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Abstract. This paper presents a real-time gesture recognition technique based on
RFID technology. Inexpensive and unintrusive passive RFID tags can be easily at-
tached to or interweaved into user clothes. The tag readings in an RFID-enabled
environment can then be used to recognize the user gestures in order to enable
intuitive human-computer interaction. People can interact with large public dis-
plays without the need to carry a dedicated device, which can improve interactive
advertisement in public places. In this paper, multiple hypotheses tracking is used
to track the motion patterns of passive RFID tags. Despite the reading uncertain-
ties inherent in passive RFID technology, the experiments show that the presented
online gesture recognition technique has an accuracy of up to 96%.

1 Introduction

Large digital displays have become a well-established medium for advertising in pub-
lic places. However, the efficacy of outdoor advertising can be improved by providing
intuitive ways for users to interact. Interfaces that utilize the users’ gestures as they are
standing in front of a public display offer an intuitive and natural way of interaction.
Gesture recognition techniques in human-computer interaction can be broadly divided
into vision-based and device-based techniques. Murthy and Jadon [13] give a com-
prehensive review of vision-based gesture recognition techniques. Their challenges are
cluttered backgrounds and varying illuminations, especially in public places. Moreover,
recording user movements using video is resource intensive. Device-based hand gesture
recognition techniques, on the other hand, typically use customized equipment such as
gloves with embedded sensors [10, 15-18], mobile devices such as NFC-enabled mo-
bile phones [8, 6] or accelerometer-enabled devices such as the Wiimote [18] to measure
user movements. Glove-based techniques are relatively intrusive while the less intrusive
devices are not readily available in public places.

In this paper, we propose the use of passive Radio Frequency IDentification (RFID)
to provide hand gesture-based human-computer interaction. RFID is an effective auto-
matic identification technology that allows for easy proximity sensing of tagged objects.
Objects tagged with small inexpensive and unintrusive passive RFID tags can be sensed
from a few centimeters up to several meters. Passive RFID tags operate without a battery
and it is possible to tag large collections of objects with multiple tags. All RFID tags
contain unique identification numbers along with other data to easily identify tagged
objects.



In a previous work [2], we employed multiple hypotheses tracking to track the mo-
tion patterns of RFID tags in an offline gesture recognition technique. A combined tag
consisting of multiple subtags was used to increase the readout reliability of the RFID
readers. In this paper, we design and evaluate an online gesture recognition technique,
which is capable of real-time gesture recognition with an accuracy comparable to the
offline gesture recognizer. Detailed experiments are conducted to compare and evaluate
both techniques. Further, Levenshtein distance [11] is used to find the closest match-
ing gesture to a tag track. It is shown that the online technique is capable of real-time
gesture recognition with an accuracy of up to 96%, without requiring any learning or
training. We also show our findings for independent gesture recognition of two users.

2 RFID Localization

There are a number of location-sensing techniques based on active RFID technology
that measure the received signal strength (RSS) to estimate a tag’s location [5]. How-
ever, the use of RSS in tag localization is more accurate for active tags since they carry a
power source and hence, have more stable performance within crowded environments.

Because of the various error sources in passive RFID systems, reliable operation
as the tag moves in the environment is inherently difficult and presents a significant
challenge. To localize passive RFID tags, some researchers use angulation technique to
estimate the direction of arrival of a tag signal [14, 21]. Furthermore, Wilson et al. [20]
use the percentage of positive tag reads as an indication of distance and Chawla et al.
[7] infer a tag’s position based on the relative power level that is necessary for a reader
to detect the tag.

A number of passive RFID-based location-sensing systems use only the presence
information from RFID readers to localize a tag. RFID readers can only sense the pres-
ence of a tag within their detection fields, providing proximity information of the tag,
but they cannot directly determine the tag’s distance to the reader. However, one posi-
tive detection of a tag greatly reduces its possible locations, since it indicates that the
tag is in the reader’s detection field. To estimate the whereabouts of the tag more pre-
cisely, the tag readings from a mobile RFID reader from different vantage points [12]
or the output of several stationary readers [4, 9] can be combined.

Existing passive RFID-based location-sensing techniques mainly focus on localiza-
tion of stationary tagged objects [4,7,9, 14,20,21]. A few of the proposed methods
also try to localize and track moving objects [14,20, 21] under particular conditions.
However, none is capable of accurate online tracking of arbitrarily moving tags.

