
XX

Spatial Consensus Queries in a Collaborative Environment

MOHAMMED EUNUS ALI, Bangladesh University of Engineering and Technology, Bangladesh
EGEMEN TANIN, University of Melbourne, Australia
PETER SCHEUERMANN, Northwestern University, USA
SARANA NUTANONG, City University of Hong Kong, Hong Kong
LARS KULIK, University of Melbourne, Australia

We introduce a new type of query for a location based social network platform. Consider a scenario in which a group of
users is trying to find a common meeting location, but attempting to include all group members is introducing a significant
traveling cost to most of them. In this paper, we formulate a new query type called the consensus query, which can be used to
help users explore these tradeoff options in order to find a solution upon which everyone can agree. Specifically, we study the
problem of evaluating consensus queries in the context of nearest neighbor queries, where the group is interested in finding
a meeting place that minimizes the travel distance for at least a specified number of group members. To help the group in
selecting a suitable solution, the major challenge is to find optimal subgroups of all allowable subgroup sizes (i.e., greater
or equal to the minimum specified subgroup size) that minimize the travel distances. We develop incremental algorithms to
evaluate in one pass the optimal query subgroups of different sizes along with their corresponding nearest data points. These
subsets which are evaluated by the location based service provider constitute the answer set that is returned to the group. The
group then collaboratively selects the final answer from the candidate answer set. An extensive experimental study shows
the efficiency and effectiveness of our proposed techniques.

Categories and Subject Descriptors: H.2 [Database Management]: Spatial Databases

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Consensus queries, location based services, group queries

1. INTRODUCTION
The development of location based social computing (e.g., [FourSquare 2011; Loopt 2011; iGroups
2011]) has introduced a new platform for accessing information collaboratively based on the current
locations of participating users. Related social networking applications allow users to share their
locations with others which enable a group of users to collaboratively search for an object of interest
(e.g., a meeting place) that best suits the group. In such queries, a group of users needs to be actively
involved in the query evaluation and the answer selection process. Depending on the circumstances,
the group may opt for an answer that may not be optimal for all group members but suits most of
them. Example applications for such queries include finding a suitable movie theater for a group of
friends to go out on a Friday night or finding a shopping location for group of colleagues to buy
a birthday present. Another example application for such a query is choosing a meeting location
that is convenient for majority of the share holders in a corporation. In the multimedia domain,
finding an image that is similar to a subset of given query images is another interesting application
of our query.

Author’s addresses: M. E. Ali is with the Department of CSE, Bangladesh University of Engineering and Technology, Dhaka,
Bangladesh, E-mail: eunus@cse.buet.ac.bd; E. Tanin and L. Kulik are with Department of CIS, University of Melbourne,
Australia; P. Scheuermann is with Department of EECS, Northwestern University, USA; S. Nutanong is with Department of
CS, City University of Hong Kong, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ 2015 ACM 2374-0353/2015/09-ARTXX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:2 M. E. Ali et al.

Let us consider a simple scenario where a group G of five users wants to select a location from
a set O of all possible shopping locations to buy a birthday gift for a friend. Given that all five
users need to be included in the gift selection process, one may consider this scenario as a group
or aggregate nearest neighbor problem [Papadias et al. 2005], i.e., finding a location p in O which
minimizes the maximum value of {|q− p| : q ∈ G}. As a result, the farthest distance that any user
in this group of five needs to travel is minimized. In reality, however, one may wish to allow some
users to be excluded if that substantially reduces the distance that most people have to travel, or one
may wish to find out the maximum group size with the distance not exceeding a threshold.

In this paper, we address the above problem by (i) relaxing the constraint which dictates that all
users in G must be included, and (ii) considering the number of users to be included as another opti-
mization criterion (in addition to the distance). We also propose a novel query type called consensus
query to enable users to incrementally browse possible solutions.

Figure 1 shows an example of our scenario - where the locations of the five group mem-
bers {q1,q2,q3,q4,q5} are query points and the locations of seven possible meeting places
{a,b,c,d,e, f ,g} are data points. In this example, if the locations of all group members are con-
sidered, the data point d is the query answer since d can be reached within the minimum possible
travel time (|d− q3|) by all group members. That is, in this case d minimizes the maximum travel
time of all group members (assuming the travel time is proportional to the travel distance). Although
the solution is optimized with respect to all members in the group, the fact that we try to accommo-
date all users in the group incurs significant traveling cost to most of the users. Specifically, in order
to accommodate q4 and q5, the rest of the users (q1, q2, and q3) need to travel long distances away
from their nearest data points. By allowing certain users to be excluded, the group may opt for a
meeting place that is optimal for a subgroup of three and is acceptable for the group in general (i.e.,
other members can skip or join later). Figure 1 shows an example where f is the more appropriate
answer for the subgroup (q1, q2, q3) since their minimum aggregate travel time | f −q3| is much less
than |d−q3|, the minimum aggregate travel time for the whole group. Similarly, the group may opt
for the data point e, if the group can afford to delay the shopping a bit to allow the participation of
four group members q1, q2, q3, and q4 with minimum aggregate travel time |e−q2|.

a
b

c

e

f

g

q2

q3

q1

q4

q5

d

|| d - q
3
||

|| f - q
3
||

Fig. 1: A set of user locations {q1,q2,...,q5} and a set of data points
{a,b,...,g}. d is the best answer that minimizes the maximum travel time
when all 5 group members are taken into account, whereas f is the best
answer when 3 out of 5 members are considered.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:3

As we can see from our example, a group can opt for a solution that is optimum for at least a
specified minimum n′< n number of group members (i.e., three in our last example). In this case, the
main task is to find the best subgroup among many subgroups which satisfy the minimum subgroup
size requirement. However, the group may also wish to maximize the participation of members in
the social activity. In that case, the group may want to explore other optimal solutions for subgroups
that involve higher number of group members. Our motivation for expressing the subgroup size as
a minimum requirement rather than a fixed value is based on the assumption that users prefer the
number of participants to be high and the aggregate traveling cost to be low. Presenting the best
(cheapest) subgroup for each subgroup size allows the users to view the results in terms of a trade
off between the number of participants and traveling cost. In our current example shown in Figure 1,
if we require at least three participants then the solution for any subgroup of three, four, or five users
can be collectively selected as the best answer by the group.

In order to help the group decide on the participation of group members that may yield the best
results for the group, the members first need to know a list of candidate solutions, i.e., the solutions
with respect to different possible subgroup sizes. For this, the group first sends a query request to the
location based service provider (LSP). After receiving the candidate answer set from the LSP, the
group collaboratively selects the final answer. In this paper, we call such a query, a consensus query.
We study the consensus query in the larger context of the nearest neighbor (NN) query, which is a
common query type in current location based applications.

It is important to notice here that in practice the LSP could select one of these candidate sets as
the best answer for the group, but this is not a desirable solution from the standpoint of privacy as
the group may not want to disclose the meeting location to the LSP. In our scenario, since the group
asks for candidate answers sets for all possible subgroups, the LSP cannot identify the subgroup and
the meeting location, which ensure the privacy of users. Moreover, the group may employ different
policies to decide which of the candidate answers to choose, using different objective functions, as
is the case in social networks [Gartrell et al. 2010]. In this paper, we focus on the query processing
strategy at the LSP that finds a candidate answer set from a large number of data points, and then the
group may choose any of the exiting objective functions [Gartrell et al. 2010; Jameson and Smyth
2007; Yu et al. 2009] to reach a consensus on the final answer from the candidate set.

The consensus query approach adopts the concept of exploratory querying, which is quite com-
mon in modern database systems (e.g., [Ferré and Hermann 2011; Shneiderman 1994; Kementsiet-
sidis et al. 2008]). Exploratory querying allows users to find/navigate information without a priori
knowledge of the data. A common practice in exploratory querying is to submit hundreds of simple
queries that actually map to one single mental query submitted to the server for exploration. In our
consensus query, we submit one query that essentially consists of multiple query instances (e.g.,
NNs for all subgroups) returning different result sets. The consensus query is preferred over the
single query approach in many scenarios. For example, users may often be interested in soft/flexible
constraints instead of hard constraints in the query, e.g., users specifying a traveling cost budget X
may be ready to accept a solution with cost X + ε , where ε is small, if it maximizes the group size.

The main challenge for a consensus query evaluation by the LSP is to identify for each sub-
group category (i.e, subgroups of same size) the subgroup that yields the optimum result. In order
to support consensus queries, we define a new type of query in this paper, namely the BEST-
SUBGROUPS-NN query. The answer to a BEST-SUBGROUPS-NN query consists of pairs of
the form (om,sgm) where om is the data object that minimizes the aggregate distance function for the
subgroups of size m and sgm is the corresponding subgroup. In addition, we impose the constraint
that n′ <= m <= n, with n′ being the minimum number of users required in a subgroup.

A possible solution is to utilize the group NN querying technique of [Papadias et al. 2005]. Since
their group NN query computes the aggregate distance using all of the query points in G, we have
to combinatorially enumerate all possible subgroups that contain at least the specified number of
members. We then need to find the NN for each of these subgroups using the group NN query
technique of [Papadias et al. 2005]. This combinatorial approach incurs high query processing costs
since each subgroup needs to be evaluated independently. In addition, this technique requires evalu-

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:4 M. E. Ali et al.

ations of redundant subgroups that have no possibility of becoming a candidate for the final answer.
These problems constitute a major bottleneck when the number of possible subgroups is large. Re-
cently, Li et al. [Li et al. 2011] proposed a flexible aggregate nearest neighbor (FANN) algorithm
that finds the nearest data object for a fixed subgroup size. To evaluate a consensus query using their
approach would require running independent FANN queries for all subgroup sizes, which can be
both computationally and I/O expensive.

In this paper, we propose an incremental solution that alleviates the above bottlenecks for process-
ing a BEST-SUBGROUPS-NN query. In our proposed incremental approach as soon as we retrieve
a data point, the optimal subgroups for all subgroup categories are updated based on the current
knowledge of data points already retrieved. In order to answer a BEST-SUBGROUPS-NN query with
reduced I/O costs, we propose two pruning rules that allow for early termination of the algorithm
under tight and relaxed lower performance bounds.

In summary, our contributions are as follows:

— We formulate the problem of a consensus query in a collaborative environment.
— We develop an efficient algorithm to evaluate the BEST-SUBGROUPS-NN query for recommend-

ing optimum subgroups for a consensus query in the context of NNs.
— We conduct an extensive experimental study to show the effectiveness of our approach.
— We analyze the complexity of our proposed methods and competitive methods, and theoretically

prove that our proposed method is superior to all competitive methods (see Appendix A.2).

The rest of the paper is organized as follows. Section 2 discusses preliminaries and the problem
setup. Section 3 reviews the related work. In Section 4, we describe our algorithm for processing
consensus queries. Section 5 reports our experimental results and Section 6 concludes the paper.

2. PROBLEM SETUP
Let O be a finite set of data point objects in a d-dimensional metric space and G be a set of n query
points {q1,q2, . . . ,qn} representing a group of users. The group issues a query to the LSP for the
nearest data objects that minimize the aggregate function f (SUM, MAX, or MIN) for each subgroup
size m, where n′ ≤m≤ n and n′ is the required minimum number of users to form a subgroup. First
we define the group nearest neighbor (GNN) query and BEST-SUBGROUP(m)-NN query.

Definition 2.1. (GNN). Given a set O of objects, a set G of query points {q1,q2, . . . ,qn}, and an
aggregate function f , the GNN query finds an object o such that for any o′ ∈ O−{o}, f ({|q−o| :
∀q ∈ G})≤ f ({|q−o′| : ∀q ∈ G}).

Since n is the total number of users in the group, there are
(n

m

)
possible subgroups of size m. We

call these subgroups the category m subgroups in this paper. We define the BEST-SUBGROUP(m)-
NN query as a query which finds the subgroup from the possible

(n
m

)
subgroups along with the data

object that results in a minimum value for the aggregate function on the subgroup’s query points. A
formal definition of this query is given as follows.

Definition 2.2. BEST-SUBGROUP(m)-NN. Given a set O of objects, a set G of query points
{q1,q2, . . . ,qn}, an aggregate function f , a subgroup size m, and the set SGm of all possible sub-
groups of size m, the BEST-SUBGROUP(m)-NN query finds a subgroup sgm ∈ SGm and an object
o ∈ O such that for any o′ ∈ O−{o}, f ({|q− o| : q ∈ sgm}) ≤ f ({|q− o′| : q ∈ sgm}) and for any
subgroup sg′m ∈ SGm−{sgm} and for any o′ ∈ O, f ({|q−o| : q ∈ sgm})≤ f ({|q−o′| : q ∈ sg′m}).

