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1 Introduction

Efficient data acquisition in WSNs has attracted signifi-
cant interest. For example, TinyDB [2] introduced query dis-
semination and data aggregation trees. Later, a probabilistic
model of the physical world is used in [1]]. Recently, [3] ar-
gues that probabilistic models of the physical world used in
acquisition may miss outliers and introduces spatio-temporal
suppression-based methods. We classify these established
approaches as query-and-data centric approaches for opti-
mizing the data acquisition process.

In our work, we are considering a semantic query opti-
mization approach where application level semantics for re-
stricting the number of nodes that are involved in a query
is used. In particular, we are working on a query optimizer
that uses spatio-temporal application semantics to reformu-
late queries.
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Figure 1. A simple WSN for monitoring a farm.

Lets consider a simple network, Figure [I] In this exam-
ple, we present a cattle monitoring system. Lets assume that
the farmer locks the cattle in a shelter every night and in
the morning opens the shelter gate for grazing. The farm is
divided into two zones with a river. The river can only be
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crossed via a bridge—if the gate of the bridge is open—or us-
ing the shallow regions of the river—if they are not heavily
flooded. We assume a monitoring query being submitted to
the WSN from a base station. The existence of the river,
shallow regions of the riverbed as well as the bridge can
be entered as application semantics to the system. Some of
these semantics can have dynamically changing states such
as whether the bridge’s gate is open.
Lets consider a simple monitoring query:

SELECT AnimalsDetected.location
FROM AnimalsDetected

SAMPLE INTERVAL ~ 30secs

FOR 45mins

Using the application level knowledge, certain parts of the
network may not be useful for this query at all. For example,
we observe that there is a river, and currently the shallows of
the river is flooded (marked by a cross in the figure) and the
bridge’s gate is closed (also marked with a cross), thus, the
upper zone of the WSN is entirely irrelevant for our monitor-
ing query. This query should not be broadcasted to this part
of the network (marked with a cross). A query optimizer can
thus check a list of constraints and can reformulate queries
to improve the energy consumption, i.e., a wHERE clause that
is entirely missing from our sample query can be inserted.

2 Model

In our current model we are focusing on forming query
plans that are created once at the start of the acquisition at the
base station. We address the cases when domain facts change
their states during a query execution by using a simple re-
broadcast of the query which is assumed to happen rarely.

A list of constraints can be entered to the system by ex-
perts. Using these constraints, we can partition the space into
mutually exclusive zones connected to each other via bridg-
ing points. More complex representations where mutual ex-
clusion does not hold or bridging points are unidirectional
are not addressed here. This zone-based spatial representa-
tion can then be converted into a planar graph representation.

Let the graph representation of the deployment space with
domain facts be G = (V,E) where V is a set of vertices each
maintaining a polygonal description representing a zone and
E is a set of edges each maintaining a list of bridging points
representing the connections between zones. Given an event
epicenter (multiple centers can also be considered), we can
traverse this graph to locate the zone, vertex, where this event
is emerging. In our example, this is where the shelter is and
the event is the dispersion of the flock to the farm.



Once the vertex for the event epicenter is found, then
query-and-data centric methods can be incorporated to op-
timize the acquisition process. For example, a model-driven
approach could be chosen and adapted using the application
level semantics represented by our graph. Lets consider a
simple model of flock dispersion. Given an epicenter, e, we
assume that the animals disperse in all directions with the
maximum speed, s (as depicted by circles around the epicen-
ter in Figure @]) Thus, given a period of time, ¢, the maxi-
mum dispersion reached by the flock cannot be more than
the area of the circle, 7t x (s x )2, centered at e. Once the
flock reaches where the bridging points (the shallows and the
bridge for our example) could effect the dispersion model,
also named as breakpoints for an event (e.g., i and j), an up-
dated model for dispersion has to be used. In this case, lets
assume that both “bridge’s gate is open” as well as “river is
not flooded”. As the flock will not be able to reach the up-
per zone of the network freely because there are only two
bridging points to this zone, some parts of the upper zone of
the network can be shutdown depending on the model used
for dispersion as well as the query lifetime. If the query life-
time is 7 and the zone A where e lies contains the maximum
dispersion circle for an s, then a sub-area of this zone is re-
turned as the query dissemination and data collection area. If
zone A cannot fully contain the dispersion (assuming a larger
T, s, or an e closer to the breakpoints) then the position of i
and j should be used to compute the amount of penetration
that we can observe into zone B. For our dispersion model,
this is done by subtracting the distance d, between e and the
position of the particular breakpoint, from s X T to compute
a new radius for the sub-event that will be centered at this
breakpoint. In this manner, G can be traversed to calculate
the parts of the zones, and the graph G, that can be reached
by the event for a query. A final region of interest for our
query is shown in Figure 2]

0 . -~
® Inactive I\.lodes = Q O °
.
.

Figure 2. A dispersion with application semantics leading
to a region of interest for our query. The simple graph
model of the deployment is overlayed.

The models used for acquisition can be probabilistic and
come from previously sensed data. Administrators can also
input non-probabilistic models into the system from the ap-
plication domain, e.g., in our case we used maximum speed
for animals as a simple pessimistic limit for dispersion. It is
important to note that suppression-based methods can also
directly be used with our work.

Without using our approach, existing methods would have
triggered a larger set of sensors. For example, [1, 12} 13]] would
have disseminated the query beyond the presented region of

interest and even with suppression methods would have con-
tinued to sense at nodes that we know there will not be any
results to our query.

3 Preliminary Experiments

We have run preliminary experiments using the setup
from Figure [2] (the shallows were flooded and the bridge’s
gate was open). We have used the J-Sim (www.j-sim.org)
simulation environment with a 20 by 20 rectangular WSN
and 10 animals to be detected. We ran a query for 60 minutes,
sampling at every minute. Our results are given in Figure 3]
We have compared our approach with a base data collec-
tion mechanism where all the nodes wake-up at every minute
and the nodes that sense an animal send a report to the base
station. Our approach also used the same simple communi-
cation scheme. As expected, we see the number of sensor
node activations drop by more than half while the communi-
cation for the two approaches remain the same. Depending
on the number of sensors, animals to be detected, sampling
frequency, duration of the query, and the application seman-
tics, the benefits of our approach could change. However,
we see that even with an expensive communication scheme,
the number of activation savings can be an order of magni-
tude more that the number of transmissions in the system.
Given the costs for starting up a node, sensing a stable input,
computation and memory accesses—especially for elaborate
acquisition schemes—the difference we observed could trans-
late to major power savings for existing sensor platforms.
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Figure 3. Experimental results
4 Future Work

We are currently working on incorporating complex ac-
quisition models into our framework. As future work, we
plan to investigate update-based methods for addressing
settings where domain facts can dynamically change their
states. We also plan to incorporate some parts of the query
plans into the broadcast packets so that the acquisition pro-
cess can be guided incrementally and in a decentralized man-
ner throughout the query lifetime. Finally, we plan to extend
our experimental findings.
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