3 RFID-based Gesture Recognition System

We have built an experimental system using the SkyeModule M9 UHF reader from
SkyeTek [1] (Figure 1(a)) with a maximum read range of approximately two and a half
meters, and their linear broadband UHF antennas (Figure 1(b)). We chose ISO 18000-
6C tags (Figure 1(c)) since they are small and compatible with the employed readers.
The tag-antenna orientation determines if the tag receives enough energy to be de-
tected by the antenna. To increase the readout reliability of a tag when it is close enough
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Fig. 1. (a) reader (b) antenna (c) single tag (d) combined tag

to an antenna, we use a combined tag instead of a single tag. As shown in Figure 1(d),
our combined tag consists of four individual co-located tags, where each tag is rotated
45 degrees to its neighbor tag. All single tags, or subtags, in a combined tag have dif-
ferent identifiers but they are combined to represent one super tag. We monitor a 80cm
by 100cm rectangular area on a desk (Figure 2(a)). The rectangular monitored area is
divided into eighty equally-sized square cells Cp,...,Co 7 (Figure 2(b)) with the side
equal to the width of the super tag, which is 10cm. The reader works in inventory mode,
which runs an anti-collision protocol to read many tags simultaneously. It is connected
to four antennas (A; —A4) via a multiplexer, which are placed just outside the monitored
area (Figure 2(a)). Time slicing is used to avoid an interference between the antennas.
The four antennas are sequentially energized, which in turn return the tag identifiers in
their detection fields. The RFID readings are then sent to the gesture recognizer on a
laptop via a USB connection.

partition | code
p1 0110
p2 0100
p3 1100
p4 1011
ps 1110
pe 1101
p7 1010
ps 0011
po 1000
pio | 1001
p11 | 0001
pi12 | 0010
(@) (b) (c)

Fig. 2. The monitored area

3.1 Space Partitioning

RFID readers can only sense the presence of a tag within their detection fields, but they
cannot directly determine the tag’s distance to an antenna. To estimate the whereabouts



of the tag more precisely, the output of several stationary readers or antennas can be
combined. In this case, the monitored area is divided into multiple partitions so that each
partition is in detection fields of a particular set of antennas. We refer to the technique
of using stationary RFID antennas to partition a space as space partitioning.

Figure 2(b) shows the partitioning of our monitored area into twelve partitions by
A| — A4 with overlapping fields, at a given time. We differentiate the created partitions
by their assigned codes. A 4-bit binary code, BC[Cy] : by.by.b3.bs, is assigned to each
cell Gy, b; is set if any subtag of a supertag in Cy is within the detection field of A;.
Figure 2(c) shows the binary code assigned to each partition. Partition pi, for example,
is assigned a binary code of 0110, since it is only in detection fields of A, and A3.

Because of false negative and positive readings, there are always unavoidable un-
certainties about the presence of RFID tags. This is the biggest challenge in designing a
passive RFID-based system, especially when antennas are in close proximity. To cope
with uncertainties in RFID readings, instead of assigning a fixed code to each cell of the
monitored area, each cell Cy is assigned a sequence of possible codes, BC;, and their as-
sociated codes W (Cy, BC;): {(BCy,W(Cy,BC1)),...,(BCp,W(Ci,BCy))}; Pmax = 2", Where
n is the number of antennas. The weight assigned to each code shows how probable the
occurrence of that particular code is.

3.2 RFID-based Gesture Recognition

Whenever a user draws a gesture by moving a tag on the monitored area, a sequence of
RFID readings is generated. We use multiple hypotheses tracking approach [3] to track
a tag, which generates a set of hypotheses to account for all possible tracks of the tag
based on the received RFID readings. The key principle of this approach is that the track
update decisions are deferred until more RFID readings are received. A flow diagram
of both offline and online gesture recognizers is shown in Figure 3.

Offline Gesture Recognition On the receipt of new data (the k' set of RFID readings),
BC;}, code is generated in CODEGEN (code generator), as explained in Section 3.1. The
INI (initiator) process creates a hypotheses tree once BC) is received, which includes as
its children the cells C; with W (C;, BCp) > 0.