Based on Definitions 2.1 and 2.2, we can formally define the BEST-SUBGROUPS-NN query.

Definition 2.3. BEST-SUBGROUPS-NN. Given a set O of objects, a set G of query points
{q1,q2, . . . ,qn}, an aggregate function f , and the minimum subgroup size n′, the BEST-
SUBGROUPS-NN query finds a set A of (subgroup, data object) pairs such that (i) A contains
(n−n′+1) pairs; (ii) each pair (sgm,om) is the result of the BEST-SUBGROUP(m)-NN query, where
n′ ≤ m≤ n.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:5

The BEST-SUBGROUPS-NN query finds the best subgroups for each subgroup size m, where
n′ ≤ m≤ n. We generalize Definition 2.3 for the k-BEST-SUBGROUPS-NN query that finds the top
k subgroups from each subgroup category. For this, we first define the k-BEST-SUBGROUP(m)-NN
query that finds the k best subgroups of the subgroup category m and the associated NNs.

Definition 2.4. k-BEST-SUBGROUP(m)-NN. Given a set O of objects and a set G of query points
{q1,q2, . . . ,qn}, an aggregate function f , the subgroup size m, and the set S of all possible subgroups
of size m. The k-BEST-SUBGROUP(m)-NN query finds a list Lm such that (i) Lm contains k pairs,
{⟨sg1

m,o
1⟩,⟨sg2

m,o
2⟩, ...,⟨sgk

m,o
k⟩}, where sgi

m ∈ SG′m (⊆ SGm) and oi ∈O for 1≤ i≤ k; (ii) for any
adjacent pairs ⟨sgi

m,o
i⟩ and ⟨sgi+1

m ,oi+1⟩ in the list Lm f ({|q−oi| : q ∈ sgi
m})≤ f ({|q−oi+1| : q ∈

sgi+1
m }); (iii) for any pair ⟨sgi

m,o
i⟩ ∈ Lm and any other pairs ⟨sg j

m,o j⟩ where sg j
m ∈ SGm−SG′m and

o j ∈ O, f ({|q−oi| : q ∈ sgi
m})≤ f ({|q−o j| : q ∈ sg j

m}).

Finally, we can formally define k-BEST-SUBGROUPS-NN query as follows.

Definition 2.5. k-BEST-SUBGROUPS-NN. Given a set O of objects and a set G of query
points {q1,q2, . . . ,qn}, an aggregate function f , and the minimum subgroup size n′, the k-BEST-
SUBGROUPS-NN query finds a set A of lists {Ln′ ,Ln′+1, ...,Ln} such that, for n′ ≤ m ≤ n, (i) each
Lm contains k pairs; (ii) each Lm is the result of the k-BEST-SUBGROUP(m)-NN query.

We consider the three most common aggregate functions SUM (or AVG), MAX, and MIN that
minimize the total distance, the maximum distance, and the minimum distance from the users of a
group to a data point, respectively.

3. RELATED WORK
Location based social networking applications [FourSquare 2011; Loopt 2011; Gowalla 2011] are
upcoming platforms for interacting and socializing with friends. In order to capitalize on the po-
tential of new social platforms, recent research has focused on developing efficient techniques that
recommends different search results by combining the location and social context of users [Zheng
et al. 2010; Chow et al. 2010; Sakaki et al. 2010; Si et al. 2010]. The consensus query that we define
in this paper, utilizes the collaborative nature of location based social networking applications.

The problem of searching for a nearby data object from a database based on the locations of a
single user or a group of users has received considerable attention from the database community
(e.g., [Papadias et al. 2005; Hjaltason and Samet 1995; Roussopoulos et al. 1995; Yiu et al. 2005;
Masud et al. 2013]). When a user searches for the nearest data object with respect to her own location
(a query point) only, the query is known as the nearest neighbor (NN) query (e.g., [Hjaltason and
Samet 1995; Roussopoulos et al. 1995]). The generalization of the NN query is known as the kNN
query, where the user is interested in the k nearest data objects from her current location.

Existing techniques for processing kNN queries assume that the data objects are indexed, e.g.,
using an R-tree [Guttman 1984]. In order to find the k NNs of a query point, the tree can be traversed
in a depth-first (DF) [Roussopoulos et al. 1995] or a best-first (BF) [Hjaltason and Samet 1995]
manner. In the BF technique, the search starts from the root of the R-tree. Initially, all child nodes
of the root are stored in a priority queue. The entries in the priority queue are ordered based on
the minimum distance between the query point and the minimum bounding rectangles (MBRs) of
R-tree nodes or data objects. In the next step, the algorithm removes the top element from the queue,
which is the node representing the MBR or data object with the minimum distance from the query
point. If the removed element is a node, the algorithm again inserts the child nodes or data objects
of the removed node into the priority queue. On the other hand if the dequeued item is a data object,
then the corresponding object is reported as the next nearest neighbor. The above process continues
until k data objects, i.e., the k NNs, are dequeued from the queue.

Both DF and BF search techniques are widely used as the bases to process variants of NN
queries [Shan et al. 2003; Seidl and Kriegel 1998]. NN queries have also been studied in road

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:6 M. E. Ali et al.

networks [Papadias et al. 2003; Jensen et al. 2003; Kolahdouzan and Shahabi 2004], where the
distance between two points is computed as the shortest path connecting those points.

When a group of users is involved in a query that searches for the nearest data object with respect
to the locations (a set of query points) of all users in the groups the query is known as the group
nearest neighbor (GNN) query (e.g., [Papadias et al. 2005; Yiu et al. 2005; Papadias et al. 2004]).
A GNN query minimizes an aggregate function such as SUM, MAX, or MIN for the group. The
generalization of the GNN query is known as the kGNN query, in which the group wants to find k
GNNs for the group. Three different techniques to evaluates GNN queries for the aggregate function
SUM were introduced in [Papadias et al. 2004]: multiple query method (MQM), single point method
(SPM), and minimum bounding method (MBM). Later in [Papadias et al. 2005], these techniques
were extended for the aggregate functions MAX and MIN.

MQM incrementally searches for the nearest data point to each query point in the set and com-
putes the aggregate distance from all query points for each retrieved data point. The k GNNs are
determined by combining the GNNs of previously retrieved data points. The search ends when it is
ensured that the aggregate distance of any non-retrieved data point in the database is greater than the
current kth minimum aggregate distance. The disadvantage of MQM is that it traverses the R-tree
multiple times and may access the same node or a data point more than once. To avoid these limi-
tations, SPM and MBM find the k GNNs in a single traversal of the R-tree. SPM starts the search
from the centroid of the query set and incrementally accesses nearest data points from the centroid.
For each retrieved data point, SPM computes the aggregate distance to the data point from all query
points. The process continues until the actual k GNNs are determined. While SPM visits the R-tree
nodes and data points in order of their minimum distances from the centroid, MBM visits R-tree
nodes in order of the minimum aggregate distance from all query points. Therefore, MBM only
visits the nodes that may contain candidate data points.

A generalization of the GNN query, called Group Nearest Group (GNG) query, was proposed by
Deng et al. [Deng et al. 2012]. A GNG query finds a subset s of data points, instead of a single data
point in GNN, from the database such that the aggregate distance from the group to s is minimum.
Another variants of the GNN query, namely socio-spatial group query (SSGQ) has been proposed
in [Yang et al. 2012]. Given a set of n users and their locations in a location based social network
graph, a meeting point p, and a social constraint k, SSGQ finds a group of m users such that no
selected user has more than k unfamiliar users in the selected group and the average distance for
each selected user to p is minimized. Recently, Hashem et al. [Hashem et al. 2013] propose a method
for a group users to plan a trip with a minimum aggregate trip distance, where the trip starts from
the source locations of the group members, goes via different categories of data points such as a
restaurant, shopping center and movie theater, and ends at the destination locations of the group
members.

While the works of [Papadias et al. 2005; Papadias et al. 2004] focus on an Euclidian space, [Yiu
et al. 2005] study the problem of GNN queries in a road network. This algorithm is based on an
incremental expansion of the Euclidean NNs followed by computation of their aggregate network
distance until the results are obtained.

A work whose motivation is similar to ours is the one proposed in [Li et al. 2011], which intro-
duced the concept of a flexible aggregate nearest neighbor query (FANN). Given a set of users G, a
FANN query returns as result a tuple (d,sgm), where d is an object in the database that minimizes
the distance to a fraction of the users, i.e., a subgroup of fixed size m denoted as sgm. The authors
of [Li et al. 2011] propose two exact methods to search for the desired solution: one based on the tra-
ditional branch-and-bound method using an R-tree, and the second one based on a merge algorithm
for sorted lists of objects in the database ranked by their proximity to a given query point (user).
In addition, the paper also discussed a number of approximation algorithms for various aggregate
functions. We observe here that if we were to use the FANN method to solve a consensus query
(i.e., BEST-SUBGROUP-NN) we will need to run independent FANN queries for all subgroups of
size m where, n′ <= m <= n = |G|.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:7

In addition to NN queries, the body of work on query processing for road-networks includes also
a different paradigm, namely optimal location queries. These types of queries [Xia et al. 2004] are
related to the facility location problem, namely given a set of clients (users), a set of facilities and
a set of candidate locations they identify a candidate location where a new facility can be added
so as to minimize a given cost metric. However, the techniques proposed to solve optimal location
queries are not compatible with the ones needed for NN queries.

With the proliferation of Geo-Spatial Networks (GSN) it is more common to encounter geo-
tagged objects, i.e., objects associated with some textual description in addition to geographical
coordinates. In this context spatial keyword queries have been studied extensively in the past few
years [Chen et al. 2013]. A kNN spatial keyword query retrieves the k nearest objects to a given
query point whose set of keywords cover the ones given in the query [Felipe et al. 2008]. Alter-
natively, top-kNN spatial keyword queries [Rocha-Junior and Nørvåg 2012] find the top-k ranked
objects where the ranking score is a combination of geographical proximity and textual relevance.
On the other hand, spatial group keyword queries find a group of objects that collectively satisfy
the query keywords and minimize the total distance to the query point [Cao et al. 2011]. We note
that for both queries a single user is involved in posing the queries. Zhang et al. [Zhang et al. 2012]
have recently introduced the concept of a top-k collaborative spatial keyword query where the set
of keywords comes from a number of originators (users). However, as with all other top-kNN query
approaches, the result consists of only one answer set, in contrast to our approach where we present
the users with a number of candidate answers for all possible subgroups of users.

4. OUR APPROACH
In order to answer a consensus query, we need to evaluate a k-BEST-SUBGROUPS-NN query that
finds the best k subgroups in each subgroup category (i.e., subgroups of the same size) based on the
aggregate distances of these subgroups to the data points. A naive approach to evaluate a k-BEST-
SUBGROUPS-NN query would require enumerating all subgroups, and then finding the kNNs for
each subgroup using an existing group query processing technique such as those used for GNN
queries. After finding the kNNs for all subgroups, a set of subgroups, one from each subgroup cat-
egory that minimizes the aggregate function, is selected as the answer to the k-BEST-SUBGROUPS-
NN query.

Without loss of generality, consider our initial example where a group of 5 users issue a k-BEST-
SUBGROUPS query with minimum allowed subgroup size n′= 3 and k= 1 for the aggregate function
MAX. Figure 1 shows the locations of the five users {q1,q2, ...,q5} and the data objects {a,b, ...,g}.
To find the answer to the BEST-SUBGROUPS-NN query, the naive approach would require us to
independently evaluate each of the 16 subgroups (10 subgroups of size 3, 5 subgroups of size 4, and
1 subgroup of size 5), and select the best answer.

The above approach incurs high query processing overhead since each subgroup needs to be
evaluated independently. Moreover, this straightforward technique evaluates redundant subgroups
that have no possibility of becoming a candidate for the final answer. These problems become a
major bottleneck for a large number of possible subgroups.

The flexible aggregate nearest neighbor query (FANN), proposed by Li et al. [Li et al. 2011], finds
a subgroup and an object that minimize the aggregate distance for a fixed subgroup size. Instead,
we propose efficient algorithms for processing a consensus query where the subgroup size is given
as a minimum requirement rather than a fixed value. For example, given a minimum subgroup
size, one may wish to find out the maximum group size with the distance not exceeding dmax. A
direct application of FANN to the query in this example requires execution of multiple instances of
FANN for all possible subgroup sizes. Furthermore, since the proposed FANN algorithms rely on
the assumption that the group size is fixed we cannot directly extend their algorithms to support our
consensus query. We propose efficient algorithms, which incrementally explore different subgroup
sizes in a single query. As shown by our experimental results in Section 5, our proposed incremental
algorithms scale much better than FANN as the number of considered subgroup size increases.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:8 M. E. Ali et al.

a
b

c

e

f

g
q2

q3
q1

q4

q5

d

Fig. 2: An R-tree node R1 that encloses data objects {a,b, ...,g}. R11,R12,
and R13 are three child nodes of R1. Five query (users) locations
{q1,q2, ...,q5} and their centroid x are also shown.

