
From Ride-Sourcing to Ride-Sharing through Hot-Spots
Oscar Correa

University of Melbourne

oscarcg@student.unimelb.edu.au

Kotagiri Ramamohanarao

University of Melbourne

kotagiri@unimelb.edu.au

Egemen Tanin

University of Melbourne

etanin@unimelb.edu.au

Lars Kulik

University of Melbourne

lkulik@unimelb.edu.au

ABSTRACT
Smartphones have allowed us to make ad-hoc travel arrangements.

Ride-sharing is emerging as one of the new types of transportation

enabled by smartphone revolution. Ride-sharing aims to allevi-

ate current environmental, social and economical issues many big

cities are facing due to low vehicle occupancy rates. Although ride-

sharing companies have millions of users around the world, some

of them do not o�er true ride-sharing but a similar service called

ride-sourcing where private car owners provide for-hire rides. Ride-

sharing uptake has not been wide due to lack of convenience and

incentives. We propose an enhanced ride-sharing model through the

inclusion of proper places to meet that we call hot-spots. Hot-spots

are shown to increase the convenience by solving the round-trip

ride-sharing problem. As we represent our enhanced model through

graphs, we introduce a new graph problem that we call Constrained
Variable Steiner Tree, which is NP-hard. An e�ective and readily

deployable heuristic solution to this problem is presented which

is up to two orders of magnitude faster than the state-of-the-art

solution as combinatorial explosion is avoided by the usage of a

novel monotonic nondecreasing function.

CCS CONCEPTS
• Applied computing → Transportation;

KEYWORDS
Ride-sharing, Computational Transportation Science, Spatial Databases

ACM Reference format:
Oscar Correa, Kotagiri Ramamohanarao, Egemen Tanin, and Lars Kulik.

2017. From Ride-Sourcing to Ride-Sharing through Hot-Spots. In Proceedings
of the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, Melbourne, VIC, Australia, November
7–10, 2017 (MobiQuitous 2017), 10 pages.

DOI: 10.1145/3144457.3144483

1 INTRODUCTION
Smartphones have fundamentally changed the way we do things

in our daily lives. One of these changes is the way we approach

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

MobiQuitous 2017, Melbourne, VIC, Australia
© 2017 ACM. 978-1-4503-5368-7/17/11. . . $15.00

DOI: 10.1145/3144457.3144483

transportation. The ubiquitous nature of access to services and data

via smartphones has paved the way to ride-sharing as an ad-hoc

form of carpooling as transportation.

Although ride-sharing companies have millions of users around

the world, many of them do not o�er true ride-sharing services.

Instead, these companies o�er a similar mobility service called

ride-sourcing where private car owners provide for-hire rides. In

ride-sourcing, car owners do not drive their passengers as part of

their trips, thus ride-sharing bene�ts vanish.

Chaube et al. in [3] conclude that people would participate more

in ride-sharing if issues such as convenience, incentives and trust

are resolved. This paper proposes to enhance ride-sharing and make

it more convenient, attractive and safer by the inclusion of special

meeting points which we call hot-spots. We envision hot-spots

as places where users �nd it easier to leave their cars and take

someone else’s car for shared travel. These places may be equipped

with video surveillance and other facilities so that hot-spots can be

thought as a parallel infrastructure that is similar to train stations

but designed for ride-sharing.

Users would drive to hot-spots and leave their cars there instead

of either (a) meeting at other places (to which we refer as model
A) where �nding a parking spot is perhaps di�cult, or (b) being

picked up from their initial locations such as their home address

(to which we refer as model B) revealing their locations to strangers

and causing larger detours to drivers.

However, we argue that hot-spots are also important because

round-trip ride-sharing arrangements are signi�cantly more likely

than in the abovementioned ride-sharing models, i.e., models A

and B. As hot-spots are a subset of the set of candidate meeting

points in a road network, more people start their travel from a

hot-spot than from a normal meeting point. Consequently, there

may be higher demand to come back to hot-spots than to normal

spots. This provides a higher certainty to ride-sharers regarding

their return trips. Our scheme with hot-spots not only makes ride-

sharing (a) convenient, e.g., round-trips are more likely, users can

drive their cars as they will �nd parking and drivers do not need to

make large detours, (b) attractive, e.g., hot-spots gather more people

thus drivers will �nd more people who share costs with, and (c)

trustworthy, e.g., privacy is achieved as users do not need to provide

precise home/work locations and safety is increased through video

surveillance; but also keeps a comparable car occupancy rate to

model A, which in turn has been proved to increase the occupancy

rate compared with model B [2, 5, 9].

Our proposed model can be built on top of the classical paradigm

where the origins and destinations of the users are established,

namely trip-based ride-sharing. Nonetheless, since a more recent

Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia O. Correa et al.

type of ride-sharing called activity-based ride-sharing increases

the matching rate [8, 11], we decided to build our model based on

this paradigm. In activity-based ride-sharing, places are seen not

only as geographical locations, but also as venues where people

perform activities so that users can be o�ered a set of destination

choices to ride-share to. Therefore, we argue that an activity-based

ride-sharing scheme where the meeting points are constrained to

be hot-spots only, can be even more convenient.

An activity-based ride-sharing problem instance consists of a

set of users who ride-share to any of the points of interest (POIs)

where they can perform a common activity, e.g., shopping. Thus, an

approach to solve this problem instance would be �rst, to �nd an

optimal division of the set of users into subsets who ride-share to

their most convenient common POI; and second, to �nd an optimal

shared route to this POI for the users in each subset. Rahman et

al. in [8], proposed such an approach. The authors observed that if

the road network is modelled as a graph and the users, POIs and

meeting points are vertices in the graph, the shared route for each

subset of users would be a Minimum Steiner Tree (MST
1
). In each

MST, the leaves are the users (terminals), the intermediate nodes

are the meeting points (Steiner vertices) and the root is the POI.

That is, Rahman et al. modelled the solution to an activity-based

ride-sharing problem instance as a forest of MSTs. The authors call

this new problem on graphs the Variable Steiner Tree problem (VST),

which is di�erent from the classical Minimum Directed Steiner

Forest (MDSF) because the roots in each MST are chosen by Rahman

et al.’s algorithm, whereas in the MDSF problem disjoint subsets of

terminals with their corresponding roots are given.

In this paper, we include a new constraint on the feasible set of

Steiner vertices, i.e., meeting points must be hot-spots only. We re-

de�ne VST as Constrained Variable Steiner Tree problem (C-VST) and

we show that even with such a constraint, this problem is NP-hard.

Therefore, we introduce an approximate solution which maximises

a heuristic set function that we call Gain ratio. This function is

associated with a candidate Steiner vertex and the vertices that may

connect to it. The larger its value, the more attractive such Steiner

vertex is for meeting. Since the size of the domain L of this function,

i.e., the set of vertices that may connect to it, is 2
L

, combinatorial

explosion occurs when it is maximized naïvely. We show that our

heuristic function is nondecreasing under a speci�c update rule.