ONLINE
, CODEGEN
RFID antenna readings Choose the best subtree,
Receive new RFID readings, [<@& add its root to the track &
generate BCk make that subtree the new tree
online & time >window-size *
HPGEN PRUNE | GESREC

INI

Form new set of hypotheses, Reduce the number of Tracks The Intended Gesture : G
Initialization calculate their weights, =1 hypotheses by elimination, Gesture Recognition g
update the hypotheses list update the hypotheses list

Fig. 3. The gesture recognizer architecture

On the receipt of new codes BC}, at time k, HPGEN (hypotheses generator) expands
each hypothesis into a set of new hypotheses by considering all possible new locations



of the tag, which are determined by considering the possible movements of the tag.
We assume that the tag is either moving horizontally or vertically, as shown in Figure
4(a). The antennas’ reading speed is high enough to ensure that the tag does not move
more than one cell away between any two consecutive readings. Furthermore, Figures
4(b)-(c) show two illegal local movements, both assuming that the tag is always moving
forward. Moreover, it can be assumed that the tag does not remain in the same cell for
long — the speed of the tag is greater than a threshold.

(a) (b) (c)

Fig. 4. (a) Possible local moves (b)-(c) Illegal local moves

Figure 5 shows a sample hypotheses tree after three sets of readings are received.
Each branch of the hypotheses tree represents a possible track of the tag and nodes of
the tree are the cells the tag has traversed. A hypotheses list is also created that contains
all possible current locations of the tag along with the corresponding track weight, SW;,
which is the sum of the weights of all cells contained in that track. The track weight is
later used to assess track validation as well as track selection.

To eliminate unlikely hypotheses, PRUNE (pruning) uses a weight-based pruning
method. In weight-based pruning, the tracks are evaluated based on their weight and
tracks that are unlikely to reach a minimum weight requirement are removed from the
hypotheses tree. This allows us to use a threshold to reject a track rather than picking the
nearest matched track. The tree expansion process continues until the end of the gesture.
After the last validation phase, the most likely tracks are the ones with SW > B X SW,x
(B =0.90, in our tests). For each likely track, the GESREC (gesture recognizer) finds
the gesture that best matches that track, using the Levenshtein ditance, explained later
in this section. The output gesture is the one with maximum probability of occurrence.

Online Gesture Recognition The complete hypotheses tree for every gesture grows
exponentially as more readings are processed. Thus, there is a clear potential explosion
in the number of possible tracks (hypotheses) that our system can generate. Therefore,
the offline algorithm is not suitable for real-time gesture recognition. In the online ver-
sion of our algorithm, the complete hypotheses tree is created during the first window-
size time steps. The window-size is best to be set to the largest diameter of the partitions
to make sure that sufficient evidence is gathered before the tag track is updated.

At any time step afterwards, the hypotheses tree is replaced with one of its subtrees
(Figure 5) and the root of the new hypotheses tree is appended to the tag track. Both
the number of children of a subtree as well as the sum weights of its tracks are used to
compare the subtrees of a hypotheses tree. Section 4 discusses the performance of the
online gesture recognizer and shows that it can recognize gestures in real-time with an
accuracy comparable to the offline gesture recognition technique.
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Fig. 5. A hypotheses tree

The Matching Algorithm At the end of both offline and online recognition techniques,
the GESREC (gesture recognizer) is provided by a set of the most probable tracks or
the sequences of cells traversed by the tag. The Levenshtein distance [11] is used to find
the closest matching gesture to each track. The Levenshtein distance is a measure of the
similarity between two strings. It is the number of deletions, insertions, or substitutions
required to transform one string into the other string.

In order to use Levenshtein ditance for comparing each track and every candidate
gesture in our alphabet, it is necessary to represent both track and each candidate gesture
as strings. Each track is a sequence of traversed cells and thus, can be converted to a
sequence of directional moves. As shown in Figure 4(a) the tag is assumed to move in
only four directions of up, down, right, and left. Consequently, a track is transformed
to a string consisting of u, d, r, and [/, representing moving up, down, right and left,
respectively. To find the nearest gesture to the tag track, each candidate gesture is first
converted to the possible strings of the same size. For example, to calculate the distance
of an eight-cells long track to an up-right gesture, the possible strings of the candidate
gesture are uuurrrrr, uuyurrrr and uuuuurrr, assuming that each movement element is
greater than two. The gesture matching to the track is the one with the minimal distance
to the track and the output gesture is the one which matches to the highest number of
tracks. The gesture is unrecognizable if more than one gesture matches the track or the
minimal distance is higher than a threshold. Figures 6 shows two sample tracks along
with their nearest matched gesture.

