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ABSTRACT
Since its introduction a decade ago, differential privacy has been
deployed and adapted in different application scenarios due to its
rigorous protection of individuals’ privacy regardless of the adver-
sary’s background knowledge. An urgent open research issue is
how to query/release time evolving datasets in a differentially pri-
vate manner. Most of the proposed solutions in this area focus on
releasing private counters or histograms, which involve low sen-
sitivity, and the main focus of these solutions is minimizing the
amount of noise and the utility loss throughout the process. In this
paper we consider the case of releasing private numerical values
with unbounded sensitivity in a dataset that grows over time. While
providing utility bounds for such case is of particular interest, we
show that straightforward application of current mechanisms cannot
guarantee (differential) privacy for individuals under an open-world
assumption where data is continuously being updated, especially if
the dataset is updated by an outlier.
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1 INTRODUCTION
The growth in information technology and its penetration into our
daily life has resulted in an ever-increasing amount of personal data
being collected. Harnessing such large and diverse data has created
numerous opportunities To provide high quality, personalised ser-
vices, data exchange has become a key practice. However, a naive
exchange of data may lead to significant privacy breaches. This has
encouraged a range of studies on how to balance user privacy against
data utility. A key goal of data exchange is to derive statistical or
aggregate findings about a dataset as this limits privacy implications
for a single user.
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K-anonymity [20, 21] and its subsequent variations, such as l-
diversity [17] and t-closeness [16] were among the early proposed
solutions to provide statistical privacy in data release scenarios.
However, under various circumstances such privacy schemes may be
breached [7, 9]. This lead to the introduction of Differential Privacy
(DP) [4], that aims to preserve users’ privacy through guaranteeing
that the presence or absence of a user in the dataset does not have a
considerable effect on the outcome of a query or a data release. DP
guarantees what is protected and its amount of protection [13].

Most existing approaches that provide differential privacy focus
on a static dataset, i.e., they assume a closed world where all data
is known and does not change anymore. This makes current DP
solutions impractical for real-world scenarios where people con-
stantly produce new data or optout of existing datasets and hence,
rapidly changing an existing dataset. The study of differentially pri-
vate releases of time series or updated outputs has recently gained
attention. The authors in [6] propose differentially private counter
releases under continual observations, while the work in [2] does
not assume any upper bound for the number of releases. The authors
in [3] propose a method that can handle dynamic leaves and joins,
e.g., nodes in a sensing network. Each node encrypts and perturbs
its value and a trusted aggregator would compute the noisy sum of
the values. The proposed approach in [15] develops a mechanism to
release differentially private histograms in a dynamic setting.

However, the above-mentioned state-of-the-art studies focus on
cases with bounded and small global sensitivity, which intuitively
models the maximum difference a single user can make wrt a certain
query. Consequently, these DP mechanisms do not have to bound
sensitivity and rather focus on improving data utility since the noise
level accumulates over time. In this paper we focus on the provided
privacy levels for the case of differentially private release of numeri-
cal values (with unbounded sensitivity), e.g., average salary, average
daily power consumption of a household, etc. This is of particular
concern when the update is an outlier:

Example 1: A new family has moved to a suburb and takes part
in a survey. A similar survey has been conducted before their move
and its result has been released in a differentially private manner.
Suppose we are interested in a private release of the average salary
of families residing in that suburb.

Suppose the dataset in Example 1 is updated with an outlier,
e.g., a new family with a considerably higher than average salary
moves to the suburb. Figure 1 shows the change in the distribution
of differentially private average salaries before and after the update.
Computing the amount of change in the noise level, an adversary
may infer how much the global sensitivity has changed. We provide
more details later in this paper.
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The continual release of this information is of great importance
in many areas, e.g., urban planning applications. In our work, we
show that although the current proposed solutions provide privacy
guarantees for a single release, they are vulnerable if an outlier
(or a different group of users) is added to the dataset because the
prior private release of the dataset or query results can be utilized as
background knowledge of an adversary to perform a privacy attack
over the next release. To the best of our knowledge our paper is the
first study that explores the plausibility of releasing numerical values
with differential privacy guarantees under an open world assumption.
This calls for a rethink of current DP mechanisms that deal with
numerical values of users to ensure user privacy in a dynamic world.