Such update rule maximizes our heuristic function in linear time

with respect to the number of users (terminals) for each candidate

Steiner vertex. Thus, we construct a nearly optimal solution to the

C-VST problem that can be deployed as a real-time service.

Our researchhypothesis is that, our approximate solution
to the C-VST problem is more e�cient and even more e�ec-
tive, under realistic city conditions, than the state-of-the-art
approach presented by Rahman et al. in [8], while, at the
same time our proposed ride-sharing model makes round-
trips signi�cantlymore likely andkeeps car occupancy rates
comparable to model A.

Our contributions are summarized as follows:

• We propose a new ride-sharing scheme constrained to hot-spots

that increases convenience, incentives and trust.

1
We abbreviate this problem as MST. Readers should not be confused with the minimum

spanning tree problem.

• We de�ne a new class of problem on graphs called Constrained
Variable Steiner Tree problem (C-VST) and prove it is NP-hard.

• For the C-VST problem, we present a fast approximate algorithm

that allows the development of a readily deployable solution for

activity-based ride-sharing with hot-spots. A monotonic nonde-

creasing function that constructs nearly-optimal Steiner trees

without combinatorial explosion is introduced.

• We show empirically that our solution is more e�cient (up to

two orders of magnitude faster) and more e�ective than the

state-of-the-art solution introduced by Rahman et al. [8].

The rest of the paper is organised as following: Section 2 de�nes

the problem and proves it is NP-hard. Section 3 presents related

work. Section 4 shows the state-of-the-art and our solution to the

C-VST problem. Experiments and results are presented in Section

5. The paper ends in Section 6 with discussions and conclusions.

2 PROBLEM DEFINITION
Trip-based ride-sharing systems require users to inform about their

origins and destinations. In our activity-based scheme, users sub-

mit their requests informing their origins and the activity they are

willing to carry out. An instance of the C-VST problem is formed

per activity and contains users and one or more POIs where such

activity can be performed. The system can then compute an optimal

travel plan for each instance in parallel as inter-instance arrange-

ments are not possible (users in di�erent instances perform di�erent

activities). In a C-VST problem instance, users are also required to

meet at hot-spots. Once users have met at a hot-spot, the system

determines either they can ride-share to another hot-spot to meet

with more users or they must go to the optimal POI.

Let a directed graph G = (V ,A, c) represent the road network

where the road intersections are the set of verticesV , the segments

between two intersections are the set of arcsA and the cost function

c : A→ R+ is de�ned as c(A) =
∑
a∈A[cost of arc a]. Since users,

POIs and hot-spots can be located across the segments between

road intersections, for the sake of simplicity and without loss of

generality, we assign their locations to the closest intersections. If

U , P andH correspond to the set of user, POI and hot-spot locations,

respectively, then,U ⊂ V , P ⊂ V andH ⊂ V . Therefore, an instance

of the C-VST problem can be de�ned as:

Given: A directed networkG = (V ,A, c), the set of user locations

U , the set of POI locations P and the set of hot-spots H .

Find: An MDSF where the Steiner trees have as leaves disjoint

subsets of U , the Steiner vertices are a subset of H , and each tree T
has as its root p = argminp′∈P c(T).

Since C-VST is a generalization of the classical MDSF problem

and no special graph is considered, C-VST is NP-hard even with

the additional constraint on the feasible set of Steiner vertices. To

prove that C-VST is NP-hard, we introduce the decision version of

this problem, namely kC-VST. In this version, the algorithm must

determine if a graph contains a C-VST with cost of at most k .

Theorem 2.1. kC-VST is NP-complete.

Proof. To prove that kC-VST is NP-complete we must prove

that it is in NP and there exists a polynomial time reduction from

From Ride-Sourcing to Ride-Sharing through Hot-Spots Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

an NP-complete problem. As the decision version of MDSF, that is,

the directed Steiner Forest DSF with cost at most k is NP-complete,

we construct a reduction from an instance of this problem.

The �rst part is straightforward because we only need a cer-

ti�cate cert of cost k ′. A polynomial time algorithm can verify

whether (a) every terminal in cert is connected with at most one

root, (b) k ′ ≤ k , and (c) the Steiner vertices only belong to H .

To prove the second part, we build a reduction from a graph

G = (V ,A). In this reduction, we construct a metric closure of G,

namely G ′ = (V ′,A′), induced by the vertices in U ⊂ V , P ⊂ V
and H ⊂ V , that is, V ′ = U ∪ P ∪ H . A′ corresponds to the set of

shortest paths in G between every pair of vertices in V ′. To prove

this reduction works, we must show G ′ contains a DSF of cost at

most k if and only if G contains a kC-VST of cost at most k .

(⇒) If G ′ contains a DSF F ′ of cost at most k , each arc (v,w)
of F ′ corresponds to the shortest path between vertices v and w
in G which altogether form a forest F in G. F will have Steiner

vertices that belong to H only, as F ′ does not include other vertices.

c(F) = c(F ′) ≤ k because the cost of each arc of F ′ is the minimum

pair cost (see De�nition 4.1) and each arc of F is the shortest path

between the same vertices. Hence, F is a kC-VST in G.

(⇐) If G contains a kC-VST F of cost at most k , every pair of

vertices that are joined in F will have its corresponding arc in G ′

as G ′ is complete. These arcs will form a forest F ′ in G ′ whose cost

c(F ′) = c(F) <= k . Hence, F ′ is a DSF in G ′.
Therefore, kC-VST is NP-complete. �

Corollary 2.2. C-VST is NP-hard.

Proof. The optimization version of the kC-VST problem is the

C-VST problem. A certi�cate of C-VST is not veri�able in polyno-

mial time, thus C-VST is not in NP. Hence, C-VST is NP-hard. �

3 RELATEDWORK
3.1 Intermediate meeting points
As an alternative to users to be picked up from their original loca-

tions, they may agree to meet at intermediate spots. When users

travel to intermediate locations, drivers do not need to make large

detours, hence ride-sharing becomes more convenient. Intermedi-

ate locations can be any intersection within the city road network

as the following related works consider. We refer to this alternative

as model A. Our proposed model uses intermediate meeting points

with the additional constraint of being hot-spots only.

Aissat et al. in [2] present two approaches to �nd optimal in-

termediate meeting points based on a detour factor. However, the

authors consider only pairs of drivers and riders in a scenario where

both converge at a starting intermediate location and diverge later

at an ending intermediate location. Stiglic et al. in [9] show the ben-

e�ts of including intermediate meeting points to ride-sharing. Their

approach maximizes two objectives hierarchically. Their problem

de�nition also considers starting and ending intermediate locations

but with the possiblity of matching some riders with one driver.

Goel et al. in [5] presented the bene�ts of intermediate meeting

points from the perspective of privacy. Their approach o�ers a

Pareto front of optimal intermediate meeting points after two ob-

jectives were maximized, namely, coverage and k-anonymity. Based

on estimated population density, coverage circles with di�erent

radii are centered at intermediate meeting points.