To overcome the above limitations, we propose a data-centric approach that incrementally ac-
cesses the data objects and identifies the best subgroups in a single pass. The key idea of our data-
centric approach is to form the best subgroups with respect to existing data points by advancing in
a radial fashion from the centroid of the query points, which eliminates the need to enumerate all
possible subgroups.

We first discuss our approach using the running example and then present our algorithm in detail.

4.1. Incremental Expansion
In our approach, since we want to find the result in a single pass from the database, we need to
choose an appropriate point x to start the search so that the data retrieval cost is kept low. Though
any arbitrary starting point will ensure the correctness of the algorithm, we consider the centroid that
corresponds to the center of the smallest disk containing all the query points as the starting point of
the search. The rationale behind the above centroid instead of the geometric centroid is as follows.
Our search technique expands the search space in a radial fashion and it needs to discover at least
the data points that fall inside the search space covering all the query points to ensure the correct
answer Since our chosen centroid requires the minimum possible area expansion to include all query
points, it results in fewer I/Os compared to geometric centroid-based data retrieval. The centroid can
be computed by an existing solution for the minimum enclosing circle problem (e.g., [Welzl 1991]).

An alternative starting point of the search could be a biased point which constitutes the centroid
of a subgroup of query points. However, in real-world scenarios, there could be many such clusters
(i.e., subgroups) distributed in the dataspace, and thereby, starting from the centroid of a single
cluster may potentially lead to worse search performance while finding optimal answers for all
subgroups.

Our proposed solution has three key steps: retrieve data points incrementally in a radial fashion,
calculate the best subgroups with respect to the retrieved data points, and use a pruning test based
on computational geometry in order to terminate the algorithm as soon as the correct answer is
guaranteed.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:9

For each retrieved data object, we update the list of pairs (subgroup, data object) that minimize
the aggregate function with respect to the data points processed so far. The process continues until
the best subgroups with respect to the entire database are discovered. A major contribution of our
approach is the pruning rules based on computational geometry arguments that guarantee early ter-
mination of the algorithm and give us substantial savings in terms of data access and computational
costs.

Let us consider again our running example from Figure 1 with the data objects {a,b, ...,g} and
the query objects {q1,q2, ...,q5}. We want to find the answer to the BEST-SUBGROUPS-NN query
for the aggregate function MAX, with k = 1 and m = 3. Since our data objects are indexed using an
R-tree we illustrate in Figure 2 an R-tree node R1 that encloses data objects {a,b, ...,g}. R1 has three
child nodes R11, R12 and R13. Our approach incrementally accesses the data objects in increasing
order of their distances from a point x. We use the best-first (BF) technique [Hjaltason and Samet
1995] to incrementally retrieve the nearest data objects with respect to x from the R-tree.

In the BF technique, the search starts from the root node of the R-tree, and a priority queue is
maintained where retrieved R-tree nodes (or MBRs) and data objects are kept in increasing order
of their distances from x. Here, the distance from x to a data point is measured as the Euclidean
distance between these two points, and the distance from x to an MBR is computed as the minimum
distance between x and the MBR. Let us assume that R1 is the top element in the priority queue.
In the next step R11, R12, and R13 are retrieved from the index and pushed into the queue yielding
[R12,R13,R11], since R12 is the MBR whose distance from x is minimal among the three R-tree
nodes. Next, R12 is removed from the top of the heap and objects d and e are inserted into the
priority queue yielding [d,e,R13,R11]. Next objects d and e are removed from the priority queue
and since they have no descendants no new elements are added to the queue resulting in [R13,R11].
At this stage the MBR corresponding to R13 is deleted and the objects that it encloses , namely f
and g are inserted into the queue resulting in [f ,R11,g]. Following the deletion of f and R11 from
the queue we need to insert the objects enclosed in R11 and object a ends up at the top of the heap.
This process continues in similar fashion for the remaining data object. As soon as a data object
is removed from the queue, we determine the best subgroups with respect to the data objects as
outlined in subsequent paragraphs.

Table I shows the steps involved in the best subgroups computation, where the last cell (last row
and last column) contains the optimal subgroups, {q2,q1,q3}, {q4,q3,q1,q2}, {q1,q5,q4,q2,q3},
and the corresponding data objects f , e, d of the subgroups of size 3, 4, and 5, respectively. The
details of each step are given as follows.

Step 1. As we can see from Figure 3, d is accessed first, since it is the nearest data object to
x. After accessing d, we compute the distances of all query points, q1,q2, ...,q5, to d and store all
(query, distance) pairs in an ordered list Q (e.g., a priority queue in order of their minimum distance
to d) as shown in the first row of the third column of Table I.

Then, the best subgroups with respect to the current retrieved data objects, termed as current
best subgroups (CBSG) are computed and stored in a list dG. To find the CBSG of size 3 with
respect to d, we retrieve the top 3 elements from Q and estimate the min-max distance as 42, i.e.,
42 = max(29,32,42) which is achieved for the CBSG, {q1,q5,q4}, the one having a minimum
aggregate distance to x. The result ({q1,q5,q4},42,d) is stored as the CBSG of size 3 (shown in the
first entry in column dG of row 1 in Table I). Similarly, from the top 4 and 5 elements from Q, we
compute the CBSGs, ({q1,q5,q4,q2},55,d) and ({q1,q5,q4,q2,q3},66,d) as the CBSGs of sizes 4
and 5, respectively, and store in the list dG.

As the last action in this step, we compute the best subgroups with respect to the already retrieved
objects, and store them in the list dG′ as shown in the last column in Table I. In this case, since only
object d is retrieved, the list dG′ is simply updated with the list dG.

Step 2. Data object e is retrieved next as it is the second nearest to x. Note that we omit there the
intermediate MBRs retrieved from the index as discussed earlier. Then, we update Q and dG for
object e by using a similar procedure to the one described in step 1. The third and fourth columns
of the second row in Table I show the computed values for Q and dG, respectively. After that, each

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:10 M. E. Ali et al.

a
b

c

e

f

g

q2

q3

q1

q4

q5

d

Fig. 3: The centroid x of the five query points {q1,q2,q3,q4,q5}, the steps
of accessing the data points d,e, f ,a, ... from x (the distance scale is shown
at the lower right corner).

element of dG (i.e., dG of step 2) is compared with the corresponding element of the previously
computed dG′ (i.e., dG′ of step 1), and the current dG′ is updated if the aggregate distance of a
dG subgroup is smaller then that of the subgroup of the same size in the previous dG′. In this case,
the first two elements ({q1,q5,q4},42,d) and ({q1,q5,q4,q2},56,d), i.e., the previously computed
best subgroups of size 3 and 4 in dG′ (of step 1), are replaced by the elements of dG computed
in step 2, ({q4,q3,q1},33,e) and ({q4,q3,q1,q2},39,e), respectively. This is because the subgroup
{q4,q3,q1} results in aggregate distance 33 for object e, which is smaller than the previously com-
puted aggregate distance 42 from the subgroup {q1,q5,q4} to d, and the aggregate distance 39 from
the subgroup {q4,q3,q1,q2} to d is smaller than the previously computed aggregate distance 55
from the subgroup {q1,q5,q4,q2} to d.

Steps 3 and 4. The above process continues until all date objects necessary to compute the optimal
subgroups for all allowable group sizes have been retrieved.

Although our search process is based upon accessing the data points incrementally, this process
can be provided a boost by observing that our search space needs to cover at least all the data
points inside the smallest disk containing all the query points. In Figure 3 this is the disk containing
the data points {d,e, f ,a}. We can implement a batch step which unravels a number of leaf nodes
of the R-tree and stores the data points contained in this disk into a temporary buffer TB. After
expanding R11 data points d and e are added to TB instead of the of the priority queue. Following
the expansion of R13 the buffer TB will contain {d,e, f} and the priority queue holds {R11,g}. Note
that TB does not contain data point g since g is outside the minimum spanning disk as shown in
Figure 3. Similarly, after R11 is expanded TB consists of {d,e, f ,a} and the priority queue holds
{b,c,g}. Finally we cannot add any more data points to TB since the first candidate in the priority
queue, data point b, falls outside the minimum spanning disk. At this point we can do a batch search
on disk for all the data points contained in TB and after this boost up we continue accessing the data
points incrementally using only the priority queue as illustrated earlier in this section. We conjecture

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:11

that this batch process can be beneficial if the query points are far apart and the minimum spanning
disk contains a large number of data objects.

Step Data Object Q dG dG′

1

d (q1,29) ({q1,q5,q4},42,d) ({q1,q5,q4},42,d)
(q5,32) ({q1,q5,q4,q2},56,d) ({q1,q5,q4,q2},56,d)
(q4,42) ({q1,q5,q4,q2,q3},66,d) ({q1,q5,q4,q2,q3},66,d)
(q2,56)
(q3,66)

2

e (q4,21) ({q4,q3,q1},33,e) ({q4,q3,q1},33,e)
(q3,28) ({q4,q3,q1,q2},39,e) ({q4,q3,q1,q2},39,e)
(q1,33) ({q4,q3,q1,q2,q5},71,e) ({q1,q5,q4,q2,q3},66,d)
(q2,39)
(q3,71)

3

f (q2,12) ({q2,q1,q3},27, f) ({q2,q1,q3},27, f)
(q1,19) ({q2,q1,q3,q4},44, f) ({q4,q3,q1,q2},39,e)
(q3,27) ({q2,q1,q3,q4,q5},78, f) ({q1,q5,q4,q2,q3},66,d)
(q4,44)
(q5,78)

4

a (q4,32) ({q2,q1,q3},72,a) ({q2,q1,q3},27, f)
(q5,64) ({q2,q1,q3,q4},75,a) ({q4,q3,q1,q2},39,e)
(q1,72) ({q2,q1,q3,q4,q5},88,a) ({q1,q5,q4,q2,q3},66,d)
(q3,75)
(q2,88)

Table I: The steps of finding the Best-Subgroups-NNs

4.2. Stopping Criteria and the Distance Metrics
The main challenge of the above technique is how to determine the condition when the search can
safely terminate. Intuitively, the search can terminate when we know that objects outside the scope
of our current incremental radial expansion will not affect the optimal subgroups of any size. That
is, we need to explore the database as long as there is a possibility that an unexplored object can
be a candidate of the answer set. In this subsection, we derive two types of termination conditions.
The first type minimizes the data retrieval cost and requires complex calculations. The second type,
on the other hand, requires a simpler calculation but incurs a greater data object retrieval cost than
the first.

We now discuss the distance metrics which form the basis of our two pruning methods that allow
us to terminate the data search early. We define two distance metrics: best known aggregate distance
(BKAD) and best unknown aggregate distance (BUAD) based on the retrieved data objects and the
known region. The known region is a region centered at the query centroid x for which all objects
inside this region are already retrieved from the database. Based on the BKAD and BUAD, we give
lemmas to define the termination conditions of our algorithm.

Let G be the set {q1,q2, . . . ,qn} of n query points representing the locations of all the users in the
group, and SGm be the set of

(n
m

)
unique subgroups of category m, where each subgroup sgi

m ∈ SGm

comprises m query points from G, with 1≤ i≤
(n

m

)
. We use the concept of known region to derive

the two pruning rules of our algorithm. We term a circular region C(x,r) centered at a point x with a
radius r, as the known region if the locations of all the data points inside this region are known i.e.,
all the objects inside this region were retrieved already from the database. Since we incrementally
retrieve data points from an R-tree in increasing order of their distances from point x, the value of r
is initially set to the Euclidian distance between x and the nearest data point or MBR of an R-tree

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:12 M. E. Ali et al.

node. In subsequent steps, the value of r is updated with the Euclidian distance between x and the
last retrieved data point or the MBR of an R-tree node. In our running example in Figure 3, with the
last retrieved data point b, C(x,r) is updated with the distance |x−b|.

a
b

e

f

q2

q3
q1

q4

q5

d

Fig. 4: The known region C(x,r), the BKAD |q3− f | and the BUAD |q1−
y| of a subgroup {q1,q2,q3}.