2 RELATED WORK
Recent studies aim to provide differential privacy for scenarios
which involve dynamic datasets and multiple releases over time. [6]
and [2] proposed methods to release continual DP counters while
protecting the presence or absence of an event. [6] introduced the
notion of pan privacy, which provides differential privacy guaran-
tees even if the adversary has knowledge of the internal state of the
mechanism at a single timestamp. [19] suggests using a combina-
tion of encryption and Laplace perturbation to release time series
statistics. However, their mechanism needs full knowledge of the
stream to perform Discrete Fourier Transformation, which makes it
less practical in real world scenarios. Rather than event privacy, the
authors in [11] propose a method to provide w-event privacy, i.e.,
user-privacy over w consecutive timestamps, and allows updates
in the values and the size of the dataset does not change. The pro-
posed mechanism in [3] computes a differentially private sum in a
distributed system with users joining/leaving the dataset. Likewise,
the authors in [15] propose a DP-aware histogram release for dy-
namic datasets, in which people leave and join the dataset, however,
they assume cases where the domain of D remains the same, i.e.,
bounded sensitivity.

Differential privacy claims that the presence or absence of an indi-
vidual datum is protected regardless of the adversary’s background
knowledge. Certain background knowledge of the adversary has
recently been proven to breach privacy: access to prior deterministic
aggregate information about contingency tables [12], knowledge
about the correlation between data records in the datasets [23]. How-
ever, having access to the prior differentially private data releases
has not been studied in the literature.

(a) Initial noisy salary release. (b) Noisy salary with an outlier.
Figure 1: The distribution of the result of an average query
when k = 100 and ε = 0.1. The average does not change due
to adding an outlier, however, the noise level and standard devi-
ation of the distributions change considerably.

3 PRELIMINARIES
3.1 Differential Privacy
Differential privacy was proposed to preserve a user’s evidence of
participation in a dataset. Following this scheme the adversary’s
knowledge must not considerably change with or without the partic-
ipation of a single user:

Definition 1 [4]: A mechanism, M is ε-differentially private over
a query function f if for any two neighboring datasets D and D′,
and any r ∈ S where S⊂ Range( f ):

Pr[M (D) = r]
Pr[M (D′) = r]

≤ eε
ε > 0

where ε is the privacy budget of the process and along with the
global sensitivity determines the amount of noise to be added.

Definition 2 [4]: Global sensitivity is the maximum distance of
the result of the query, f (.), over all possible queries and datasets:

∆ f = max
D,D′,Q

| f (D)− f (D′)|

A common way of guaranteeing DP is to add Laplacian noise L (λ )
to the true answer of the query where λ = ∆ f/ε .

3.2 Unbounded sensitivity of Numerical Releases
Based on its definition, ∆ f must be determined according to all the
observations in the original dataset as well as all potential samples
that are not in the dataset (as it needs to protect users who did not
participate in the dataset as well). This may lead to an unbounded
global sensitivity, which has not been addressed in the literature.
For instance, if a dataset, Ds consists of the salary of residents in a
given suburb, one may argue that the records have a lower bound
of zero (someone with no salary), however, the upper bound needs
to be selected in order to protect even people who are not residing
in that suburb and hence are not in that dataset. A very delicate
question is what should be chosen as an upper bound for ∆ f since
simply adding L (∞) may result in no utility due to the considerable
increase in the noise to signal ratio.

3.2.1 Maximizing Privacy. Following Example 1 assume the
actual average salary in D is x̂a. When determining an upper bound
for ∆ f , we have to consider an individual with salary s who is not in
the sample dataset, but needs to be protected. Adding such a virtual
individual to D with size n, incurs an approximate relative error of
e = w−x̂a

nx̂a
to the original average value, i.e., x̂′a ≈ x̂a (1+ e).