3.2 Activity-based ride-sharing
Activity-based travel planning regards places not only as spatial

points but also as points where people go to perform an activity.

Therefore, more than one destination may be appealing to riders as

long as such destinations allow the users to carry out their desired

activities. Getting users be �exible upon their destinations should

increase the ride-sharing matching rates.

In [11], the authors design ABRA, an activity-based ride-sharing

algorithm that expands the set of destinations by including a space-

time �lter. ABRA is an algorithm that computes the global optimum

of all feasible matches. No heuristic besides space-time �lter is

applied, hence it is quite computationally expensive. There is no

notion of meeting points and passengers do not necessarily go to

the same destination. As its goal is to show the increment in terms

of ride-sharing matching rate with respect to trip-based algorithms,

it does not aim to o�er a readily deployable solution.

On the other hand, Rahman et al. [8] introduced a fast algorithm,

namely VST-RS, where users can meet at intermediate points and

have a common destination. VST-RS chooses from a candidate set

of POIs, the most convenient one for a subset of users. Although

VST-RS shrinks the candidate meeting points space by the inclusion

of novel constraints, it still regards every intersection in the road

network as part of such search space (model A). As we will show

later, the time complexity can be reduced by considering hot-spots

only, without sacri�cing cost savings. Indeed, in many realistic

city scenarios, our solutions are less costly than VST-RS’s. As our

experiments use VST-RS as a baseline solution, we describe this

algorithm in more detail in Section 4.

3.3 Steiner trees and ride-sharing
Olsen in [6] focus on computing an optimal plan for users who count

on their own cars which they are willing to drive to a "park-and-ride”

lot and ride-share afterwards to a common destination. Although

this problem seems very similar to ours, it is a version of the car
pooling problem. In car pooling, users ride-share to a common �xed

destination on a daily basis, e.g. people going to their workplace,

whereas in our problem there are multiple destinations and they are

not known much earlier than the travel time. The author models

this problem as an MST. His contribution is demonstrating that this

problem is APX-complete when it is restricted to cars with capacity

4 and unweighted undirected graphs. The author does not propose

any algorithm to solve it e�ciently.

Zhang et al. [12] and Takise et al. [10] present ride-sharing as

the MST problem. In [12] the authors propose an algorithm that

solves to optimality instances of the problem up to 3 users arguing

their problem is more di�cult than the common ride-sharing prob-

lem where users meet only once in a particular travel. In [10], the

algorithm resembles the seminal work of Dreyfus et. al [4] which

computes the exact solution of the MST problem on graphs. Thus,

their algorithm does not scale since its complexity is exponential

on the number of users.

Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia O. Correa et al.

4 SOLUTIONS
This section presents our solution and a baseline solution to the

C-VST problem. The baseline is a modi�ed version of the algorithm

VST-RS presented by Rahman et al. in [8]. We modi�ed this al-

gorithm to take into account the constraint on the feasible set of

Steiner vertices and make it comparable to our solution.

We introduce the following de�nitions:

De�nition 4.1. Minimum pair cost is a functionmp : V ×V → R+
de�ned for two vertices in a graph which returns the minimum

cost between them.

De�nition 4.2. Voronoi diagram in a graphG = (V ,A) for a subset

of vertices P = {p1,p2, . . .pm } is a set of cells, one for each vertex

in P , such that each cell

C(pi) = {v |v ∈ V ,mp(v,pi) < mp(v,pj),∀pj : pj , pi }
The vertices in P are known as medoids. We de�ne an auxiliary

functionM(v)which returns the medoid corresponding tov . Within

our ride-sharing context, the medoids correspond to the POIs.

4.1 VST-RS
VST-RS [8] is based on two important observations. Firstly, ride-

sharers can maximize the travel cost savings if they meet sooner

and their shared route to either a POI or another meeting point is

longer. Thus, the algorithm begins by dividing the users into groups

based on their initial locations. Users who are located closer to a

common POI than to other POIs are grouped together. That is, the

algorithm divides the graph, i.e., road network, into Voronoi cells

where the medoids are the POIs. Intuitively, these users are going

to meet sooner and then it is more likely for them to share a longer

route. It is worth to mention that this initial division does not force

the users to ride-share to their common medoid.

Second, the algorithm does not need to explore the whole road

network to �nd good candidate meeting points. To that end, VST-

RS imposes constraints on them. The assumption is that a user is

willing to ride-share only if the meeting point is closer than going

directly to her medoid, i.e., to her closest POI. These constraints

are re�ected in the following results:

Theorem 4.3. In an optimal solution to the C-VST problem, two
terminals x andy are connected to a Steiner vertexh only ifmp(x ,h) <
mp(x ,M(x)) andmp(y,h) < mp(y,M(y)) [8].

Corollary 4.4. In an optimal solution to the C-VST problem, a
set of terminals which have already met at Steiner vertex h1 and
another set of terminals which have already met at Steiner vertex
h2 meet at Steiner vertex h only ifmp(h1,h) < mp(h1,M(h1)) and
mp(h2,h) < mp(h2,M(h2)) [8].

If the number of users within a Voronoi cell exceeds a parameter

S , VST-RS accommodates groups of at most S users within each

cell. Each group of at most S users is further divided into subgroups

of at most z users (z < S). z is a new parameter representing the

capacity of a car. The division of users into groups of at most S
users is the �rst stage of VST-RS.

In its second stage, VST-RS computes the optimal travel plan

for each subgroup of z users. To compute the optimal travel plan,

VST-RS computes the best plan for every combination of 2, 3, . . . z

users. This stage of VST-RS is based on Dreyfus et. al’s algorithm [4]

which computes the exact solution of the MST problem on graphs.

However, VST-RS is able to deal with more than one possible POI,

whereas Dreyfus et al.’s algorithm is not. In VST-RS, a terminal

(set of terminals) chooses to connect to a Steiner vertex as long

as Theorem 4.3 (Corollary 4.4) holds, otherwise it connects to its

closest POI, which may result in choosing more than one POI per

subgroup of z users. We modi�ed this stage of VST-RS to include

the constraint on the feasible set of Steiner vertices and make it

comparable to our solution.

Let the power set P of users and POIs be the universe of a Set

Cover problem. Let the cost of the MST of each subset of users and

POI be the cost of each element in P. Thus, the �rst stage of VST-RS

computes an approximate solution to the Set Cover problem where

the subsets in the solution must be disjoint. On the other hand, the

second stage of VST-RS is an exact solution to the MST problem

with the additional ability of choosing more than one POI.

4.2 Our Solution
Our approximate solution maximises a heuristic set function that

we call Gain ratio. This function is associated with a candidate

Steiner vertex and the vertices that may connect to it. The larger its

value, the more attractive such Steiner vertex is for meeting. Since

the size of the domain L of this function, i.e., the set of vertices that

may connect to it, is 2
L

, combinatorial explosion occurs when it is

maximized naïvely. We show that our heuristic function is nonde-

creasing under a speci�c update rule. Such update rule maximizes

this function in linear time with respect to the number of users for

each candidate Steiner vertex. Thus, we construct a nearly optimal

solution to the C-VST problem which is readily deployable.