Based on the concept of circular known region, we can now define the best known aggregate
distance (BKAD), BKADm, for the subgroup category m. We first define the BKAD for a single
group sgi

m of size m as BKADi
m, where 1≤ i≤

(n
m

)
.

Definition 4.1. (BKAD FOR A SUBGROUP). Given a set sgi
m = {q1,q2, . . . ,qm} of m query

points and a set O′ of data objects inside a circular region C(x,r) centered at a point x with a radius
r, and an aggregate function f . The best known aggregate distance (BKAD) for the subgroup sgi

m,
BKADi

m, is the minimum aggregate distance of sgi
m to a data object o ∈ O′, such that f (sgi

m,o) <
f (sgi

m,o
′) for any o′ ∈ O′−{o}.

As shown in the above definition, finding the BKAD for a subgroup requires us to find a data
point that minimizes the aggregate distance for the subgroup. Figure 4 shows an example, where f
minimizes the aggregate distance for the subgroup {q1,q2,q3} for the aggregate function MAX, and
|q3− f | is the BKAD for this subgroup.

Furthermore, the BKADm can be defined as mini BKADi
m.

Let o′′ be an object outside C(x,r). It is possible that the aggregate distance to o′′ from a subgroup
sgi

m ∈ SGm is smaller than the BKADm. Since the locations of objects (if any) outside C(x,r) are
unknown, we need to find the best unknown aggregate distance (BUAD), BUADm, for the subgroup
category m to any object outside C(x,r). In other words, we need to find a point y residing on the
boundary point set ß of C(x,r) that results in the best possible aggregate distance. We can formally
define the BUAD for a group sgi

m of size m as BUADi
m.

Definition 4.2. (BUAD FOR A SUBGROUP). Given a subgroup sgi
m = {q1,q2, . . . ,qm} of m

query points inside a circular region C(x,r) centered at a point x with a radius r, and an aggregate
function f . The BUADi

m, is the minimum aggregate distance from the subgroup sgi
m to a point y on

the boundary set ß of C(x,r), such that
(i) y ∈ {v : |x− y|= r};

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:13

(ii) y satisfies: f ({|q j− y| : ∀q j ∈ sgi
m})≤ f ({|q j− z| : ∀q j ∈ sgi

m}), where y,z ∈ ß.

As shown in the above definition, finding the BUAD for a subgroup requires us to identify a
point y ∈ ß that minimizes the aggregate distance for the subgroup. Figure 4 shows an example,
where y minimizes the aggregate distance for the subgroup {q1,q2,q3} for the aggregate function
MAX. Thus |q1− y| is the BUAD for the subgroup {q1,q2,q3}. For the subgroup category m, Then
the BUADm, can be computed by taking the minimum of all BUADi

ms for subgroups sgi
m ∈ SGm,

i.e.,mini BUADi
m.

From the above formulations of BKAD and BUAD, we can define the termination condition of
our algorithm.

Definition 4.3. (TERMINATION CONDITION).
(i) The search for the best subgroup in category m is terminated when BKADm ≤ BUADm.
(ii) The search for a BEST-SUBGROUPS-NN query is terminated when the above condition holds

true for every subgroup category i, for all n′ ≤ i≤ n.

.
To determine the termination condition for a k-BEST-SUBGROUPS-NN query, the BKAD of a

subgroup category is computed as the kth minimum aggregate distance of that subgroup category.
The details of BUAD computation are given in Appendix A.1.

a
b

e

f

q2

q3

q1

q4

q5

d

Fig. 5: The known region C(x,r), the BUAD |q1− y| and a relaxed lower
bound |q2− x2| for a subgroup {q1,q2,q3}. xis are obtained by taking the
intersection of the lines (x,qi) with the boundary of the known region.

4.2.1. A relaxed lower bound (RBUAD). Finding the exact value for the BUAD of a subgroup
category can be computationally expensive, since it requires searching for a location y from all
possible points in the boundary point set ß≡ {v : |o− y|= r} and the process needs to be repeated
for all possible subgroups of a category. Note that the BUAD is the tightest lower bound of an
unknown aggregate distance for a set of query points. We will show how to find a relaxed lower
bound for a BUAD, with reduced computational overheads, which is a more practical approach to
use as the termination condition of our algorithm.

We define now a relaxed lower bound of the aggregate distance of any subgroup i of size m,
denoted as RBUADi

m as follows.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:14 M. E. Ali et al.

LEMMA 4.4. Let sgm = {q1,q2, . . . ,qm} be a set of m query points inside a circular region
C(x,r) centered at a point x with a radius r, an aggregate function f , and qmini the minimum dis-
tance from qi to the boundary point set ß of C(x,r). Then RBUADi

m = f (qmin1,qmin2, . . . ,qminm).

PROOF. Let y ∈ ß be a point that minimizes the aggregate distance for the subgroup sgm. In this
case, the BUAD can be expressed as f (|q1− y|, |q2− y|, ..., |qm− y|).

Now, let xi ∈ ß be a point that minimizes the distance from qi to any boundary point set of C(x,r).
That is, qmini is equal to |qi−xi|.nAccording to the triangle inequality, for any query point qi ∈ sgm,
the following inequality holds.

|x−qi|+ |qi− y| ≥ |x− y|.
Since, |x− y|= |x−qi|+ |qi− xi|= r, we can replace |x− y| with |x−qi|+ |qi− xi| in the above

equation and get the following equation:

|x−qi|+ |qi− y| ≥ |x−qi|+ |qi− xi|
|qi− y| ≥ |qi− xi|.

If we consider m query points and apply our aggregate function f , we can have the following
equation, f (|q1− y|, |q2− y|, . . . , |qm− y|) ≥ f (|q1− x1|, |q2− x2|, . . . , |qm− xm|). That is, f (|q1−
y|, |q2− y|, . . . , |qm− y|)≥ f (qmin1,qmin2, . . . ,qminm).

Hence, RBUADi
m = f (qmin1,qmin2, . . . ,qminm) gives a lower bound of the BUAD for the sub-

group sgm.

Figure 5 shows the lower bound, |q1− x1|, of the BUAD for three query points q1, q2, and q3
for the aggregate function MAX. Based on the lower bound of a subgroup of size m as shown in
Lemma 4.4, a lower bound for the BUAD of a subgroup category m, RBUADm can be formally
defined using the following lemma.

LEMMA 4.5. Let G = {q1,q2, . . . ,qn} be a set of n query points inside a circular region C(x,r)
centered at a point x with a radius r, an aggregate function f , and qmini the minimum distance from
qi to the boundary of C(x,r). If min j is the jth minimum from the set {qmin1,qmin2, . . . ,qminn} of
values, then RBUADm = f (min1,min2, . . . ,minm) gives a lower bound of the BUAD for all possible
subgroups of size m.

PROOF. The BUAD for a subgroup category can be computed by taking the minimum of all

RBUADi
m s of that category, i.e., min(

n
m)

i=1 (RBUADi
m). Let us assume that the BUAD of subgroup

sgk
m, RBUADk

m is the minimum of all BUADs, and the subgroup comprises the first m query points,
{q1,q2, . . . ,qm}. Thus, according to Lemma 4.4, we have RBUADk

m ≥ f (qmin1,qmin2, . . . ,qminm).
Since min j is the jth minimum from the set {qmin1,qmin2, . . . ,qminn} and the

set {min1,min2, . . . ,minm} is comprised of the minimum m values from the set
{qmin1,qmin2, . . . ,qminn}, we have f (qmin1,qmin2, . . . ,qminm) ≥ f (min1,min2, . . . ,minm).
Hence, RBUADk

m ≥ f (min1,min2, . . . ,minm).
Thus, RBUADm = f (min1,min2, . . . ,minm) gives a lower bound of the BUAD for the subgroup

category m.

The lower bound of the BUAD is a conservative assumption of the actual value of the BUAD. We
can use this lower bound as our termination condition for our proposed algorithm.

To summarize the advantages of using the RBUAD concept are twofold (1) instead of searching
all points on the boundary of C(x,r) to find the optimal y we only need to find the points xn that
represent the intersections with the lines (x,qi) and (2) instead of computing a separate BUADi

m for
every subgroup of size m we only need to evaluate once the aggregate function to obtain RBUADm.

In our algorithm, the structure of a subgroup, SGD, is defined as follows.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:15

Definition 4.6. (SGD) The structure of a subgroup element SG contains the following attributes.
• m: the size of the subgroup, i.e., the number of users in the subgroup SG.
• sgList: the set of query points q1,q2, ...,qm that comprises SG.
• o: a data object that produces the best aggregate distance so far for SG.
• sgDist: the aggregate distance to o from sgList, i.e., f ({|q−o| : q ∈ sgList}).
• gDist: the aggregate distance to o for the group G, i.e., f ({|q−o| : q ∈ G}).
• status: the status of the subgroup SG is temporary if there can be another object o′ (̸= o) for

which f ({|q−o′| : q ∈ sgList})< f ({|q−o| : q ∈ sgList}), and the status is f inal if no such o′
exists.

Notation Meaning
G A given set of n query points {q1,q2, . . . ,qn}
Dist(q, p) Euclidean distance between two points q and p
MinDist(q, p) Minimum Euclidean distance between a point q and a

point or an object (e.g., rectangle, circle) p
Li An ordered list of k items of type SGD with subgroup size

i, where the elements are stored in order of their minimum
aggregate distance to any data object

C(x,r) A circular region centered at a point x with a radius r
where the locations of all objects are known

BestAggDist[i] kth smallest aggregate distance of subgroup size i with
respect to all retrieved data objects inside C(x,r)

status[i] status[i] is temporary if the computation for the best sub-
groups of size i is not complete; otherwise status[i] is
f inal

Table II: Notations

4.3. Algorithm
Algorithm 1 shows the steps of k-BEST-SUBGROUPS-NN for finding the k best subgroups. The
algorithm takes the following parameters as input: a set G of n query points representing user loca-
tions, a number n′ denoting the minimum subgroup size, a number k representing the number of best
subgroups that needs to be found from each category i for n′ ≤ i≤ n, and a function f representing
the required aggregate function (SUM, MAX, or MIN).

We assume that the data objects are indexed using an R-tree [Beckmann et al. 1990] in the
database. Our algorithm follows the best first (BF) search technique to incrementally access data
objects (as discussed in the related work) and to find the results for a k-BEST-SUBGROUPS-NN
query. We summarize the common notations used in this section in Table II.

The algorithm starts the search from the centroid x of the given set G of n query points
{q1,q2, . . . ,qn}. Since data objects are hierarchically organized using an R-tree, the algorithm first
encounters the root node and inserts the node into a priority queue Qp. The elements of Qp are
stored in order of their minimum distance from x.

In each iteration the algorithm pops an element p from Qp, where p can be a data object or an
R-tree node. If p is a data object, the algorithm computes the best subgroups and their aggregate
distance to p (Lines 1.12-1.28). The computation of the best subgroups follows the same procedure
described in Section 4.1. For a subgroup of size i, if the best aggregate distance, aggDist, in this
step is smaller than the kth smallest aggregate distance computed so far, i.e., BestAggDist[i], the
corresponding subgroup is inserted into an ordered list Li as the candidate answer. If p is an R-tree

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:16 M. E. Ali et al.

ALGORITHM 1: k-BEST-SUBGROUPS-NN (R,G,n′,k, f)
Input : An R-tree index R of all data objects, A set of query points G={q1,q2, . . . ,qn}, the number of

required subgroups k from each category, the minimum number n′ of users in a subgroup, and an
aggregate function f (SUM, MAX, or MIN).

Output: L = {Ln′ ,Ln′+1, . . . ,Ln},where Li is an ordered list of k items of data type SGD with subgroup size i
for n′ ≤ i≤ n.