This means that within a suburb where n = 15000 and x̂a =

$35,000, assuming a (virtual) salary, s, of around 5 million dol-
lars as s moves the average by 1%, and a salary of 0.5 billion
dollars (still a possible salary) doubles the average, rendering no
data utility. Note that up to this stage no noise has been added to
the result and the only source of error is due to determining ∆ f in a
data-independent manner.

Traditionally, the numerical values are bounded by a potential
maximum and global sensitivity is computed according to that [5].
We choose to bound the estimated range of salaries as S = [0,mx̂a]
(m ∈ N,m > 1) as proposed in [10]. When the size of the dataset is
publicly known, this implies adding noise proportional to L (mx̂a )

nε
)

to the sum of the salaries. In such case the utility loss is linearly
dependent to the estimated range of salaries and the privacy budget.
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While the data owner my prefer larger ranges (larger m) to preserve
privacy, the utility of the query results deteriorates considerably.

3.2.2 Maintaining Utility. In this paper, we assume the release
of query results is rewarded by data analyst(s) under the condition
that it meets certain utility requirements.

Definition 3 (a,δ )-loss bound: The query result, r is bounded by
(a,δ ) if the probability of r deviating a% from the true value is less
than δ :

Pr(|r− x̂| > ax̂) ≤ δ

We can rewrite the above expression using the Chebyshev inequality.
Having σ =

√
2 mx̂

nε
and a as the maximum relative error tolerated:

Pr(|r− x̂| > ax̂) = Pr(|r− x̂| > kσ ) ≤ 1
k2

In a case where the data owner wants to determine m arbitrarily, this
gives a lower bound on choosing ε . Having 1

k2 ≤ δ → k > 1√
δ

and

setting kσ ≤ ax̂, we reach ε >
√

2
δ

m
na . A similar computation can

determine m for certain εs.

4 PROBLEM DESCRIPTION
We consider the case where the data owner releases multiple differen-
tially private query answers/datasets. This is particularly necessary
in time-evolving datasets where users are dynamically leaving or
joining the dataset and studying the historical behavior of the users
is of importance.

4.1 Incremental continual release of numerical
values

In our scenario, the data curator (potential adversary) may access
the dataset N times. This may be in the form of asking queries, i.e.,
an interactive model, or gaining access to a private release of the
dataset, i.e., a non-interactive model.

Definition 4: An incrementally evolving dataset, D is a set of
size N where ∀Di,Di+1 ∈ D we have |Di+1| = |Di|+ 1 and Di ⊂
Di+1, ∀i ∈ {1, . . . ,N−1}.

Upon receiving an update (it can be modified to cover k updates),
the data owner wants to release a private average of values for
Di+1 (or Di+k). A straightforward approach towards releasing dif-
ferentially private results for each update is to uniformly divide the
overall privacy budget, E , and add independent noise with ε = E /N
to the true values each time a query is received. Such an approach is
supposed to ultimately guarantee εN-differential privacy according
to the sequence composition theorem [18] since each sequence of
the computation has ε-differential privacy.

To simplify our discussion in this section we assume that the
values are monotonically increasing. Note that as the system is dy-
namic, Di and Di+1, ∀1≤ i≤ t may not necessarily have the same
number of users. Intuitively, the amount of temporal gaps between
each access reflects to what extent these datasets are different. With-
out loss of generality, we assume each update is followed by a query
from the curator and hence a noisy release is observed.

4.2 Privacy risks of continual releases
As established in the previous section, bounding global sensitivity in
a data independent way would adversely affect the output utility. We

show now that determining the global sensitivity in a data dependent
manner may lead to a breach of privacy.

Suppose ri and ri+1 are the differentially private results to the av-
erage query at two consecutive timestamps, ti and ti+1 where Di and
Di+1 are two incremental neighbor datasets. Following the mecha-
nism in [10], r = x̂+L (mx̂

nε
) and thus Pr(M (D) = r) = nε

2mx̂ e
−nε

mx̂ |r−x̂|

where r ∈ R+ in our scenario.
We show through the following example that such approach does

not necessarily guarantee differential privacy for a new user joining
the dataset.