Before describing our solution in detail, we de�ne new functions,

concepts and present more results. Recall that a road network is

modelled with a graph G = (V ,A, c) where U ⊂ V , P ⊂ V and

H ⊂ V correspond to the set of user, POI and hot-spot locations,

respectively. Moreover, if we use MDSF’s terminology, the users

are represented as terminals, the POIs as roots and the hot-spots as

Steiner vertices. Thus, we use these terms interchangeably.

De�nition 4.5. Pseudo-terminal is a Steiner vertex which has been

greedily chosen as part of the solution. After a Steiner vertex is

chosen, it behaves like a terminal.

De�nition 4.6. Subtree-SV is a tree of depth 1 where the root
2

is

a pseudo-terminal or a candidate Steiner vertex and its leaves can

be either terminals or other pseudo-terminals. A pseudo-terminal

leaf is in turn the root of another Subtree-SV.

The function Sv(h) returns the Subtree-SV with root h. The

function r (x) returns the root of the Subtree-SV x . The function

l(x) returns the set of leaves of the Subtree-SV x .

De�nition 4.7. Independent cost is a function Ic : (U ∪ H) → R+
de�ned for a terminal and a pseudo-terminal as following:

Ic(t) =

{
mp(t ,M(t)) t is a terminal∑
w ∈L Ic(w) t is a pseudo-terminal

(1)

2
Readers should not confuse the root of a Subtree-SV with a POI which may be the

root of a Steiner tree in the solution.

From Ride-Sourcing to Ride-Sharing through Hot-Spots Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

Figure 1: Let U 2 and U 3 be two terminals and H2 a hot-spot.
H2 is the root of a Subtree-SV whose leaves are U 2 and U 3.
P1 and P2 are the closest POIs to H2,U 2 andU 3, respectively
(note the Voronoi cells C1 and C2). Thus, Gr ({U 2,U 3},H2) =
b+d

o+m+n , Lr (U 2,H2) = m
b and Lr (U 3,H2) = n

d .

where L = l(Sv(t))

The independent cost can be understood as the minimum pair

cost between a terminal and its closest POI, or the summation of

the minimum pair costs between all its descendant terminals and

their corresponding closest POIs in the case of a pseudo-terminal.

De�nition 4.8. Cumulative loss is a function Cl : (U ∪H) → R+
de�ned for a terminal and a pseudo-terminal as following:

Cl(t) =

{
0 t is a terminal∑
w ∈L Cl(w) +mp(w, t) t is a pseudo-terminal

(2)

where L = l(Sv(t))

Cumulative loss for a pseudo-terminal represents the cost all its

descendants endure because of connecting to it. Thus, terminals do

not have cumulative losses as they are leaves.

De�nition 4.9. Gain ratio is a set function Gr : 2
L ×H → R+ de-

�ned for the set of leaves of a Subtree-SV, whose root is a candidate

Steiner vertex, as following:

Gr (L,h) =

∑
w ∈L Ic(w)

mp(h,M(h)) +
∑
w ∈L Cl(w) +mp(w,h)

(3)

where h is a candidate Steiner vertex.

Gain ratio of the set of leaves of a candidate Steiner vertex h can

be seen as the proportion of cost savings that a set of terminals

/ pseudo-terminals would have if they connect to a POI through

h, instead of them connecting independently to their closest POIs.

If Gr (L,h) > 1 then, h is an appealing candidate. Our approach
must maximize Gr (see Figure 1).

De�nition 4.10. Loss ratio is a function Lr : (U ∪ H) × H → R+
de�ned for a leaf of a Subtree-SV, whose root is a candidate Steiner

vertex, as following:

Lr (t ,h) =

{
0 t = h
Cl (t)+mp(t,h)

I c(t) t , h
(4)

where t can be either a terminal or a pseudo-terminal, and h is a

candidate Steiner vertex. Since t can be a pseudo-terminal, equation

(4) discerns whether t and h are the same or not.

Loss ratio Lr (t ,h) measures the proportion of cost increment of

a terminal / pseudo-terminal t if it connects to a candidate Steiner

vertex h instead of connecting directly to its closest POI. In the

case of t = h, there is no cost increment as the pseudo-terminal

is already “connected” to the candidate Steiner vertex. Generally,

Lr (t ,h) > 1. If Lr (t ,h) = 1, then t and h have the same closest POI

andh is part of the shortest path between t and this POI. Lr (t ,h) < 1

can occur with pseudo-terminals only. Our goal is to minimize
Lr (see Figure 1).

De�nition 4.11. Well-formed Subtree-SV of a candidate Steiner

vertex h is a Subtree-SV where its leaves

L = {w |mp(w,h) < mp(w,M(w))} and |L| ≥ 2

A well-formed Subtree-SV has at least 2 leaves since we are regard-

ing Steiner vertices with degree ≥ 3 in our solution.

De�nition 4.12. Committed terminal / pseudo-terminal
Let t be a committed terminal or pseudo-terminal then, ∀h ∈ H :

mp(t ,M(t)) < mp(t ,h).

Since our goal is to maximize Gr , we present an update rule, in

Theorem 4.13, to attain a stationary point.

Theorem 4.13. The set functionGr (L,h) for a particular candidate
Steiner vertex h is nondecreasing under the update rule

Lk+1 = Lk \{t} only if
1

Gr (Lk ,h)
< Lr (t ,h) (5)

where t = argmaxw ∈Lk Lr (w,h)

Proof. At iteration k :

Gr (Lk ,h) =

Ic(t) +
∑
w ∈W Ic(w)

mp(h,M(h)) +Cl(t) +mp(t ,h) +
∑
w ∈W Cl(w) +mp(w,h)

(6)

whereW = Lk \{t}

And at iteration k + 1:

Gr (Lk+1,h) =

∑
w ∈W Ic(w)

mp(h,M(h)) +
∑
w ∈W Cl(w) +mp(w,h)

(7)

whereW = Lk \{t}

Let A =
∑
w ∈W Ic(w), B =

∑
w ∈W Cl(w) +mp(w,h), a = Ic(t),

b = Cl(t) + mp(t ,h), s = mp(h,M(h)). Thus, equations 6 and 7

become:

Gr (Lk ,h) =
a +A

s + b + B
Gr (Lk+1,h) =

A

s + B
(8)

Then, from equations in 8:

Gr (Lk+1,h) = Gr (Lk ,h) +Gr (Lk ,h)
b

s + B
−

a

s + B
(9)

Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia O. Correa et al.