4 Gesture Recognition Experiments

This section presents the test results of both offline and online gesture recognition tech-
niques. It is shown that the online gesture recognition algorithm (Section 3.2) provides
real-time recognition of gestures, with a comparable recognition rate to the offline al-
gorithm. In all experiments, the antennas are working in different time slots to avoid
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Track string: ruuuururrru Track string: uuuurruurrrdddrdd
Best gesture: uuuuuuurrrr Best gesture: uuuuuuuurrrdddddd
Distance: 3 Distance: 3

Fig. 6. Matcher

interference. One reading cycle varies between 530 and 1328 milli-seconds, depending
on the number of tags in the field of each antenna. Moreover, both algorithms were run
on the same machine, a 2.16 GHz Intel Core 2 Duo laptop with 2 GB of RAM.

The Gestures We collected quantitative data to evaluate the performance of both of-
fline and online gesture recognition techniques. Figure 7 shows our tested alphabet of
gestures. We tested 16 single gestures of G1 to G16, consisting of up to 4 gesture ele-
ments — same direction movements. Users performed gestures by moving the supertag
on a desk. Gestures had different sizes and were performed in different parts of the
monitored area. Gesture G5, for example, consists of two elements. It was performed
when the user moved the tag from bottom to up and then left to right, while facing Ay,
anywhere within the monitored area.

S ol I A 1N O N Y O I O Y
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Fig. 7. Example gestures

The accuracy of the proposed gesture recognition techniques depends on the size of
the partitions relative to the gestures. The created partitions must be small enough to
ensure that every gesture element crosses more than one partition. Otherwise, without
further information, inferring the direction of a tag’s movement is not possible. In our
partitioned area (Figure 2(b)), the maximum diameter of partitions is five cells. The
shortest length of the gesture elements is, therefore, set to six cells in all experiments. A
total of 640 samples were collected: 40 samples of each gesture G to G¢. Each gesture
is performed in two sample sets of different sizes. The first 20 samples of each gesture
consist of gesture elements of the minimum size of six, while the second 20 samples of
each gesture consist of slightly longer gestures - with movement elements of seven up
to eight cells.

The first and second sample sets of gestures Gy to G4 crossed 6 and 8 cells and
were performed in an average of 5456 and 7204 ms, respectively. The first and second



samples sets of gestures G5 to Gy, which consist of two elements each, crossed an
average of 11 and 13 cells and were performed in an average of 10023 and 11831 ms,
respectively. The first and second samples sets of gestures G3 and G4, which consist
of three elements each, crossed 16 and 19 cells and were performed in an average of
14419 and 16988 ms, respectively. The first and second sample sets of gestures Gis
and Gi6, which consist of four elements each, crossed an average of 21 and 25 cells
and were performed in an average of 19187 and 22812 ms, respectively. Overall, the
gestures were performed with an average speed of 0.11 m/s.

The M9 SkyeTek reader is relatively slow with a tag interrogation rate of 25 tags per
second. In fact, the passive tag read rate can be up to 500 tags per second [19], which
is 20 times faster than M9 SkyeTek reader. Therefore, a commercial system is likely to
be able to recognize much faster gesture movements.

Offline Test Results The size of the hypotheses tree and consequently, the run-time of
the offline gesture recognition algorithm grows exponentially with respect to the size
of the gestures. Therefore, the offline gesture recognition technique is unable of real-
time recognition of gestures. In fact, in our used machine, it failed to recognize gestures
of longer than 13-cells long in less than a second. Therefore, the offline recognition
algorithm results are presented for the gestures shorter than 13 cells. The average rate of
correctly recognized gestures of all 480 (40 samples of each gesture G to G2) gestures
was 94%. However, the second sample set of gestures — slightly longer gestures — were
recognized with an accuracy of 98%, which was 7% higher than the recognition rate of
the first sample set of gestures, which was 91%. Table 1 shows the number of correctly
recognized samples (CR,sr) for each gesture Gy to G12. A recognition error occurred
when the system was unable to match the track to a unique gesture, or it yielded a
gesture other than the drawn one. In the latter case, the output gesture (OG,sr) is shown
on the third row of Table 1.