We have c = x̂i+1
x̂i

where c > 1 (i.e., we assume that the average is
increasing to simplify the discussion). We also assume the datasets
are large enough, hence ni ≈ ni+1. As |Di+1−Di| = 1, based on
Definition 1 we enjoy (i+1)ε-differential privacy if:

Pr[M (Di) = ri]

Pr[M (Di+1) = ri+1]
≤ eε (i+1)

Without loss of generality we can assume N = 2 (the general case for
k follows by induction). Since ∆ f1 = mx̂1/n1 and ∆ f2 = m(cx̂1)/n1,
for r1 and r2 following a Laplacian distribution, we obtain:

e−2ε ≤ εn1

2∆ f1
e
−εn1 |r1−x̂1 |

∆ f1

/
εn1

2c∆ f1
e
−εn1 |r2−cx̂1 |

c∆ f1 ≤ e2ε

Rewriting ea/eb as e(a−b) and applying a logarithm to the inequality
we obtain:

−2ε ≤ ln(c)− εn1

mx̂1
(|r1− x̂1|−1/c|r2− cx̂1|) ≤ 2ε

Based on its definition, differential privacy must protect the evidence
of presence of the newly added user in D2, i.e., ∀(r1,r2) ∈ S× S.
Now suppose S= [σ2,cx̂1+cσ2]. This means for the (highly unlikely
yet possible) worst case scenario when r1 = σ2,r2 = cx̂1 + cσ2, we
require to have a privacy budget of 2ε > ln(c), however, for any
arbitrarily chosen ε ≤ ln(c)/2 the 2ε-differential privacy will not
be satisfied.

The above example shows that ε-differential privacy ε cannot be
selected arbitrarily. Moreover, it is not possible to predetermine it
(as in the case of uniformly assigning εt to each release) since it
depends to the amount of change incurred as a result of adding a new
user. This is of particular concern if the new record is an outlier with
respect to the previous records in the dataset. For instance, the new
family in the first scenario have a considerably higher salary than the
normal salary range in that suburb (a usual case of gentrification).
In such a case, having the initial differentially private query answers
as the background knowledge, we not only may provide evidence
of participation for the new record, but we may also estimate the
value of the record.

5 PROPOSED INFERENCE ATTACK ON
CONTINUAL RELEASES

Generally, it is not possible to simply observe a changed average
value for a successful attack to a differentially but evolving private
dataset. The effect of adding an outlier to the dataset is smoothed
out by a growing dataset. Further, adding noise proportional to the
size of the population ensures small deviations from the true average
results for large datasets. Consequently, an adversary is normally
not able to detect an outlier simply from the fluctuations in the
average results. When an outlier is added to the dataset, the change
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in the noisy released average is negligible. However, having full
knowledge about the DP mechanism, the adversary knows that the
noise level is data dependent at each release and is able to use the
sequence of differentially private average results as background
knowledge for an attack.

Having the sequence of query results over time R = {r1,r2, . . . ,rN},
the mean and standard deviation of R may be estimated using the
maximum likelihood estimators (MLE). Since r = x̂+Lap(λ ), the
estimated mean, µ̂ and σ̂ may be inferred as the true average of
the population and the noise level, respectively. For a sample of
random variables following a Laplace distribution, µ̂ is estimated
as the median of the sample and σ̂ is estimated as the mean of the

distance of the samples from µ̂ , i.e., σ̂ = 1
N

N
∑
i=1
|ri− µ̂|. Moreover,

for any sample we can estimate [2nσ̂/χ̃2
1− α

2
(v) < σ < 2nσ̂/χ̃2

α

2
(v)]

with 1−α confidence where χ̃2 (v) is a chi square distribution with
v degree of freedom and v is proportional to the size of the sample
and is equal to 2E ( σ̂

σ
) [1]. Note that for any Rwi ∈Rw, if there is no

overlap between the confidence intervals of Rwi and its immediate
neighbors the adversary infers with 100% confidence that a person
with an anomalous value has participated in the ith window. How-
ever, our experiments show that such cases are rare as the outlier
needs to be significantly larger than the rest of the population as the
added noise blurs the borders.