From equation 9 we observe that Gr (Lk+1,h) > Gr (Lk ,h) (non-

decreasing) only if:

Gr (Lk ,h)
b

s + B
>

a

s + B
(10)

1

Gr (Lk ,h)
<

b

a
(11)

1

Gr (Lk ,h)
< Lr (t ,h) (12)

When
1

Gr (Lk ,h)
> Lr (t ,h), Lk is a stationary point because

∀t ′ ∈ Lk \{t} : Lr (t ,h) > Lr (t ′,h) then, ∀t ′ ∈ Lk \{t} : 1

Gr (Lk ,h)
>

Lr (t ′,h). �

4.2.1 Algorithm. Our main algorithm is Algorithm 1. It com-

putes and builds the approximate solution for the C-VST problem.

The solution is built iteratively in a bottom-up manner. The �rst-

level Subtree-SVs (see De�nition 4.6), has only terminals as leaves.

In the next iteration, new Subtree-SVs may be built on top of the

Subtree-SVs of the previous iteration. That is, these new Subtree-

SVs may have pseudo-terminals (see De�nition 4.5) as leaves.

At each iteration, Subtree-SVs are chosen greedily based on how

much gain their roots (candidate Steiner vertices) o�er. The set

function Gr (see De�nition 4.9) can be seen as the proportion of

cost savings that a set of terminals / pseudo-terminals would have

if they connect to a POI through a particular candidate Steiner

vertex instead of them connecting independently to their closest

POIs. This is the intuition behind the optimization of Gr for a set

of leaves (terminals / pseudo-terminals) of a particular candidate

performed in Algorithm 2 and speci�cally in Algorithm 3.

Although Gr is a function over a set of leaves of a Subtree-SV,

this function can also be seen as the ratio between the total of

independent costs of a subset of terminals and the cost of the tree

that spans the same subset of terminals whose root is the candidate

Steiner vertex. Thus, Algorithm 2 repeatedly �nds trees with good

gain ratio, each spanning only a subset of terminals. Then, our

solution obtains partial approximate solutions whose union yields

the �nal solution.

In the following, we describe each of the algorithms.

Algorithm 1 Compute and build approximate C-VST.

1: procedure C-VST(T , H) . T : set of terminals, H : set of hot-spots

2: N = {n |n ∈ T , n is a non-connected terminal}

3: S = {s |s = Sv(h), s : well-formed Subtree-SV, h ∈ H }
4: while N , ∅ and S , ∅ do
5: R = ChooseSubtreeSVs(S)

6: T = T \{l (s′) |s′ ∈ R }
7: T = T ∪ {r (s′) |s′ ∈ R }
8: N = {n |n ∈ T , n is a non-connected terminal}

9: S = {s |s = Sv(h), s : well-formed Subtree-SV, h ∈ H }
10: end procedure

Computing and building an approximate solution to C-VST. Com-

mitted terminals (see De�nition 4.12) may exist within the set of

terminals T given as parameter. Committed terminals have no op-

tion but to connect directly with their own closest POIs as these

POIs are closer to these terminals than any candidate Steiner vertex.

There will be no gain for a user ui (terminal) to meet another user

uj (terminal) at a meeting pointhi j (candidate Steiner vertex) if they

are committed terminals, as it is shown in Theorem 4.3. Therefore,

such committed terminals are not included in set N , in line 2.

Line 3 initializes the set of well-formed Subtree-SVs (see De�ni-

tion 4.11). Each Subtree-SV has as root a candidate Steiner vertex

from the set of hot-spots H given as parameter. Here is where we

constrain the feasible set of Steiner vertices to the set of hot-spots.

Subtrees in S will likely share their leaves. Later on, in Algorithm

2, those shared links between Subtree-SVs will be dropped.

The loop from lines 4 through 9 is executed only if there are

disconnected terminals and well-formed Subtree-SVs. These two

sets are updated within the loop in lines 8 and 9, respectively.

Line 5 greedily chooses the Subtree-SVs which will be part of

the solution (see Algorithm 2). The roots (Steiner vertices) of the

set of chosen Subtree-SVs become pseudo-terminals. Thus, the set

of terminals is adjusted. First, the terminals, which are leaves of

the chosen Subtree-SVs, are removed (line 6). Second, the set of

pseudo-terminals is added to this adjusted set (line 7). At this point,

there may be committed pseudo-terminals, thus set N is updated

accordingly in line 8. Committed pseudo-terminals will connect

directly with their own closest POIs. There will be no gain for a set

of users (pseudo-terminal) to meet other users (pseudo-terminal)

at a meeting point (candidate Steiner vertex) if they are committed

pseudo-terminals, as it is shown in Corollary 4.4.

Finally, a new set of well-formed Subtree-SVs is computed in

line 9. Note that pseudo-terminals can now be included as leaves

of these new Subtree-SVs. In line 4, if there are not disconnected

terminals nor well-formed Subtree-SVs, the algorithm ends. The

solution is the union of the Subtree-SVs chosen greedily in line 5.

Algorithm 2 Greedily choose Subtree-SVs.

1: procedure ChooseSubtreeSVs(S) . S : Subtree-SVs

2: R = ∅
3: while S , ∅ do
4: S ′ = {s′ |s′ ∈ S }
5: for each s′ ∈ S ′ do
6: s′ =MaximizeGainRatio(s′)
7: smax = argmaxs′∈S ′ Gr (W , r (s′)) .W : leaves of s′

8: R = R ∪ {smax }

9: Drop shared leaves from Subtree-SVs ∈ S \{smax }

10: S = {s |s ∈ S, r (s) < R, s : still well-formed}

11: return R
12: end procedure

Choosing Subtree-SVs greedily. A set of well-formed Subtree-SVs

is computed by Algorithm 1 and then it is passed as parameter S to

Algorithm 2. In turn, Algorithm 2 chooses, from S , the Subtree-SVs

that will be part of the solution. Recall that the solution is built in a

bottom-up manner and as result of this algorithm, a new level of

Subtree-SVs is added to the forest.

The loop from lines 3 through 10 is executed only if set S has

elements. S is re-computed within this loop, in line 10.

The loop starts by creating a copy S ′ of set S . S ′ is needed because

we do not want S to be a�ected by the sub-loop of lines 5 and 6.

In this loop, each Subtree-SV s ′ ∈ S ′ is pruned in such a way that

From Ride-Sourcing to Ride-Sharing through Hot-Spots Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

Gr (l(s ′), r (s ′)) is maximized (see Algorithm 3). Theorem 4.13 shows

that Gr attains a stationary point by pruning the set of leaves of

the corresponding Subtree-SV as long as a condition holds.

After the loop of lines 5 and 6, S ′ ends up having Subtree-SVs

that attain an optimal Gr value. smax is automatically chosen (line

8) as it is the Subtree-SV which o�ers the largest gain among the

elements in S ′.
Since there may be Subtree-SVs in S that share leaves with smax ,

the connections between these shared leaves and the roots of the

other Subtree-SVs in S are dropped (line 9). In line 10, the set of

well-formed Subtree-SVs S is re-computed because after dropping

the shared leaves in the previous line may cause some Subtree-SVs

being non well-formed.