1.1 Initialize {Ln′ ,Ln′+1, . . . ,Ln} to {Ø,Ø, . . . ,Ø};
1.2 Initialize L to {Ln′ ,Ln′+1, . . . ,Ln};
1.3 Initialize a priority queue Qp;
1.4 x← Calculate centroid of G;
1.5 BestAggDist[1..n−n′+1]←{∞};
1.6 status[1..n−n′+1]←{temporary};
1.7 continue← true;
1.8 Enqueue(Qp,R−> root,0);
1.9 while Qp is not empty and continue = true do

1.10 {p,MinDist(x, p)}← Dequeue(Qp);
1.11 if TERMINATE(G,n′,x, p, f ,BestAggDist,status) = exit then
1.12 continue← false;
1.13 else if p is a data point then
1.14 Initialize a queue Q;
1.15 for each qi in G do
1.16 Enqueue(Q,qi,dist(qi, p));
1.17 gDist← gDist +dist(qi, p);

1.18 qElem← null;
1.19 i← 0;
1.20 while Q is not empty do
1.21 qElem← Dequeue(Q);
1.22 sgList← getQueryPoint(qElem);
1.23 aggDist← f (aggDist,qElem);
1.24 i← i+1;
1.25 if i≥ n′ and BestAggDist[i]> aggDist then
1.26 sgi← new SGD(i,sgList, p,aggDist,gDist);
1.27 Li← Li∪ sgi;
1.28 UpdateBestDist(BestAggDist[i],Li);
1.29

1.30 else
1.31 for each child node pc of p in R do
1.32 if MinAggregateDist(pc,G,n′)< BestAggDist[n−n′+1] then
1.33 Enqueue(Qp, pc,MinDist(x, pc));
1.34

1.35 return L;

node, then it retrieves its child nodes and enqueues them into Qp if they do not satisfy the termination
conditions, i.e., if there is a possibility that a child node may contain an answer (Lines 1.30-1.34).
In this case, if the minimum aggregate distance to a child node pc for the minimum subgroup size n′
is greater than the kth smallest aggregate distance computed so far for the maximum subgroup size
n, we can safely discard pc. The above process continues as long as Qp is not empty and there may
exist other potential answers.

Algorithm 1 calls Algorithm 2 to check the termination conditions for the search. Algorithm 2
returns continue when the search needs to continue as there is a possibility that other non-retrieved
objects can be the candidates for the answer set. On the other hand, Algorithm 2 returns exit when
optimal subgroups are confirmed, i.e., all the objects that could possibly be included in the answer

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:17

ALGORITHM 2: TERMINATE (G,n′,x,p, f ,BestAggDist,status)

Input : A set of query points G={q1,q2, . . . ,qn}, the minimum subgroup size n′, the centroid x of G, a data
point or an MBR p, and an aggregate function f (SUM, MAX, or MIN).

Output: continue or exit the search.
2.1 lb[1..n−n′+1]←{0};
2.2 r←MinDist(x, p)
2.3 if C(x,r) does not contain G then
2.4 return continue;
2.5 else
2.6 for each qi in G do
2.7 mqi←MinDist(qi,C(x,r));
2.8 Add (qi,mqi) to the sorted list MQ;

2.9 i← n′;
2.10 while i≤ n do
2.11 lb[i−n′+1]← f i

j=1(mq j);
2.12 if lb[i−n′+1]> BestAggDist[i−n′+1] then
2.13 status[i−n′+1]← f inal;
2.14 i← i+1;

2.15 if CheckAllStatus(status)= f inal then
2.16 return exit;
2.17 else
2.18 return continue;
2.19

2.20

set have been retrieved already. Algorithm 2 uses the lower bound defined in Lemma 4.5 to decide
on the termination conditions. It uses the aggregate minimum distances from the query points to
the boundary of the known region C(x,r) as lower bounds, lbs, for different group sizes, and then
compares lbs with the already computed BestAggDists. If an lbs of all subgroup sizes are greater
than the corresponding BestAggDists then there is no possibility that the objects outside C(x,r)
can be included in the answer set, thus the algorithm returns exit; otherwise the algorithm returns
continue.

The termination condition of the above algorithm is set according to the relaxed lower bound
defined in Lemma 4.5. To reduce the number of nodes accessed by the above algorithm, we can find
the optimal BUAD for a subgroup and then use this as our termination condition. In Appendix A.1,
we show how to find the optimal BUAD for a subgroup.

It is important to note that our incremental approach can be easily extended for other variants such
as the constrained consensus query, where constraints such as different priorities to different users
in the group are assigned to prioritize some users’ inclusion over the others in subgroup formation.
Thus in such a case, we need to to consider both the priorities of the query points, and the distances
between query points and data points. A way to extend our incremental approach for the constraint
consensus query will be as follows: i) compute the distances from all query points to each retrieved
object and store (query, priority, distance) tuples in the priority queue Q in the order of their priority
first and then with their minimum distance, ii) compute the best subgroups as outlined in Steps 1
and 2 of our approach, and iii) compute the relaxed lower bound terminating condition based on
the imposed constraints. For computing the BUAD for a subgroup size of m (by using Lemma 4.4),
instead of considering m minimum distances from query points to the boundary of the known region,
we need to include distances of query points to the boundary of the known region on the basis of
priorities of the users. For example, if a member has the highest priority, the distance from that
query point to the boundary of the known region must be included in BUAD computation. Then,
the remaining m− 1 distances are taken based on the minimum distances from query points to the

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:18 M. E. Ali et al.

boundary of the known region (assuming these m− 1 query points have same priority). Since the
priority queue and the terminating condition are computed based on the priorities of query points
and minimum distances, the algorithm continues retrieving objects until it finds the result satisfying
the priority constraints. The above process will enable us to extend our incremental relaxed lower
bound based approach (INC-R-LB) for the constraint consensus query.

a
b

c

e

f

g

q2

q3

q1

q4

q5

d

5

2

3

4

1

6

Fig. 6: Multi-query approach for evaluating consensus query. Data retrieval
in 6 steps are shown using 6 circles.

4.4. An Alternative Approach
The above incremental approach finds the result in a single traversal in the database as it uses the
centroid of the group as the starting point of the search. Another popular approach for GNN query
processing is to consider multiple query points simultaneously and expand the search space for
every query point [Papadias et al. 2004]. Similarly, to process the k-BEST-SUBGROUPS-NN query,
we devise an alternative approach is to incrementally expand the search space for each query point
of the group, and accesses MBRs/data points in order of their minimum distances. We call this
method the multi-query (MQ) approach. In MQ, the nearest data point of q1 is first retrieved, and
then optimal subgroups of each allowable subgroup sizes (i.e., greater or equal to the minimum
specified subgroup size) with respect to the retrieved data point are computed. Likewise, the nearest
data points of q2, q3, ..., qn are progressively retrieved and the optimal subgroups of each allowable
subgroup size are updated with respect to these retrieved data points. In the next step, the second
nearest data points of q1, q2, ..., qn are retrieved one by one and the optimal subgroups are updated
with respect to these retrieved data points. This process continues until we discover all optimal
subgroups and their corresponding nearest data points.

Figure 6 shows the running example for query evaluation using the MQ approach. In the first
step, the nearest data point f of q1 is retrieved, and then the optimal subgroups of each allowable
subgroup sizes (here 3, 4, and 5) with respect to f are computed (please refer to Section 4.1 for the
detailed procedure of the optimal subgroup computation). In Step 2 and Step 3, f is retrieved as
the nearest data point of both q2 and q3. Since we have already computed optimal subgroups with
respect to f , we do not need any further computation in these two steps. In the subsequent steps,

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:19

e and b are retrieved as the nearest data points of q4 (Step 4) and q5 (Step 5), respectively. At this
stage the first NNs for all query points are already considered in optimal subgroups computation. In
the next iteration, d is first retrieved as the second nearest neighbor of q1 as Step 6. The above data
retrieval process continues until the result is found.

Instead of a single circular region (a disc) as our search space, the MQ search space is a union
of multiple discs centered at different query points. The termination condition of the above process
is formulated in the same was as the termination condition of the relaxed lower bound method as
used in Algorithm 1. That is, we use the aggregate distance of the Euclidian distances between each
query point and the last retrieved data point from that query point.

4.5. Discussion
In summary, we propose an incremental expansion method to evaluate the k-BEST-SUBGROUPS-
NN query, which forms the building block for processing a consensus query. Depending upon the
pruning strategies, the incremental expansion method can have two variants based on the exact
BUAD and a relaxed BUAD. The incremental method that uses the tight lower bound for pruning
the search space is called an incremental tight lower bound (INC-T-LB) approach. The tight lower
bound for the BUAD incurs extra computational overheads. Thus, we derive a relaxed BUAD. We
have presented that a relaxed lower bound for the BUAD can be used to prune the search space
with reduced computational overhead. We name this method an incremental relaxed lower bound
(INC-R-LB) approach.

The proposed incremental approaches find the result in a single traversal in the database, on the
other hand, our alternative approach, the multiple query (MQ) approach, requires multiple indepen-
dent searches in the database for the results.

The disadvantages of this MQ method are: (i) it may need to access the same node multiple times,
(ii) the distance to an MBR needs to be calculated for each query point, (iii) the search region is not
a regular shape and thus it is hard to compute the optimal BUAD.

We analyze the cost of our proposed methods with the competitive methods Combinatorial
(COMB) and FANN in Appendix A.2.

To provide a better insight into performance comparison, we compare these algorithms through
experimental studies using a wider range of parameters in a realistic location-based application
setting.

Parameter Range Default
Data set Real, Synthetic Real

Real dataset size 62.5K 62.5K
Synthetic dataset size 5K, 10K, 20K, 40K -

Query Point Distribution Uniform (U), Zipfian (Z) U
Group size (n) 8, 16, 32, 64 32

Min subgroup size (in % of n) 60%, 70%, 80%, 90% 60%
Area of the query space 1%, 2%, 4%, 8%, 16% 8%

k 1, 2, 4, 8, 16, 32 4

Table III: Experiment Setup

5. EXPERIMENTAL EVALUATION
We evaluate our two incremental methods, INC-R-LB and INC-T-LB, and the multi-query (MQ)
approach, and compare their performances. We also compare our proposed techniques with the
combinatorial (COMB) approach and the flexible aggregate nearest neighbor (FANN) approach [Li
et al. 2011]. In the combinatorial approach, we need to first enumerate all possible subgroups, and
then we apply the best known minimum bounding method (MBM) [Papadias et al. 2004] to find

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:20 M. E. Ali et al.

the nearest data points for each of these subgroups. Finally, we rank the results of each subgroup
category and take the top-k subgroups as our results for the k-BEST-SUBGROUPS-NN query. Since
FANN is applicable for a fixed subgroup size (category), we independently execute the FANN query
for each subgroup category using their proposed R-tree based algorithm and combined the results.

We vary different parameters: the group size (n), the minimum subgroup size, the area of the
group/query space (the rectangular area that encloses all the query points), the number of required
nearest data point (k), and the dataset size in different experiments. Table III summarizes the val-
ues used for each parameter in our experiments and their default values. We use the query CPU
processing times and I/O costs (number of disk pages accessed) as the efficiency measures of the
algorithms.

We use both real and synthetic datasets for our experiments. The real dataset contains 62,556
postal addresses from California. We generated synthetic datasets with uniform and Zipfian distri-
butions, representing a wide range of real scenarios. For both distributions, we vary the dataset size
as 5000, 10,000, 15,000, and 20,000 point locations. For all datasets, we normalize the data space
into a span of 10,000× 10,000 square units. In a query space, the query points are generated us-
ing both Uniform and Zipfian distribution. Note that the Zipfian query distribution ensures skewed
distribution of users in a group.

In our experiments, data points are indexed using an R∗-tree [Beckmann et al. 1990]. We used
a page size of 1KB and a node capacity of 50 entries for the R∗-tree. For each set of experiments,
we evaluate all algorithms for 100 groups of users and present the average experimental results. To
generate 100 different groups, we first randomly generate 100 points in the data space. Then, we
define a rectangular query space centered at each generated point. Finally, the required query points
in a group are generated inside the rectangular query space.

We run the experiments on a PC with a Core i5-2430M CPU @ 2.40 GHz and 4 GByte RAM.

5.1. Comparison with Baseline Methods
We first present the scalability test by comparing our three approaches, INC-R-TB, INC-T-TB,
and MQ, with two baseline methods COMB and FANN. In this set of experiments, we vary the
group size using 8, 16, and 24, as the COMB approach does not scale for higher group sizes (e.g.,
32, 64). We measure the query processing time and I/O cost for aggregate functions SUM, MAX,
and MIN.

Figures 7(a)-(b), (c)-(d), and (e)-(f) show the query processing time and I/O of all five methods for
the aggregate functions SUM, MAX, and MIN, respectively. We can see that our proposed method
INC-R-LB is the best performer in terms of processing time, while INC-T-LB is the best performer
in terms of I/O cost. Note that both of our approaches INC-R-LB and ICN-T-LB developed based
on relaxed bound and tight bound, respectively, produce accurate results. However, relaxed bound
based approach, INC-R-LB, needs to retrieve more data from the database to accurately answer the
query. The experimental results also show that INC-T-LB requires slightly lower number of I/O cost
than that of INC-R-LB at the cost of higher processing time. For example, for a group size of 16 for
the aggregate function SUM, INC-T-LB incurs 2 times higher processing time with only 4% less
number of I/O cost (i.e., retrieving roughly 4% less data points) than that of INC-R-LB. Thus, INC-
R-LB is the preferred method over INC-T-LB if we consider the tradeoff between the processing
time and I/O costs. Hence, we only consider INC-R-LB in the detailed comparative analysis. Note
that, in the case of INC-T-LB, we avoid the generation of exponential number of subgroups and
use an approximation based approach that discretizes the boundary of the known circular region
and consider every point of the boundary to find the BUADs of all subgroup categories. In order
to discretize the circle, we take the perimeter of the circle as the length of the boundary region and
take every integer number as a boundary point.