Data: R,w,δs.
Result: ID of anomalous segments.
IDout ← [] ;
Rw← Segment (R,w);
while 1 < i < N/w do

θ̂i←MLE (Rw
i );

Scorei+1← p(Ri+1|θ̂i);
if Scorei+1 > δs then

IDout ← i+1;
end
i← i+1;

end
Algorithm 1: Inference Attack on Naive Releases

Algorithm 1 shows a potential inference attack that can be per-
formed by an adversary to detect an outlier regardless of the noise
added to blur the difference. After segmenting the released noisy
results, the process mainly compromise of two steps: i) fitting an
estimator to the ith set of observations, i.e., θ̂i and ii) checking how
likely is to observe the next segment based on θ̂i. In our work we
used MLE as the adversary have full knowledge of the noise func-
tion, otherwise it is possible to utilize other estimators, such as the
models used in [8] to find θ̂i. Moreover, similar to [22], we use the
log likelihood probability as our scoring function:

Score(Ri+1) =−log
w

∏
i=1

L(Ri+1|θ̂i)

The higher the score, the less likely it is that Ri+1 is drawn from the
same distribution.

Definition 3: A w−segmented sequence Rw is a discrete set
of segments of noisy results with length w derived from R, i.e.,
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(a) d̂ in real dataset.
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(b) d̂ in synthetic dataset.
Figure 2: The average distance (d̂) of daily trips in Porto taxi
trajectory in real dataset and synthetic dataset with n = 1000.

Rw = {Rw1,Rw2, ...,Rwk} where Rwi = (r(i−1)w+1,r(i−1)w+2, ..,riw)
for 1≤ i≤ k.

Two different strategies are adopted to estimate θ̂i: θ̂i can be esti-
mated using either the ith set of observations, i.e., a fixed number w
of observations from the ith segment, denoted as Fixed Window Es-
timation (FWE). Alternatively, to estimate θ̂i the set of observations
can be expanded at each step to include all the previous segments,
i.e., {R1, ...,Ri}, denoted as Growing Window Estimation (GWE).

In addition to FWE and GWE we employ Levene’s test [14] as
a statistical inference method that aims to test whether or not the
variance of multiple observations are equal (null hypothesis is the
equality of variances). Unlike other statistical tests, Levene’s test
does not assume normality for the underlying distribution of the
observations, which makes it an appropriate method to be adopted
in our case.

Therefore, if the resulting p-value of Levene’s test is less than
some significance level, it is unlikely that the observations are sam-
pled from a population with an equal variance. For any two con-
secutive point in the set of segmented observations, we score the
difference between them as 1−p-value. The less significant the
equality of variances, the more likely that the noise level (the stan-
dard deviation of Laplace distribution) has been adjusted due to the
existence of an outlier.

Such inference attack is of great importance in the privacy com-
munity as it may seem a safe practice to add independent noise to
each release. In the case of Example 1, the adversary may only know
the the new family is much richer than the average residents in the
area, however after releasing the second private average an attacker
would (i) be able to confidently say if the family has participated in
the survey or not and (ii) be able to estimate their real salary within
a certain confidence. As a result, a naive release approach cannot
guarantee εN-differential privacy over N releases.

6 EXPERIMENTS
To evaluate the performance of our inference attack, we have used
a collection of real and synthetic datasets. We used the Porto taxi
trajectory dataset. We sampled 19,925 random trajectories within
a 10km×10km area from the Porto taxi trajectory dataset. We con-
sider the scenario of releasing differentially private average distance
of trips per day, i.e., N=365. On average there are 55 daily trips
in the dataset and the average distance of all trips is 5.45km. We
considered the top 0.001 percentile of the distances (d > 71.41) as
outliers, which resulted in 20 outlying trips occurring in 19 days.