Online Test Results The online gesture recognition technique was able to recognize
all gestures in real-time — in an average of 50 ms in our experiments. This is due to the
fact that the depth of the hypotheses tree does not grow with respect to the length of
the gestures (Section 3.2). Overall, the average rate of correctly recognized gestures of
all 640 (40 of each gesture G to G1g) gestures was 92%. However, the second sample
set of gestures — slightly longer gestures — were recognized with an accuracy of 96%,
which was 8% higher than the recognition rate of the first sample set of gestures, which
was 88%. CR,, and OG,,, values are shown in the fourth and fifth rows of Table 1.

Gesture| Gy |Ga| Gz | G4 | Gs |G| G7 | Gg |Go|Gio| Gi1 | G |G13|G14|Gi5|Gre

CRy;7|39139] 32 |39 | 40 [38]38] 36 [39/40| 37 |36 | - | - | - | -

OG,fr | G4 |G| Goa | G7 - |G3|G12|G3511|G4| - | Gia |Gosq| - | - | - | -

CR,, |39(39] 29 | 38 | 36 (38|37 | 35 |40| 36| 32 37 | 3640|3939

OG,, |G10|Gs(Go,1,10|1G7,11G0,2,13|G3|G12| Gos | - |G35|G12,69|G03,7|G79| - |G1o|Gio

Table 1. Recognition results



Online vs. Offline Test Results Both offline and online recognizers were applied on
the same sample sets of gestures G to G12. The tested sample gestures were recognized
with an accuracy of 94% and 91% with offline and online recognizers, respectively.
However, the average computation time of the online recognizer was 50 ms in average,
which was up to 25 times faster than the offline gesture recognizer on the same machine.
The higher recognition rate in offline recognizer is due to the fact that it creates the
complete hypotheses tree before likely tag tracks are chosen (Section 3.2). However,
the offline gesture recognition technique is unable of real-time gesture recognition.

Double Gestures Test Results Since the tag IDs are transferred to the RFID readers at
detection, tracking of several tags can be done independently and hence simultaneously.
To demonstrate that we can get comparable results when more gestures are to be rec-
ognized, two users performed two simultaneous gestures. An alphabet of eight double
gestures, G17 to Ga4, as shown in Figure 7, were tested. A total of 160 double samples
were collected: 20 samples of each double gesture G7 to Gy4. Similar to single ges-
tures, all double gestures were performed with an average speed of 0.11 m/s. They were
also performed in different parts of the monitored area and with different relative dis-
tance to each other. The average rate of correctly recognized gestures of all 160 double
gestures (20 sample of each) using the offline gesture recognition technique was 91%.
The slight decrease in the recognition rate is because of the increased tag interference.

5 Discussion and Conclusion

In this paper, we presented the design and evaluation of a real-time hand gesture recog-
nition technique based on RFID, which can be used to develop intuitive interfaces for
pervasive applications such as interactive advertisements. We proposed the use of multi-
ple hypotheses tracking to track the motion patterns of passive RFID tags and hence, the
hand gestures. Our online gesture recognition technique was able to recognize gestures
in real-time with up to 96% recognition accuracy.

Due to the low-cost of passive RFID tags and the fact that they can easily be attached
to a user’s clothes, we believe that passive RFID technology form a promising solution
for unintrusive gesture-based interaction. In an RFID-enabled environment, users can
interact with displays without the need for an auxiliary device, such as mobile phones or
customized devices. Since RFID antennas can sense the passive tags in their fields up to
a few meters, they provide remote user-display interaction, unlike touch-based screens.
Furthermore, since a user’s identity as well as the data stored in their tags are known
to the system, advertisements can be tailored to the informational need of a user who is
in the display’s vicinity. Moreover, the system can easily distinguish various users and
support simultaneous interaction as well as interaction among users.

On the other hand, the positioning accuracy of the proposed technique is limited
by the size of the created partitions, and hence, the range and the number of the used
antennas. Consequently, while the proposed technique is effective for macro-scale in-
teractions, it might be less useful in applications that require very fine-grained manip-
ulations. However, an RFID-based interaction technique can be combined with other
techniques such as accelerometers-based techniques to make the recognition of finer-
grained gestures possible. Such combined techniques still have the advantages of RFID-



based techniques, in particular personalized services due to the known identity of a user
and support of multiple users.
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