The algorithm ends when no well-formed Subtree-SVs are left

in S . The set of chosen Subtree-SVs R is returned. As result, a new

level of Subtree-SVs R with pseudo-terminals as roots is built.

Algorithm 3 Maximize Gain Ratio.

1: procedure MaximizeGainRatio(s′) . s′ : Subtree-SV

2: h = r (s′)
3: Lk = l (s′)
4: while |Lk | > 2 do
5: tmax = argmaxt∈Lk

Lr (t, h)
6: if 1

Gr (Lk ,h)
< Lr (tmax , h) then

7: Lk = Lk \{tmax }

8: else break
9: return s′ . s′ has been pruned

10: end procedure

Maximizing Gr by pruning a Subtree-SV. Algorithm 3 prunes

a Subtree-SV s ′ given as a parameter through the application of

the update rule of Theorem 4.13. The loop from lines 4 through

8 represents such update rule. The additional condition in line 4

prevents s ′ from becoming a non well-formed Subtree-SV, i.e., a

Subtree-SV with less than 2 leaves, as we are interested in maximize

Gr only. Non well-formed Subtree-SVs are excluded in Algorithm

2, line 10.

Because of Theorem 4.13, we can safely stop the �rst time
Gr decreases, i.e., when the condition speci�ed in the theo-
rem does not hold. In this way, we do not need to explore
the whole domain (2L) of Gr when searching for an optimal
value. Indeed, the worst case time complexity when maxi-
mizing Gr for the leaves of a particular Subtree-SV is |U |.

4.2.2 Overall Time Complexity Analysis. The worst scenarios

are: |L| = |U | and |S | = |H | where L is the set of leaves of a Subtree-

SV, U is the set of user locations, S is the set of Subtree-SVs and H
is the set of hot-spots.

If we start our analysis on the innermost algorithm (Algorithm

3), its complexity is O(|U |) since it traverses all leaves of s ′ at most.

In Algorithm 2: Algorithm 3 is executed for each Subtree-SV, that

is, line 6 is executed O(|H | |U |) times. Line 9 is executed for each

Subtree-SV except smax , and for each shared leaf, that is, O(|H | |U |)
times. Line 10 checks out, for each terminal / pseudo-terminal,

whether it ful�lls the well-formed Subtree-SV condition to be a leaf.

This is veri�ed for each hot-spot (root of a Subtree-SV). That is, line

10 is executed O(|H | |U |) times. Finally, the outer loop is executed

O(|H |) times. Therefore, Algorithm 2’s complexity is O(|H |2 |U |).
In Algorithm 1: lines 3 and 9 have the same complexity as line

10 in Algorithm 2, that is O(|H | |U |). Lines 2 and 8 have the same

complexity and each is executed O(|U |) times since it traverses, at

most, all user locations. The outer loop is executed min (|H |, |U |).
Therefore, the overall complexity of our solution is

O(min (|H |, |U |) |H |2 |U |)

4.2.3 Extension.

Limited number of terminals per Steiner tree (Cars with capacity z).
Rahman et al. [8] further divided groups of S users into subgroups

of at most z (z < S) users as their goal is to take into account the

capacity of a car. Recall that each Steiner tree within the solution

of the C-VST problem represents a ride-sharing arrangement of a

subset of users (terminals) to a POI. Thus, it is plausible to include

an upper bound z to the number of terminals per Steiner tree that

represents the maximum number of people a car can accommodate.

In Algorithm 2, a subset of Subtree-SVs are chosen. The leaves of

such subset of Subtree-SVs are pruned as a result of maximizingGr .

To reach the upper bound z of the number of terminals per Steiner

tree, a constructive method is needed instead of a destructive one

(pruning). Likewise Theorem 4.13, Theorem 4.14 shows that Gr is

nondecreasing under an update rule. However, rather than pruning

the leaves of the Subtree-SV in order to maximize Gr , Theorem

4.14 presents a constructive update rule. Now, the set of leaves of a

Subtree-SV is constructed by including leaves iteratively as long as

a condition holds.

Theorem 4.14. The set functionGr (L,h) for a particular candidate
Steiner vertex h is nondecreasing under the update rule

Lk+1 = Lk ∪ {t} only if
1

Gr (Lk ,h)
> Lr (t ,h) or Lk = ∅ (13)

where t = argminw ∈Yk Lr (w,h), Yk = l(Sv(h))\Lk

Proof. If L0 = ∅ then, 0 = Gr (L0,h) < Gr (L1,h).
At iteration k > 0:

Gr (Lk ,h) =

∑
w ∈Lk Ic(w)

mp(h,M(h)) +
∑
w ∈Lk Cl(w) +mp(w,h)

(14)

And at iteration k + 1:

Gr (Lk+1,h) =

Ic(t) +
∑
w ∈Lk Ic(w)

mp(h,M(h)) +Cl(t) +mp(t ,h) +
∑
w ∈Lk Cl(w) +mp(w,h)

(15)

Let A =
∑
w ∈Lk Ic(w), B =

∑
w ∈Lk Cl(w) +mp(w,h), a = Ic(t),

b = Cl(t) +mp(t ,h) and s = mp(h,M(h)). Thus, equations 14 and

15 become:

Gr (Lk ,h) =
A

s + B
Gr (Lk+1,h) =

a +A

s + b + B
(16)

Then, from equations in 16:

Gr (Lk+1,h) =

(
a

s + B
+Gr (Lk ,h)

)
s + b

s + b + B
(17)

Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia O. Correa et al.

From equation 17 we observe thatGr (Lk+1,h) > Gr (Lk ,h) (non-

decreasing) only if:(
a

s + B
+Gr (Lk ,h)

)
s + b

s + b + B
> Gr (Lk ,h) (18)

1

Gr (Lk ,h)
>

b

a
(19)

1

Gr (Lk ,h)
> Lr (t ,h) (20)

When
1

Gr (Lk ,h)
< Lr (t ,h), Lk is a stationary point because ∀t ′ ∈

Yk : Lr (t ,h) < Lr (t ′,h) then, ∀t ′ ∈ Yk :
1

Gr (Lk ,h)
< Lr (t ′,h). �

De�nition 4.15. Spanned terminals is a function span : (U ∪H) →
Z+ de�ned for a terminal and a pseudo-terminal as following:

span(t) =

{
1 t is a terminal∑
w ∈L span(w) t is a pseudo-terminal

(21)

where L = l(Sv(t))

It returns the number of terminals that are spanned by the tree

that has t as root.

Algorithm 4 builds a new Subtree-SV based on a given one (s ′)
whose corresponding tree spans up to z terminals (see De�nition

4.15). The set of leaves Lk of the new Subtree-SV is initialized with

the leaf of minimum loss ratio among the set of leaves of s ′ sent

as a parameter (line 4). Set Yk , which has the rest of leaves of s ′, is

the source from which the leaves are taken to construct such new

Subtree-SV. Leaves are added one by one until either all leaves of

Yk has been analyzed, the upper bound z has been reached or the

Theorem 4.14’s condition does not hold (lines 7 and 8).