4



Functionality Range Default
n Number of Daily Records ≈ 55−104 103

w Segment Size 5−20 10
ε Privacy Parameter 0.05−2.5 1

Table 1: Experimental settings.

We also created a synthetic dataset with varying number of daily
trips: we fit a Gaussian model to the original daily trip distances of
the Porto trajectory data and generate two synthetic datasets with
100, 1000, and 10,000 daily trips. Similarly, the top 0.001% of the
synthetic distances are classified as outliers, which results in 20,
24 and 24 outlying segments respectively. The synthetic datasets
provide the opportunity to explore the performance of our attack in
difficult scenarios, where the outlier’s effect in the average value
becomes insignificant. Figure 2 shows the average number of trips
and the real and synthetic average distances over a year.

We examine the performance of our inference attack using the
precision (P) and recall (R), where precision shows how many of
the detected outlying segments have actually an outlier value in
their daily trips and recall specifies how many of the actual outlying
segments have been detected by the model. The results are averaged
over 100 runs.

As can be seen in Figure 3a, small privacy budgets, i.e., ε = 0.5,
incur large amounts of noise in the query results. The small number
of daily trips in the Porto taxi dataset significantly increases the
noise level (as discussed earlier noise level is proportional to ∆ f

niε

and the smaller the ni the larger the noise scale). Hence, we consider
ε > 1, however when m = 2, this setting approximately guarantees
a (0.15,0.15)-loss bound (a relatively modest utility bound).

In order to provide comprehensive results, we have considered
different settings for our experiments. Table 1 shows a summary of
our experimental setting where we evaluated our inference strategies
to detect outlying segments in the Porto with respect to the size of the
dataset (daily trips), the privacy budget and the size of the segments.

6.1 The Effect of Privacy Budget
We ran the inference attacks for varying εs between 0.05 to 2.5
and Table 2 shows the effect of privacy budget on our inference
success. For any ε , GWE has the best performance among our
scoring strategies since it is using the entire set of previous releases
to score a new segments, i.e., it maximizes the use of available
background knowledge.

It is expected that larger amounts of ε would result in a more
successful inference attack since the amount of noise decreases.
This assumption is validated for GWE where the increase in ε

results in almost 10% of improvement in both precision and recall.
However, the precision and recall does not significantly improve
when increasing the budget from 1 to 2.5. This is of importance
since the data owner is able to determine an upper bound to the
success of an adversary in detecting outliers and hence can flexibly
opt for larger privacy budgets that considerably improve utility.

Levene’s test has its best performance for moderate noise levels.
This may be due to the fact that although a small privacy budget adds
a large amount of noise to the true value, a large budget imposes a
negligible amount of noise, which makes it difficult to determine
whether the variance of the segments has changed significantly.

ε 0.05 0.5 1.0 2.5
Performance P R P R P R P R
Levene’s Test 0.57 0.52 0.61 0.55 0.61 0.55 0.60 0.53

FWE 0.63 0.56 0.65 0.58 0.65 0.58 0.63 0.57
GWE 0.72 0.64 0.80 0.71 0.80 0.72 0.82 0.73

Table 2: The effect of varying ε on the performance of different
outlier detection strategies.

w 5 10 15 20
Performance P R P R P R P R
Levene’s Test 0.35 0.57 0.61 0.55 0.75 0.50 0.78 0.47

FWE 0.40 0.63 0.65 0.58 0.79 0.52 1.0 0.60
GWE 0.46 0.65 0.80 0.71 0.91 0.60 1.0 0.60

Table 3: The effect of varying w on the performance of different
outlier detection strategies.