Figures for SUM also show that COMB does not scale even for a moderate group size of 24.
For an increase of group size from 8 to 24, the processing time and I/O cost increase by more
than 3 orders of magnitude. In the case of FANN, for an increase of group size from 8 to 24,
the processing time and I/O cost increase by more than 6 times. On the other hand, both of our

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:21

10
1

10
2

10
3

10
4

10
5

10
6

 24 16 8

T
im

e
 (

s
e

c
)

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 24 16 8

I/
O

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

(a) (b)

10
1

10
2

10
3

10
4

10
5

10
6

 24 16 8

T
im

e
 (

s
e
c
)

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 24 16 8
I/

O

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

(c) (d)

10
1

10
2

10
3

10
4

10
5

10
6

 24 16 8

T
im

e
 (

s
e

c
)

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 24 16 8

I/
O

Group Size

COMB
FANN

INC-R-LB
INC-T-LB

MQ

(e) (f)

Fig. 7: Scalability for aggregate functions SUM (a-b), MAX (c-d), and
MIN (e-f)

incremental approaches, INC-R-LB and INC-T-LB outperform COMB and FANN significantly.
For example, for a group size of 24, both INC-R-LB and INC-T-LB outperform COMB approach
by at least 2 orders of magnitude in processing time and 4 orders of magnitude in I/Os. For the
same group size, our incremental approaches outperform FANN by an order of magnitude both in
terms of processing cost and I/Os. We can see from the figure that our alternative MQ approach also
outperform COMB and FANN significantly. Note that for aggregate functions MAX and MIN, all
competitive methods exhibit similar behavior to that shown for SUM. Since the COMB approach is
not practical due to huge computational and I/O overhead, we omit comparing this approach with
ours in the rest of the comparative analysis.

Note that as described in Section 4.1, in our incremental approach we start the BF search from the
centroid of the query points. An alternative starting point of the search could be a random starting
point in the query space. In the random starting point based approach, we randomly select a point

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:22 M. E. Ali et al.

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

MINMAXSUM

T
im

e
(s

ec
)

Aggregate Functions

Centroid (U-Q)
Random (U-Q)
Centroid (Z-Q)
Random (U-Q)

 2000

 1500

 1000

 500

 100

MINMAXSUM

I/
O

Aggregate Functions

Centroid (U-Q)
Random (U-Q)
Centroid (Z-Q)
Random (U-Q)

(a) (b)

Fig. 8: Random starting point vs. centroid based starting point in our INC-
R-LB method for aggregate functions SUM, MAX, and MIN.

inside the query space and incrementally retrieve the data points in increasing order of their distances
from the starting point. For all default values of parameters as stated in Table III, the centroid
based approach requires much less query processing time and I/O overhead than the random starting
point based approach for all three aggregate functions (Figure 8). For aggregate function SUM with
Uniform distribution of query points, the centroid based approach requires 71% less processing time
and 67% less I/Os than the random starting point based approach. Also, for aggregate function SUM
with Zipfian distribution of query points, the centroid based approach requires 28% less processing
time and 35% less I/Os than the random starting point based approach. For aggregate function MAX
with Uniform distribution of query points, the random starting point based approach takes 87% and
84% more time and I/Os, respectively, than the centroid based approach. On the other hand, for
Zipfian distribution of query points, the centroid based approach requires 51% and 46% less time
and I/Os, respectively than the random starting point based approach. For aggregate function MIN,
the results show similar trends to that of aggregate function MAX. This empirical study validates
our choice of centroid as the starting point over a random starting point.

5.2. Effect of Varying the Query Space
In these experiments, we vary the query area, i.e., the area to which the group members are con-
fined to, as 1%, 2%, 4%, 8%, and 16% of the total data space. Figures 9 show the required time
and I/O cost for processing k-BEST-SUBGROUPS-NN query using INC-R-LB, MQ, and FANN for
aggregate functions SUM (a-b), MAX (c-d), and MIN (e-f). We conduct experiments for both Uni-
form (U) and Zipfian (Z) distributions of query locations. Figures 9 (a)-(b) show that for both U
and Z query distributions, INC-R-LB is 5 and 10 times faster than the MQ and FANN methods,
respectively. INC-R-LB requires 5 and 10 times less I/O cost than that of MQ and FANN methods,
respectively. We also see that the processing time and I/O cost for all methods increase with the in-
crease of the query space, which is expected because for a larger query space all algorithms require
to access more database objects.

For aggregate functions MAX (Figures 9 (c)-(d)) and MIN (Figures 9 (e)-(f)), we see a similar
behavior as SUM.

5.3. Effect of Varying the Group Size
In this set of experiments, we vary the group size as 8, 16, 32 and 64, and measure the required
processing time and I/O cost in INC-R-LB, MQ, and FANN methods for both Uniform (U) and
Zipfian (Z) query distributions. Figure 10 shows the required processing time and I/O cost for SUM
(a-b), MAX (c-d), and MIN (e-f). We can see that the processing time and I/O cost slightly increase
with the increase of group size for INC-R-LB. On the other hand, in case of MQ and FANN, both
the processing time and I/O cost significantly increase with the increase of group size. Thus, we

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:23

 1000

 500

 0
 16 8 4 2 1

T
im

e
 (

s
e

c
)

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 15000

 10000

 5000

 1000
 0

 16 8 4 2 1

I/
O

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(U)

FANN(U)
FANN(Z)

(a) (b)

 1000

 800

 600

 400

 200

 0
 16 8 4 2 1

T
im

e
 (

s
e
c
)

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 15000

 10000

 5000

 0
 16 8 4 2 1

I/
O

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(c) (d)

 1000

 800

 600

 400

 200

 0
 16 8 4 2 1

T
im

e
 (

s
e

c
)

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 15000

 10000

 5000

 0
 16 8 4 2 1

I/
O

Query Area (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(U)

FANN(U)
FANN(Z)

(e) (f)

Fig. 9: The effect of varying the query space for SUM (a-b), MAX (c-d),
and MIN (e-f)

observe that our approach INC-R-LB outperforms MQ and FANN in a greater margin for a larger
group size. Figure 10 (a) shows that INC-R-LB is on average 4 times faster than MQ and 5 times
faster than FANN for a group of size 8, and 15 times faster than MQ and 30 times faster than FANN
for a group of size 64. Similarly, Figure 10 (b) shows that INC-R-LB requires on the average 1.5
and 10 times less I/O cost than MQ for a group size 8 and 64, respectively. Figure 10 (b) also shows
that INC-R-LB requires on an average 4 and 31 times less I/O cost than FANN for a group size 8
and 64, respectively.

Figure 10 (c)-(d) and (e)-(f) show the results for aggregate functions MAX and MIN, respectively,
which depict similar trends as SUM.

5.4. Effect of Varying the Minimum Subgroup Size
In these experiments, we vary the minimum subgroup size (n′), i.e., the minimum number of users
required to form a valid group of 60%, 70%, 80%, or 90% of users from the group. Figure 11 shows

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:24 M. E. Ali et al.

 3000

 2000

 1000

 0
 64 32 16 8

T
im

e
 (

s
e

c
)

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 30000

 20000

 10000

 0
 64 32 16 8

I/
O

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(a) (b)

 4000

 3000

 2000

 1000

 0
 64 32 16 8

T
im

e
 (

s
e
c
)

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 30000

 20000

 10000

 64 32 16 8
I/

O

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(c) (d)

 3000

 2000

 1000

 0
 64 32 16 8

T
im

e
 (

s
e

c
)

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 30000

 20000

 10000

 64 32 16 8

I/
O

Group Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(e) (f)

Fig. 10: The effect of varying the group size for SUM (a-b), MAX (c-d),
and MIN (e-f)

that for aggregate function SUM the query processing time decreases with the increase of minimum
subgroup size. Since the total number subgroup decreases with the increase of n′, the computational
overhead decreases. On the other hand, we can see that the I/O costs almost remain constant for
varying the minimum subgroup size. Since, in general, the optimal subgroup of a larger subgroup
size is a superset of the optimal subgroup of a smaller subgroup size, the number of data points
needed to find the optimal subgroup of a larger subgroup category is sufficient to find the optimal
subgroup of a smaller subgroup category. Figure 11 also shows that INC-R-LB outperforms MQ
and FANN significantly for all cases. The results for aggregate functions MAX and MIN show
similar trends as SUM (not shown).

5.5. Effect of Varying k

In this set of experiments, we vary the value of k using 1, 2, 4, 8, 16, and 32 for processing k-
BEST-SUBGROUPS-NN query. We observe that both the processing cost and I/Os increase with the

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:25

 600

 400

 200

 0
 90 80 70 60

T
im

e
 (

s
e

c
)

Min Subgroup (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 15000

 10000

 5000

 0
 90 80 70 60

I/
O

Min Subgroup (in %)

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(a) (b)

Fig. 11: The effect of varying n′ for SUM

 1000

 800

 600

 400

 200

 0
 32 16 8 4 1

T
im

e
 (

s
e
c
)

k

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 10000

 7500

 5000

 2500

 0
 32 8 4 1

I/
O

k

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(U)

FANN(U)
FANN(Z)

(a) (b)

Fig. 12: The effect of varying k for SUM

increase of the values of k for all aggregate functions. The results show that INC-R-LB significantly
outperforms MQ and FANN in all evaluations for aggregate functions SUM(Figure 12).

We see that the I/O costs also slightly increase with the increase of the values of k. Figures
show that INC-R-LB significantly outperforms MQ and FANN in all evaluations. The results for
aggregate functions MAX and MIN depict similar trends as SUM (not shown).

5.6. Effect of Varying the Dataset Size
Figure 13 shows the required processing time and I/O cost in INC-R-LB, MQ, and FANN methods
for varying dataset size for aggregate function SUM. In this set of experiments, we vary the dataset
size using 5K, 10K, 20K, and 40K for both Uniform (a-b) and Zipfian (c-d) data distributions. For
both uniform and Zipfian distributions, the processing time and I/O cost increase with the increase of
the dataset size. Figures show that INC-R-LB outperforms both MQ and FANN in a greater margin
for a larger dataset size. The experimental results also show that with the increase of dataset size,
query processing time and I/O cost increase linearly in our approach. For example, if we double the
dataset size from 20K to 40K, the query processing time increases by 54%. Thus, our approach is
scalable for a large dataset

We omit the graphs for aggregate functions MAX and MIN, as the results are similar to SUM.

6. CONCLUSION
We have proposed a new type of query, called the consensus query, that allows a group of users
to share their locations and collaboratively find a solution that suits most of the members in the
group. To facilitate the consensus queries, we have developed efficient algorithms for the LSP to

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:26 M. E. Ali et al.

 400

 300

 200

 100

 0
 40 20 10 5

T
im

e
 (

s
e

c
)

Dataset Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 4500

 3500

 2500

 1500

 500

 0
 40 20 10 5

I/
O

Dataset Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(a) (b)

 400

 300

 200

 100

 0
 40 20 10 5

T
im

e
 (

s
e
c
)

Dataset Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

 4500

 3500

 2500

 1500

 500

 0
 40 20 10 5

I/
O

Dataset Size

INC-R-LB (U)
INC-R-LB (Z)

MQ(U)
MQ(Z)

FANN(U)
FANN(Z)

(c) (d)

Fig. 13: The effect of varying dataset size in U (a-b) and Z (c-d) distribu-
tions for SUM

find k best subgroups of all allowable subgroup sizes (i.e., greater or equal to the minimum specified
subgroup size) that minimize the aggregate travel distance to data points. Our proposed algorithm for
finding the optimum subgroups and the corresponding nearest data points significantly outperform
all competitive methods in terms of both query processing time and I/O costs. Experimental results
show that the combinatorial approach does not scale beyond the group size of 24. On the other hand,
our proposed incremental method is scalable for a large group size. Experimental results also reveal
that our incremental approach performs at least 2 times better than that of the multi-query approach
and 5 times better than FANN approach and the incremental approach outperforms both approaches
by 13 and 30 times, respectively, for a larger group size of 64.

In the future, we will extend our model to process the consensus query in road networks. Another
interesting future research direction is to consider a user location as a region instead of a point which
is desirable from the standpoint of privacy.