Algorithm 4 Accommodate z-leaves.

1: procedure Accommodate z-leaves(s′, z) . s′ : Subtree-SV

2: h′ = r (s′)
3: tmin = argmint∈l (s′) Lr (t, h

′)

4: Lk = {tmin }

5: Yk = l (s′)\Lk
6: Connect tmin with root h
7: while Yk , ∅ do
8: if 1

Gr (Lk ,h′)
≤ Lr (tmin, h′) or span(h) = z then break

9: tmin = argmint∈Yk
Lr (t, h′)

10: if span(h) + span(tmin) ≤ z then
11: Lk = Lk ∪ {tmin }

12: Yk = l (s′)\Lk
13: Connect tmin with root h
14: return Sv(h)
15: end procedure

Line 10 checks out whether adding the terminal / pseudo-terminal

with minimum loss ratio from Yk does not surpass the upper bound.

If this is the case, such terminal / pseudo-terminal is added to the

set of leaves Lk (line 11) and also connected to the root h of the new

Subtree-SV (line 13). Moreover, Yk is updated accordingly (line 12).

In the scenario of cars with limited capacity, the call to
Algorithm 3 from Algorithm 2 in line 6 will be replaced by
a call to Algorithm 4. Since time complexity of Algorithm 4 is

Parameter Range Default

Number of users 2 - 2048 256

Number of POIs 10 - 640 80

Percentage of hot-spots 3% - 20% 3%

Car capacity 4 - 10 4

Number of vertices 1250 - 80000 10000

Table 1: Parameter set-up in synthetic graphs.

O(|U |) (it traverses all leaves in Yk at most), the overall complexity

of our solution stays the same.

5 EXPERIMENTS
The goal of the experiments is two-fold. First, we present empirical

evidence of the superiority of our solution in terms of e�ciency and

e�ectiveness with respect to the modi�ed version of the algorithm

presented by Rahman et al. [8], i.e., a version which takes into

account the constraint on the feasible set of Steiner vertices. Second,

we compare our proposed model and model A
3

and show that (a)

signi�cant di�erence in occurrence of popular meeting points
4

exists, which means round-trip ride-sharing arrangements are more

likely in our scheme; and (b) alternative placement of hot-spots,

either uniformly or regarding the population distribution, decreases

the car occupancy rate gap signi�cantly between both models.

We refer to our solution as Gr-based as a short form of “Gain-

ratio-based”. Baseline solution VST-RS is referred as mVST-RS as a

short form of “modi�ed VST-RS.”

5.1 Simulation setup
Experiments are run over synthetic and Melbourne-based graphs.

In the case of synthetic graphs, grid-based graphs with uniformly

distributed arc costs are built. Grid structure is chosen because our

goal is to simulate blocks in a city, where every corner of a block

is a vertex in the graph. POIs, hot-spots and users vertices are

chosen randomly. Our parameters are number of users, number of
POIs, percentage of graph vertices that are hot-spots, car capacity and
number of vertices. The number of users represent a set of users

looking for ride-share at a given time interval. The range of values

and defaults for these parameters are shown in Table 1. Fifty trials

were run for each value of a parameter within its range, while

keeping the others with their default.

In the case of Melbourne-based graphs, the City of Maribyrnong

graph is built. Road intersections, POIs and hot-spots are extracted

from OpenStreetMap [7]. In OpenStreetMap, information is classi�ed

either as nodes or ways and both are tagged with key-value pairs.

Road intersections are nodes that belong to at least two ways whose

tag-key is highway. POIs nodes are retrieved based on activities,

e.g. if the activity at destination is shopping centre, the nodes within

ways with tag pair shop:mall are retrieved. Hot-spots are the nodes

within ways with tag pair service:parking_aisle.

Distribution of users is based on the estimated population of the

suburbs within the City of Maribyrnong and the number of trips

according to the Victorian Integrated Survey of Travel and Activity

3
Users meet at intermediate points which are not hot-spots necessarily.

4
We refer to popular meeting points to those where more than z users coincide in a

time window of an hour.

From Ride-Sourcing to Ride-Sharing through Hot-Spots Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

(VISTA) 2009-2010 [1]. The number of trips were retrieved per

departure hour as each simulation considers users who depart from

their locations at the same hour (they are more likely to ride-share).

VISTA allows �ltering the trips per activity at destination. The

considered activities are Shopping Centre, Supermarket, Food Store,
Fast Food and Swimming Pool as we believe these types of desti-

nations make users more �exible when deciding where to go, i.e.,

this does not happen with a restaurant which is more likely to be

speci�c to users tastes.

5.2 Dependent variables
The following variables are evaluated:

Processing time is the time elapsed without considering short-

est paths as they can be pre-computed.

Cost is the summation of the distances travelled by all cars. That

is, if the travel plan is represented by the MDSF F and each subset

of users who ride-share is a tree T then, the cost c(F) =
∑
T ∈F c(T)

where c(A) =
∑
a∈A[cost of arc a].

Avg. occupancy ratio is the weighted average of the number

of passengers per car. Let na be the number of passengers who

ride-share in a car through arc a. Thus, the average occupancy ratio

o = 1

c(F)
∑
a∈F [cost of arc a]na .

5.3 Comparison with baseline in terms of
e�ciency and e�ectiveness

5.3.1 Processing time. Theoretically, our solution is less time

complex than the baseline (see Section 4.2.2). However, we show

that it is also signi�cantly faster in terms of processing time.
Figure 2(a) shows how dependent the baseline’s e�ciency is on

the number of users (|U |). Although its time complexity is expo-

nential on the size S of the group of users, which we keep constant

(S = 8), the number of groups increases when |U | increases. Since an

exact solution is computed within each group, exponential growth

in processing time is observed for this baseline. On the contrary,

our solution’s complexity is polynomial (max. degree = 2) on U .

Figures 2(b, d) show that our solution’s e�ciency is not depen-

dent on the number of POIs (|P |) nor the car capacity. Figure 2(b)

shows that the baseline’s e�ciency is comparable to ours only when

|P | is large enough because, in this case, it searches small areas to

�nd the possible meeting points, thus its processing time decreases.

When the graph size (|V |) increases, the number of hot-spots

(|H |) also increases as |H | is a proportion of |V | in our setting. Figure

2(c) shows that our solution grows linearly in processing time when

|H | increases. However, counting on large proportions (> 10%) of

hot-spots in a city is unreal. Figure 2(e) shows how the baseline

grows exponentially when |V | increases because it has to search

much larger areas to �nd the possible meeting points, whereas our

solution is scalable as it searches in H ⊂ V .

With respect to Melbourne-based graphs, Figure 3 shows that

our solution is one to two orders of magnitude faster than the

baseline for any activity throughout the day.

