaltason and H. Samet. Ranking in spatial databadses
Symposium on Large Spatial Databageages 8395, 1995.
G. R. Hjaltason and H. Samet. Distance browsing in spatial
databaseACM Trans. Database Sys24(2):265-318, 1999.
H. Hu, J. Xu, and D. L. Lee. A generic framework for monitagin
continuous spatial queries over moving objectsSIBMOD, pages
479-490, 2005.
X. Huang, C. S. Jensen, H. Lu, and S. Saltenis. S-GRID: iAatie
approach to efficient query processing in spatial netwdrkSSTD
pages 93-111, 2007.
X. Huang, C. S. Jensen, and S. Saltenis. The islands appto
nearest neighbor querying in spatial networksSBITD pages
73-90, 2005.
H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zharigjstance:
An adaptive B -tree based indexing method for nearest neighbor
searchACM Trans. Database Sys80(2):364-397, 2005.
M. R. Kolahdouzan and C. Shahabi. Voronoi-based k retare
neighbor search for spatial network database¥LIDB, pages
840-851, 2004.
M. R. Kolahdouzan and C. Shahabi. Alternative solusifor
continuous k nearest neighbor queries in spatial netwaidbdaes.
Geolnformatica9(4):321-341, 2005.
L. Kulik and E. Tanin. Incremental rank updates for movingery
points. InGlSciencepages 251-268, 2006.
A. Okabe, B. Boots, and K. Sugihai@patial tessellations: concepts
and applications of Voronoi diagram3ohn Wiley & Sons, Inc.,
1992.

] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Querygssiag in

spatial network databases.Vi.DB, pages 802—-813, 2003.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearegjimaor
queries. INSIGMOD, pages 71-79, 1995.

H. Samet, J. Sankaranarayanan, and H. Alborzi. Scatetigork
distance browsing in spatial databasesSIEMOD, pages 43-55,
2008.

Z. Song and N. Roussopoulos. K-nearest neighbor séarchoving
query point. INSSTD pages 79-96, 2001.

Y. Tao and D. Papadias. Time-parameterized queries in
spatio-temporal databases.3tGMOD, pages 334-345, 2002.

Y. Tao, D. Papadias, and Q. Shen. Continuous nearggtinei
search. InVLDB, pages 287-298, 2002.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An effictest
model for optimization of nearest neighbor search in low and
medium dimensional spacdEEE Trans. Knowl. Data Eng.
16(10):1169-1184, 2004.

X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest rigr
queries over moving objects. IGDE, pages 631-642, 2005.

J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries.S"GMOD, pages 443-454, 2003.