REFERENCES
Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-Tree: An efficient and robust

access method for points and rectangles. In SIGMOD. 322–331.
Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. 2011. Collective spatial keyword querying. In SIGMOD.

373–384.
Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial Keyword Query Processing: An Experimental

Evaluation. PVLDB 6, 3 (2013), 217–228.
Chi-Yin Chow, Jie Bao, and Mohamed F. Mokbel. 2010. Towards location-based social networking services. In 2nd ACM

SIGSPATIAL International Workshop on LBSN. 31–38.
Ke Deng, Shazia Wasim Sadiq, Xiaofang Zhou, Hu Xu, Gabriel Pui Cheong Fung, and Yansheng Lu. 2012. On group nearest

group query processing. IEEE TKDE 24, 2 (2012), 295–308.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:27

Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword Search on Spatial Databases. In Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, México. 656–665.

Sébastien Ferré and Alice Hermann. 2011. Semantic search: reconciling expressive querying and exploratory search. In
ISWC. 177–192.

FourSquare. 2011. (2011). http://foursquare.com/.
Mike Gartrell, Xinyu Xing, Qin Lv, Aaron Beach, Richard Han, Shivakant Mishra, and Karim Seada. 2010. Enhancing group

recommendation by incorporating social relationship interactions. In GROUP. 97–106.
Gowalla. 2011. http://gowalla.com/.
Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching. In SIGMOD. 47–57.
Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. 2013. Group Trip Planning Queries in Spatial

Databases. In SSTD. 259–276.
Gisli R. Hjaltason and Hanan Samet. 1995. Ranking in spatial databases. In SSD. 83–95.
iGroups. 2011. http://itunes.apple.com/us/app/igroups.
Anthony Jameson and Barry Smyth. 2007. Recommendation to groups. In The Adaptive Web. 596–627.
Christian S. Jensen, Jan Kolářvr, Torben Bach Pedersen, and Igor Timko. 2003. Nearest neighbor queries in road networks.

In ACM GIS. 1–8.
Anastasios Kementsietsidis, Frank Neven, Dieter Van de Craen, and Stijn Vansummeren. 2008. Scalable multi-query opti-

mization for exploratory queries over federated scientific databases. PVLDB 1, 1 (2008), 16–27.
Mohammad Kolahdouzan and Cyrus Shahabi. 2004. Voronoi-based K nearest neighbor search for spatial network databases.

In VLDB. 840–851.
Yang Li, Feifei Li, Ke Yi, Bin Yao, and Min Wang. 2011. Flexible aggregate similarity search. In SIGMOD. 1009–1020.
Loopt. 2011. http://www.loopt.com/.
Sarah Masud, Farhana Murtaza Choudhury, Mohammed Eunus Ali, and Sarana Nutanong. 2013. Maximum visibility queries

in spatial databases. In ICDE. 637–648.
Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. 2004. Group nearest neighbor queries. In ICDE.

301–310.
Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. 2005. Aggregate nearest neighbor queries in spatial

databases. ACM Trans. Database Syst. 30, 2 (2005), 529–576.
Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. 2003. Query processing in spatial network databases. In

VLDB. 802–813.
João B. Rocha-Junior and Kjetil Nørvåg. 2012. Top-k spatial keyword queries on road networks. In EDBT. 168–179.
Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Nearest neighbor queries. In SIGMOD. 71–79.
Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes Twitter users: real-time event detection by

social sensors. In WWW. 851–860.
Thomas Seidl and Hans-Peter Kriegel. 1998. Optimal multi-step k-nearest neighbor search. SIGMOD Rec. 27 (1998), 154–

165. Issue 2.
Jing Shan, Donghui Zhang, and Betty Salzberg. 2003. On spatial-range closest-pair query. In SSTD. 252–269.
Ben Shneiderman. 1994. Dynamic queries for visual information seeking. IEEE Softw. 11, 6 (Nov. 1994), 70–77.
Xiance Si, Edward Y. Chang, Zoltán Gyöngyi, and Maosong Sun. 2010. Confucius and its intelligent disciples: integrating

social with search. PVLDB 3, 2 (2010), 1505–1516.
E Welzl. 1991. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science 555, 1

(1991), 359–370.
Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jin Hu. 2004. Gorder: An efficient method for KNN join processing. In VLDB.

756–767.
De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan Chen. 2012. On socio-spatial group query for location-based

social networks. In KDD. 949–957.
Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. 2005. Aggregate nearest neighbor queries in road networks. IEEE

TKDE 17 (2005), 820–833.
Tjalling J. Ypma. 1995. Historical development of the Newton-Raphson method. SIAM Rev. 37 (1995), 531–551. Issue 4.
Zhiyong Yu, Zhiwen Yu, Xingshe Zhou, and Yuichi Nakamura. 2009. Handling conditional preferences in recommender

systems. In IUI. 407–412.
Jinzeng Zhang, Xiaofeng Meng, Xuan Zhou, and Dongqi Liu. 2012. Co-spatial Searcher: Efficient Tag-Based Collaborative

Spatial Search on Geo-social Network.. In DASFAA (1). 560–575.
Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A collaborative social networking service among user, location and

trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32–39.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:28 M. E. Ali et al.

A. APPENDIX
A.1. Computing the BUAD
The BUAD for SUM: For a given known region C(x,r), to find the optimal BUAD for a subgroup
{q1,q2, . . . ,qm} of m users, we need to identify a point y on the boundary point set ß of C(x,r) that
minimizes the summation of distances from all query points, q1,q2, . . . ,qm to ß, i.e., y minimizes
∑m

i=1 |qi− y|.

y

q2

q3 q1

Fig. 14: The known circular region C(x,r) with a center x and a radius r,
three query points {q1,q2,q3}.

Let θ denote the angle between xx′ and xy measured counterclockwise with respect to x′, i.e.,
̸ x′xy = θ as shown in Figure 14.

Also assume that αi corresponds to ̸ x′xqi, i.e.,α1, α2, α3 corresponds to the query points q1, q2,
and q3, respectively. In Figure 14, for △xq1y, according to the cosine formula of a triangle we can
write the following equation.

|q1− y|2 = |x−q1|2 + r2−2 · |x−q1| · r · cos(θ −α1)

Similarly, for any query point qi, we can write the following equation for a triangle△xqiy.

|qi− y|2 = |x−qi|2 + r2−2 · |x−qi| · r · cos(θ −αi)

We can see that |x− qi|, r, and αi are constants for a given query point qi and a circular region
C(x,r). Hence, we can simplify the above equation by replacing |x−qi|2+r2 with a constant Ai and
2 · |x−qi| · r with a constant Bi.

|qi− y|2 = Ai−Bi · cos(θ −αi)

Based on the above formulations, we can express our optimization function for m query points
{q1,q2, . . . ,qm} as a function of θ as follows.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:29

g(θ) =
m

∑
i=1
|qi− y|

=
m

∑
i=1

(
√

Ai−Bi · cos(θ −αi))

If we take the first derivative of g(θ), we have the following equation.

dg(θ)
dθ

=
m

∑
i=1

Bi(cosαi · sinθ − sinαi · cosθ)
2 ·

√
Ai−Bi · (cosαi · cosθ + sinαi · sinθ)

To find the optimal θ , we need to solve dg(θ)
dθ = 0.

Since the first derivative is a complex series comprising of square roots of different terms,
the straightforward trigonometric solution is not possible in this case. Thus, we use Newton-
Raphson [Ypma 1995] method to solve the above equation, which can be described as follows.

Given a function g(θ) and its derivative g′(θ), the Newton-Raphson method begins with an initial
guess θ0, and then finds a better approximation θ1 by using the following formula.

θ1 = θ0−
g(θ0)

g′(θ0)

Then the above process is repeated until a sufficiently accurate value is found.

θn = θn−1−
g(θn−1)

g′(θn−1)

Since we need to find a minimum of a function, and the derivative is zero at a minimum, we
can find the minima by applying Newton-Raphson method to the derivative, i.e., the above iteration
becomes:

θn = θn−1−
g′(θn−1)

g′′(θn−1)
.

The Newton-Raphson method converges quickly to the solution if the initial starting point θ0 is
a good approximation. For this, we choose initial θ0 as the angle of the centroid of subgroup query
points at x.

By using the above method, we can compute the BUAD for any subgroup of size m. Since there
are

(n
m

)
possible subgroups of size m, the BUAD for the subgroup category m, BUADm, can be

computed by taking the minimum of all BUADs, i.e., BUADm = min(
n
m)

i=1(BUADi
m).

The BUAD for MAX: To find the BUAD for MAX, we need to find a point y on the boundary of
C(x,r) that minimizes the maximum distances for a subgroup sgm = {q1,q2, . . . ,qm} to the bound-
ary point set ß of C(x,r). That is, find y ∈ ß that minimizes maxm

i=1 |qi− y|. This problem can be
expressed as finding the minimum circle centered at any point y ∈ ß that encloses all query points,
where the radius of the circle denotes the BUAD for the subgroup sgm.

First, we show how to find the BUAD for any subgroup of two query points, {qi,q j}, and then
we generalize the idea for a group of m query points.

Let the minimum and maximum distances from qi to the boundary point set ß of C(x,r) be qixi
and qix′i, respectively. If we move along the boundary points away from xi (in either direction), the
distance from qi to ß continuously increases and it reaches the maximum at point x′i. Similarly, the
distance from q j to ß continuously increases as we move along the boundary points away from x j.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:30 M. E. Ali et al.

q3

q1

Fig. 15: The known circular region C(x,r), the BUAD |q2 − b121| for
{q1,q2}, and the BUAD |q3− x3| for {q2,q3}.

Thus, the point y∈ ß that minimizes the maximum distances from subgroup {qi,q j} to ß must be on
the arc x̂ix j bounded by the smaller angle ̸ xixx j that ranges between 0o and 180o. Figure 15 shows
the arc x̂1x2 using boldface as a candidate set of points for y.

To determine a point y ∈ xix j that minimizes the maximum distances for qi and q j, we will first
look at an example as shown in Figure 15. In this example, the point that minimizes the maximum
distances for q1 and q2 must reside on the arc x̂1x2. The figure shows that the bisector b121b122 of
q1 and q2 meets the boundary of C(x,r) at two points b121 and b122, respectively. The point b121
is on the arc x̂1x2 and the aggregate distance from q1 and q2 to border point set ß is minimized at
b121. This is because: (i) the distances |q1−b121| and |q2−b121| are equal, (ii) any point that is right
to b121 will have a greater distance from q2 than |q2− b121|, and (iii) any point that is left to b121
will have a greater distance from q1 than |q1− b121|. In this case, the intersection point between
the bisector of two query points and the smaller arc formed by the two query points and the center
minimizes the maximum distances for two query points {q1,q2} to the boundary point set ß. If we
consider two query points q2 and q3 as shown in Figure 15, the point that minimizes the maximum
distances for subgroup {q2,q3} must reside on the arc x̂2x3. However, we can see that the bisector
of q2 and q3 does not intersect x̂2x3. In this case, the minimum distance from q3 to ß is |q3− x3|,
and the distance |q2− x3| from q2 to x3 is smaller than |q3− x3|. Thus the point x3 minimizes the
aggregate distances for subgroup {q2,q3} for MAX. Based on the above discussion, we have the
following lemma for finding the BUAD for any two query points.

LEMMA A.1. Let qi and q j be two query points inside a circular region C(x,r) centered at a
point x with a radius r, and |qi− xi| and |q j− x j| be the minimum distances from qi and q j to the
boundary point set ß of C(x,r), respectively. Let x̂ix j be the smaller arc formed by the ̸ xixx j that
ranges from 0o to 180o. Then a point y ∈ ß that minimizes the maximum distances for subgroup
{qi,q j} can be computed as follows:

(1) If the circle centered at xi (x j) with a radius |xi− qi| (|x j− q j|) contains q j (qi), then y = xi
(x j).
Otherwise,

(2) y is the intersection point of the bisector bi j1bi j2 of the two query points qi,q j and the arc
x̂ix j.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:31

q2

q3

q1

Fig. 16: The known circular region C(x,r), query points {q1,q2,q3}, and
the BUAD |q2− x2|.

We generalize the above concept for a subgroup of any size (greater than 2). Without loss of
generality, let us consider an example as shown in Figure 16. In this figure, the minimum distances
from query points q1, q2, and q3 to the boundary of the known region C(x,r) are |q1− x1|, |q2−
x2|, and |q3− x3|, respectively. Among these distances, the minimum distance |q2− x2| of q2 is
maximized. However, the distances from q1 and q3 to x2 is less than |q2−x2|, which is the minimum
distance from q2 to any boundary points of C(x,r). It means that x2 is a point that minimizes the
maximum distance for three query points {q1,q2,q3}, and the BUAD for this subgroup is |q2− x2|.