5.3.2 Cost. Although our solution is not signi�cantly less costly
than VST-RS, it is on average in every scenario on both kinds of

graphs (see Figures 2(f) and 4). Our solution outperforms VST-RS

due to the initial division of users carried out in the �rst stage in

Figure 2: Comparison in terms of processing time and cost
on synthetic graphs. (a) through (e) show processing time vs.
our 5 parameters. (f) shows cost vs. number of users.

Figure 3: Comparison of Processing time on Melbourne-
based graphs for di�erent activities throughout the day.

VST-RS. Even though VST-RS may �nd that two or more users

who belong to the same Voronoi cell could ride-share to a POI of a

neighboring cell, VST-RS prevents two users of di�erent cells from

ride-sharing. In our approach, users are not grouped based on their

mutual closeness but their closeness to candidate meeting points.

Comparison of both methods between cost and the other 4 pa-

rameters on synthetic graphs was also performed. These �gures are

not included because of lack of space and same conclusion obtained.

5.4 Comparison with model A in terms of
round-trip likelihood and occupancy rate

In model A, users can meet anywhere, that is, 0% of people would dis-
miss a non-suitable intersection, i.e., an intersection where parking

is di�cult. Whereas, in our model, 100% of people would dismiss such
intersections. We hypothesize that meeting at hot-spots o�ers (a)

Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia O. Correa et al.

Figure 4: Comparison of Cost on Melbourne-based graphs
for di�erent activities throughout the day.

higher likelihood of �nding a round-trip ride-sharing arrangement

and (b) similar car occupancy rate, when comparing to model A.

5.4.1 Higher likelihood of a round-trip. Figure 5(a) shows the

frequency of meeting points where X number of people start their

travel from. Let z = 5 be the car capacity in these experiments.

Let d = X
z be the minimum number of drivers asked to come back

to a particular starting meeting point. In both models, a user who

started her travel from a meeting point where other 4 or fewer

people (X ≤ 5) met may �nd d = 1 drivers for coming back to such

meeting point. On the other hand, only in our model, a user
may �nd d > 1 drivers for coming back because X ≥ 5 occurs

with hot-spots only. The fact that X is always larger in our model

than in model A con�rms our hypothesis that more people met at

hot-spots than at normal spots. Thus, having hot-spots as meeting

points create more demand to come back to such starting points,

which in turn creates more o�er (higher round-trip likelihood).

5.4.2 Comparable occupancy ratio. Figure 5(b) shows how a

gradual uptake of our model a�ects the car occupancy ratio of

model A under three scenarios: (a) current parking infrastructure is

used, (b) random parking placement, and (c) population-based park-

ing placement. Population-based placement considers the number

and location of hot-spots as a function of the distribution of the

population. In the �rst scenario, as more people prefer using hot-

spots only, occupancy ratio is more a�ected because hot-spots are

not uniformly nor population-based distributed across Melbourne.

Consequently, our algorithm would suggest going directly to the

closest POI rather than meeting at a hot-spot that is not located

within a convenient distance. Placement of hot-spots according

to the population distribution, or even randomly, would keep car

occupancy ratio at similar levels than model A’s. Model A’s car oc-
cupancy ratio is an infeasible upper bound in all scenarios
as it allows meeting at non-suitable points.

6 DISCUSSION AND CONCLUSIONS
Our work proposes the inclusion of hot-spots into activity-based

ride-sharing model as only-possible meeting points. We show that

this model makes ride-sharing more convenient because round-trips

are more likely. We also show that our model keeps a comparable

car occupancy rate to model A, which in turn has been proved to

increase the occupancy rate compared with model B [3, 6, 10].

We de�ne a new problem on graphs that we call Constrained

Variable Steiner Tree (C-VST). Although the parametric complexity

Figure 5: (a) Frequency ofmeeting points where a number of
people (X axis) started their travel from. (b) Car occupancy
ratio under three scenarios of placement of hot-spots at dif-
ferent levels of adoption of our model.

of VST is reduced by constraining the set of feasible meeting points

(Steiner vertices) to hot-spots, we prove that C-VST is still NP-

hard. Our approximate solution, which exploits the monotonic

nondecreasing property of our proposed Gain ratio function under

a speci�c update rule, becomes a readily deployable solution for

city-wide instances of the C-VST problem.

Our approach has a lower time complexity and is empirically

faster (up to two orders of magnitude) than the state-of-the-art

approach of Rahman et al. [8] on Melbourne-based graphs. The

average processing time in a laptop is less than 10 seconds, on

synthetic graphs with 1024 concurrent users who want to perform

the same activity. Our solution is also less costly, on average, than

this baseline as it was shown on both kinds of graphs.

REFERENCES
[1] Victorian Department of Transport. Victorian Integrated Survey of Travel and

Activity (2009-2010), 2011.

[2] K. Aissat and A. Oulamara. Dynamic ridesharing with intermediate locations. In

Computational Intelligence in Vehicles and Transportation Systems (CIVTS), 2014
IEEE Symposium on, pages 36–42. IEEE, 2014.

[3] V. Chaube, A. L. Kavanaugh, and M. A. Perez-Quinones. Leveraging social

networks to embed trust in rideshare programs. In System Sciences (HICSS), 2010
43rd Hawaii International Conference on, pages 1–8. IEEE, 2010.

[4] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1972.

[5] P. Goel, L. Kulik, and K. Ramamohanarao. Optimal pick up point selection for

e�ective ride sharing. IEEE Transactions on Big Data, 2016.

[6] M. Olsen. On the complexity of computing optimal private park-and-ride plans.

In International Conference on Computational Logistics, pages 73–82. Springer,

2013.

[7] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org

. https://www.openstreetmap.org, 2017.

[8] M. Rahman, O. Correa, E. Tanin, L. Kulik, and K. Ramamohanarao. Ride-sharing

is about agreeing on a destination. In Proceedings of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (in press).
ACM, 2017.

[9] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar. The bene�ts of meeting

points in ride-sharing systems. Transportation Research Part B: Methodological,
82:36–53, 2015.

[10] K. Takise, Y. Asano, and M. Yoshikawa. Multi-user routing to single destination

with con�uence. In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, page 72. ACM, 2016.

[11] Y. Wang, R. Kutadinata, and S. Winter. Activity-based ridesharing: increasing

�exibility by time geography. In Proceedings of the 24th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, pages

1:1–1:10. ACM, 2016.

[12] X. Zhang, Y. Asano, and M. Yoshikawa. Mutually bene�cial con�uent routing.

IEEE Transactions on Knowledge and Data Engineering, 28(10):2681–2696, 2016.

 https://www.openstreetmap.org

	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	3.1 Intermediate meeting points
	3.2 Activity-based ride-sharing
	3.3 Steiner trees and ride-sharing

	4 Solutions
	4.1 VST-RS
	4.2 Our Solution

	5 Experiments
	5.1 Simulation setup
	5.2 Dependent variables
	5.3 Comparison with baseline in terms of efficiency and effectiveness
	5.4 Comparison with model A in terms of round-trip likelihood and occupancy rate

	6 Discussion and Conclusions
	References