6.2 The Effect of Window Size
The increase in the size of the segments would imply larger number
of observations to estimate the mean and standard deviations of a
sample. The results shown in Table 3 demonstrate that as the size of
the segments increase, the precision of all three strategies improves,
especially for GWE where we witness a sharp rise in its precision
when w becomes 10. For w = 20, both FWE and GWE have the
maximum precision, i.e., all of the detected outlying segments have
actually an outlier in them.

However, recall does not have the same trend as with the increase
in the size of the segments, there is a slight decrease in recall for all
of the three strategies. This may be due the fact that larger segment
sizes decrease the number of total segments in general, and thus the
proportion of outlying segments increases. Therefore, missing an
outlying segment is penalized harder.

6.3 The Effect of Size of the Dataset
We evaluate the performance of FWE, GWE and Levene’s test
against the increase in the size of the dataset (Table 4). Since the
increase in n blurs the effect of an outlier in the true average value,
we expect the performance of our inference attacks to deteriorate for
larger ns. However, our experiments show that an initial increase in
the number of daily trips improves the performance of our inference
strategies. Although it may sound counterintuitive, this is happening
due to i) a decrease in the noise levels and ii) detectability of outliers
in datasets with relatively small sizes, e.g., n = 1000: Larger ns
reduce the noise level considerably, which makes the noisy average
releases closer to the actual average value. On the other hand, the
actual average values, and respectively the noisy averages, cannot
blur the effect of an outlier when n is not large enough.

A dataset of 10000 daily trips, worsens the performance of our
inference strategies, where Levene’s test is most affected by the
increase in the dataset size.

7 FINDINGS AND DISCUSSION
We introduced three strategies to detect the outlying segments: FWE
scores each segment on noisy values based on the most recently
observed segment, whereas GWE considers all of the previous obser-
vations when evaluating the current observation. We also adopt the
Levene’s test that is a statistical inference approach to examines how
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n per day ≈ 55 100 1000 10000
Performance P R P R P R P R
Levene’s Test 0.44 0.50 0.61 0.65 0.61 0.55 0.52 0.43

FWE 0.55 0.61 0.53 0.56 0.65 0.58 0.67 0.57
GWE 0.62 0.69 0.60 0.64 0.80 0.72 0.77 0.67

Table 4: The effect of varying n on the performance of different
outlier detection strategies.
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(c) Effect of w on performance.
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Figure 3: Effect of varying parameters on performance (deter-
mined based on F-Measure) of the inference attacks.

equal the variances of a set of observations are. Our finding suggests
that the GWE has the best performance with regard to detecting
the outlying segment, which is due to the fact that it maximizes
the use of available background knowledge (in contrast to FWE) to
estimate the probability distribution of noisy releases. On the other
hand, Levene’s test is largely unsuccessful to detect the outlying
segments, although it follows the intuition behind the attack, i.e.,
change in the noise scale, to detect the outlying segment. A note-
worthy observation of the experimental results is the fact that an
increase in the privacy budget cannot improve the performance of
our inference attacks from a certain threshold. This knowledge can
be used to model the probability of success in an attack to choose a
utility-aware budget, hence balancing privacy and utility.

Finally, our inference attacks can be further explored with respect
to properties such as the number of the outliers in the dataset and the
size of outliers, i.e., how large it is compared to the average values.
Moreover, the pace of changes in the dataset is expected to have an
effect on the success of our inference attack. The Porto taxi dataset
is a highly dynamic dataset, wherein overlapping daily trips may not
be a widespread phenomenon. However, in a less dynamic dataset
where the majority of the underlying users remains untouched, the
effect of an outlier may be more readily detectable.

8 CONCLUSION
We focused on the problem of incremental release of differentially
private numerical values in a time evolving dataset. Assuming a safe

yet utility-aware upper bound for the maximum possible value and
tailoring noise level based on that is a common practice. However,
we provided formal and experimental evidence that such mechanism
cannot guarantee (differential) privacy over time when data utility is
paramount, particularly if the dataset is updated by an outlier. Our
finding urges a rethink of straightforward DP mechanisms prior to
applying it to complex, time evolving datasets, which are common
in many emerging areas such as participatory sensing.
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