Let us consider a scenario, where q1 is outside the circle centered at x2 with a radius |q2− x2|, as
shown in Figure 17. In such a case, we show that the BUAD can be computed from the bisectors
of query points. In our example in Figure 17, |b131−q1| is the BUAD as the circle centered at b131
with a radius |b131−q1| contains all query points and this is the smallest possible circle centered at
any boundary point of C(x,r) which bounds all query points. The reason is as follows. In Figure 17,
b121b122, b131b132, b231b232 are the bisectors of q1q2, q1q3, and q2q3, respectively. The minimum
distance points from q1, q2, and q3 to the boundary of C(x,r) are x1, x2, and x3, respectively. In this
case, a point that will minimize the maximum distances among these three query points will be a
point on the arc x̂1x3. Since the bisecting point b131 minimizes the maximum distances from q1 and
q3 to the boundary point set of C(x,r), i.e., |q1−b131|, and the distance from q2 to b131 is less than
|q1−b131|, the BUAD is |q1−b131| for subgroup {q1,q2,q3}.

Based on the above observation, we can have the following lemma.

LEMMA A.2. Let sgm = {q1,q2, . . . ,qm} denote a set of m query points, C(x,r) a circular region
centered at a point x with a radius r. Then the BUAD of subgroup sgm can be computed as follows:

(1) Let |qi−xi| be the minimum distance from qi to the boundary point set ß of C(x,r). If |q j−x j|
is the maximum of all minimum distances {|q1−x1|, |q2−x2|, . . . , |qm−xm|} and the circle centered
at x j with a radius |q j− x j| contains all the query points, then |q j− x j| is the BUAD for subgroup
sgm; Otherwise,

(2) Let bi j be the bisector of qi and q j, and bi j1 and bi j2 be the two points where the bisector bi j
meets the boundary point set ß of C(x,r). Let B be the set of distances |bi j l−qi|, where 1≤ i, j ≤m
and 1≤ l ≤ 2, such that the circle centered at bi j l with a radius |bi j l−qi| contains all query points.
Then, the distance |brt l − qr| ∈ B is the BUAD where |bi j l − qi| ≥ |brt l − qr| for any |bi j l − qi| ∈
B\{|brt l−qr|}.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:32 M. E. Ali et al.

q2

q3

q1

Fig. 17: The known circular region C(x,r), query points {q1,q2,q3}, and
the BUAD |q1−b131|.

PROOF.
We will first prove the first part of the lemma. Let |q j − x j| be the maximum of all minimum

distances {|q1− x1|, |q2− x2|, . . . , |qm− xm|} from m query points to the boundary point set ß. Now,
if we draw a circle centered at x j with a radius |q j−x j| and the circle contains all other query points,
then the distances from all those query points to x j will be smaller than the minimum distance
|q j− x j| of q j to the boundary point set ß. Since for any point y ∈ ß \ x j, the distance from q j to y
will be higher than |q j− x j|, the point x j minimizes the maximum distances for subgroup sgm and
|q j− x j| is the BUAD.

If the BUAD cannot be computed using the above process, we rely on the bisectors of query
points as described in the second part of the lemma.

Given the list of bisectors bi j1bi j2, where 1 <= i, j <= m, of all pairs of query points, we will
prove that the BUAD can be computed from the intersection of bisectors and the boundary point set
ß of C(x,r). We will show that, if the circle centered at brt l with a radius of |brt l−qr| (or |brt l−qt |)
is the minimum radius circle in B, then brt l ∈ ß minimizes the maximum distances for subgroup
sgm.

Let brt 1 and brt 2 be the two intersection points of the bisector brt 1brt 2 and the boundary point set
ß of C(x,r). Let us also assume that brt 1 and brt 2 meet two arcs bounded by the smaller angle ̸ qrxqt
that ranges from 0o to 180o and the larger angle ̸ qtxqr which is greater than 180o, respectively.

Let us first consider the case when brt 1brt 2 meets the arc q̂rqt bounded by the smaller angle
̸ qrxqt , i.e., brt l = brt 1. In this case, since brt 1 minimizes the maximum distance for qr and qt
(as shown in Lemma A.1(2)) and contains all other query points, |brt l − qr| is the BUAD. This is
because, for any other point y′ ∈ ß\brt 1, the aggregate distance from qr and qt will increase, as brt 1
minimizes the maximum distances from qr and qt to ß.

Let us consider the case when brt 1brt 2 meets the arc q̂rxqt bounded by the larger angle ̸ qrxqt
which is greater than 180o. That is , i.e., brt l = brt 2. In this case, the point brt 2 does not minimize
the maximum distances from qr and qt to boundary point set ß of C(x,r). We will prove that brt l
still minimizes the maximum distance for all query points. To prove this, we first identify a set of
candidate points in ß that have the possibility of minimizing the maximum distance for query points.

Given brt l−qr is the smallest distance in B that contains all query points. Let (qr, |qr−brt 2|) and
(qt , |qr−brt 2|) be two circles centered at qr and qt with radii |qr−brt 2| and |qt−brt 2|, respectively.
Any point inside the circle (qr, |qr−brt 2|) will have a smaller distance to qr than the distance |qr−

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:33

brt 2|, and similarly any point inside the circle (qt , |qt − brt 2|) will have a smaller distance from qt
than the distance |qt−brt 2|. Thus the boundary point set ß of C(x,r) that falls inside the intersection
of two circles, (qr, |qr−brt 2|) and (qt , |qr−brt 2|), can have a smaller distance from qr and qt than
the aggregate distance from qr and qt to brt 2. Let the arc ŷ1y2 be the set of boundary points that can
have a smaller maximum distance than the distance |qr− brt 2| for qr and qt . (Figure 18 shows an
example where the arc ŷ1y2 is formed by two circles (q2, |q2− b232|) and (q3, |q3− b232|))). Now,
we need to show that no point on the arc ŷ1y2 can have a smaller circle that encloses all query points
of sgm.

We will first show that the circles centered at two extreme points y1 and y2 of the arc ŷ1y2 with
a radius equal to or smaller than |qr− brt 2| cannot contain all query points. We now show that the
circle centered at y1 with a radius |y1− qr| (or |qr− brt 2|) cannot include all query points. That is,
there is at least one query point qi that falls outside of the circle (y1, |y1− qr|). Let us first assume
that qi is on the border of the circle (y1, |y1− qr|). In that case the bisector of qi and qr must go
through the point y1 as y1−qr = y2−qi. On the other hand, if qi is inside the circle (y1, |y1−qr|),
then the bisector of qr and qi can meet at a point on the arc ŷ1y2. In this case, the distance |qi−bri2|
would have been chosen as the radius of the minimum bounding circle if the circle centered at bri2
with a radius |qi− bri2| contains all the query points. Since |qr − brt 2| is the minimum enclosing
circles in B, the query point qi cannot be inside the circle (y1, |y1−qr|). Similarly, we can show that
the circle (y2, |y2−qt |) centered at point y2 with a radius |y2−qt | cannot include all query points.

x3

x1

x2

y

b131

b231

b232

C(x,r)

b232

Fig. 18: The known circular region C(x,r), query points {q1,q2,q3}, and
the BUAD |q2−b232|.

We will now prove that the circle centered at any point y′ ∈ ŷ1y2 with a radius |qr−brt 2| cannot
contain all query points. Let us assume that the circle centered at a point y′ on the arc ŷ1y2 passes
through a single query point qi and contains all other query points. The distance |y′−qi| is greater
than the minimum distance from qi to ß. So there must be another query point q j that is on the
circle or inside the circle. In these cases, the bisector of qi and q j that meets at bi j l with ß would
minimize the maximum distance for qi and q j. If the distance |qi−bi j l | is smaller than |y′−qi|, the
circle centered at bi j l with a radius |qi− bi j l | would have been selected as the smallest circle that
encloses all the query points. Since |qr−brt 2| is the minimum distance in B that encloses all query

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

XX:34 M. E. Ali et al.

points, the circle centered at any point y′ ∈ ŷ1y2 with a radius equal to or less than |qr−brt 2| cannot
include all query points. Therefore, no point on arc ŷ1y2 can have a smaller aggregate distance than
the distance |qr−brt 2| for MAX.

Figure 18 shows an example that |q2− b232| is the BUAD as the circle centered at b232 with a
radius |q2−b232| is the minimum bounding circle that encloses query points q1, q2, and q3.

Thus, after computing the optimal BUAD for all subgroups of size m, the BUAD for the subgroup
category m, BUADm can be computed by taking the minimum of all BUADi

ms.
The BUAD for MIN: To find the BUAD for MIN, we need to find a point y from the boundary

point set ß of C(x,r) that minimizes the minimum distances from all query points, {q1,q2, . . . ,qm}
to ß. That is, we need to find y that minimizes minm

i=1 |qi− y|. In this case, for a subgroup sgm =
{q1,q2, . . . ,qm}, the proposed lower bound in Lemma 4.4 also gives the BUAD for function MIN
as Lemma 4.4 finds the minimum of all minimum distances from query points to boundary point set
ß of C(x,r).

A.2. Cost Analysis
We compare our proposed methods with two competitive methods Combinatorial (COMB) and
FANN in terms of number of subgroups that need to be computed. This measure can be considered
a good proxy for the query CPU processing times.

The number of subgroups need to be computed by COMB is determined by the two parameters:
(i) the number n of members in the group, and (ii) the minimum relative subgroup size r with respect
to n, where r ∈ [0,1]. For a relative subgroup size r, the number of possible subgroups is given as

n!
(⌊nr⌋)!(n−⌊nr⌋)!

.

Taking into account other subgroup sizes between ⌊nr⌋ and n, we obtain the total number of possible
subgroups as

n

∑
k=⌊nr⌋

n!
k!(n− k)!

. (1)

COMB iterates through all possible subgroup combinations and applies the GNN technique [Pa-
padias et al. 2004] to each subgroup. In the worst case, for r = 0, we obtain the number of subgroups
to be computed is 2n−1.

The incremental methods INC-T-LB and INC-R-LB avoid consideration of all possible sub-
groups by incrementally expanding the search space and returning subgroups G in increasing order
of the gDist from G to its nearest object. At each step of expansion, the INC-T-LB and INC-R-LB
methods check the termination condition (Algorithm 1, Line 1.10). Specifically, INC-T-LB checks
whether the tight BUAD is large enough and INC-R-LB checks whether the relaxed BUAD is large
enough to guarantee the correctness of the current result.

Since the tight BUAD is guaranteed to be greater than or equal to the relaxed BUAD, the termina-
tion condition is easier to be satisfied using the tight BUAD than the relaxed one. However, for each
subgroup size k, computing the tight BUAD requires iterating through

(n
k

)
subgroup combinations.

When considering all subgroup sizes, we obtain O(2n) as the cost of each termination check.
The relaxed BUAD is computed by iterating through m query points (locations of group members)

in the search space to find the aggregate distance from the query set {q1, ...,qm} to the boundary
of the search space. Since m is bounded by the total number n of query points, we can say that
the worst case of checking the termination condition using the relaxed BUAD is O(n). For the
MQ method, the termination condition check is similar to that of INC-R-LB. However, since the
termination condition needs to be checked for the expansion of the search space for each query
point independently, the total cost of MQ is n times of the cost of INC-R-LB. Thus, the worst case

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

Spatial Consensus Queries in a Collaborative Environment XX:35

cost for MQ is O(n2). On the other hand, the FANN approach [Li et al. 2011] also uses a relaxed
lower bound while computing the nearest neighbor for a fixed subgroup size ⌊nr⌋. However, we
need to repeat the FANN process for a range of values between ⌊nr⌋ and n to obtain the results for
the k-BEST-SUBGROUPS-NN query, and in the worst case, the value of r is 0. That is, we have to
consider all possible subgroup sizes. Thus, the worst case cost for FANN is O(n2).

Note that the given complexity analysis only indicates how these algorithms scale as the dataset
size n increases. Since big-o notation ignores constant factors associated with different types of
operations, the complexity analysis is not indicative of which algorithm will be the fastest or the
slowest one in a specific case. For example, the cost of computing the tight BAUD is exponential
with respect to n where each operation involves only simple in-memory arithmetic calculations.
While the cost for checking all possible combinations of sub-groups is also exponential for COMB,
checking each combination involves executing an entire group NN query, which in turn incurs ex-
pensive index traversal operations.

ACM Transactions on Spatial Algorithms and Systems, Vol. X, No. X, Article XX, Publication date: September 2015.

