
Follow The Best: Crowdsourced Automated Travel Advice
Abdullah AlDwyish

The University of Melbourne
Melbourne, Australia

aldwyish@student.unimelb.edu.au

Egemen Tanin
The University of Melbourne

Melbourne, Australia
etanin@unimelb.edu.au

Shanika Karunasekera
The University of Melbourne

Melbourne, Australia
karus@unimelb.edu.au

ABSTRACT
Recently many navigation services have started to collect traffic
data from drivers to enhance their services. The focus of their ef-
forts are on real-time estimation of traffic conditions to offer better
navigation services and help people avoid traffic incidents. How-
ever, using drivers as mere traffic sensors and aggregating their
data disposes off any human knowledge and judgment that exists
in their choices. Commuters in a city have a valuable knowledge
about their city traffic patterns as a result of their daily commute
over many years. In our work we take a different approach to navi-
gation advice, we use individual driver trajectories to deduce travel
choices. Our goal is to help drivers avoid traffic events by provid-
ing routes that bypassed congested routes during similar events
in the past. We present a solution that combines graph search and
trajectory search to find the fastest path taken in the past using his-
torical trajectories under similar conditions in a city. We evaluate
our approach through extensive experiments in realistic settings
and experimental results show that our solution was able to find
faster paths, avoiding the congested areas in cases where state-of-
the-art methods resulted in drivers leading to routes through con-
gested areas.

CCS CONCEPTS
•Information systems→Location based services;

KEYWORDS
Spatial Databases, Location-based Social Networks
ACM Reference format:
Abdullah AlDwyish, Egemen Tanin, and Shanika Karunasekera. 2017. Fol-
low The Best: Crowdsourced Automated Travel Advice. In Proceedings
of the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, Melbourne, VIC, Australia, November
7–10, 2017 (MobiQuitous 2017), 10 pages.
DOI: 10.1145/3144457.3144475

1 INTRODUCTION
Advances in mobile computing and sensor technologies have en-
abled drivers to record and share details of their trips in real-time.
This has led to a new generation of smart data-driven navigation
services. These navigation services collect traffic data from drivers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiQuitous 2017, Melbourne, VIC, Australia
© 2017 ACM. 978-1-4503-5368-7/17/11…$15.00
DOI: 10.1145/3144457.3144475

in exchange for alerting them about traffic problems. For exam-
ple, Waze.com (a Google company) is a navigation service with
an estimated user base of more than 50 million users worldwide.
In addition, many classical navigation services have adopted this
crowdsourcing approach as the base for their navigation model.
For example, TomTom (a leading navigation company) is now col-
lecting data from more than 400 million drivers worldwide [12].
Crowdsourcing via mobile apps and GPS devices implemented by
such companies have changed the way traffic data is collected and
analysed and has become essential for enabling smart and ubiqui-
tous cities. It was estimated [7] that such smart navigation services
could save, globally, about $400 billion each year by increasing the
utilisation and efficiency of transportation networks.

Current navigation services collect traffic information for real-
time traffic estimation. With better traffic estimates, navigation
systems can help users avoid traffic and give better route direc-
tions. However, despite such crowdsourcing efforts, there is still
evidence that routes recommended by these navigation services
are not good enough for many local drivers. A recent study [2]
compares popular routes that are preferred by local drivers with
routes recommended by navigation services (Google Directions1).
The study shows that drivers commonly do not follow the routes
provided by routing services, and that preferred routes are not nec-
essarily the seemingly shortest route at the time of service.

Local drivers use the road network on daily basis and have in-
depth knowledge about the road network and its traffic patterns.
Using drivers as mere traffic sensors and aggregating their data dis-
poses off any human knowledge that exists in their actions. Typ-
ically, drivers share their data in the form of spatio-temporal tra-
jectories, a sequence of time-stamped locations captured by GPS-
enabledmobile devices. The techniques used by current navigation
services deconstruct user trajectories to aggregate traffic informa-
tion from different drivers per road segment. These techniques are
good at estimating traffic levels through aggregation, but loses the
knowledge available in complete individual trajectories. Therefore,
actions and decisions made by individual drivers do not influence
the navigation advice. For example, in Waze drivers collaborate
to build a real-time estimate of the road network conditions by re-
porting their speed and location information. However, drivers’
judgement and knowledge represented in their actions and turn
decisions do not influence the advice Waze gives to other users.

In our work, we present an automated traffic management ser-
vice to help drivers avoid traffic events using historical data from
other drivers. Users subscribe to the service and when a traffic
event occur, the service provide advice based on drivers actions
during a similar traffic event in the past. We use a different ap-
proach for data-driven navigation that focuses on using local dri-
vers’ intelligence. We preserve the knowledge and behaviour of

1Google has been crowdsourcing since 2008

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia A. Aldwyish et al.

(a) Two drivers Alice (A) and Bob (B) planning to avoid an incident (caution mark).
Bob will follow the dotted path as suggested by a state-of-the-art navigation sys-
tem. Alice is familiar with the area and aware that incidents at this location spread
to adjacent roads quickly so she decides to take the dashed route.

(b) Traffic propagates to adjacent routes and Bob is caught in traffic.

Road Jammed Road

Driver (B) PathDriver (A) Path

Traffic IncidentIntersection
Jammed
Intersection

Figure 1: Local drivers can find better routes to avoid road
incidents

drivers in the data and use historical trajectories without aggrega-
tion when giving driving advice. Our goal is to help users avoid
traffic events by providing routes that were used by local drivers
to avoid similar events in the past. We believe that drivers’ knowl-
edge about their local area, and drivers reaction to traffic events
can improve navigation services. Expert drivers can foresee the
evolution of traffic events and act according to their knowledge in
the area before things evolve.

To illustrate, let us examine the scenario in Figure 1. Figure 1(a)
shows two drivers Alice (A) and Bob (B) who are trying to avoid
an incident (indicated by the caution mark). Bob is using a state-
of-the-art navigation system, and the system advised him to take
the dotted path to avoid the incident. However, by the time Bob
reaches the intersection adjacent to the incident, he will end up get-
ting stuck in traffic caused by the follow on effects of the incident
on the neighborhood as shown in Figure 1(b). On the other hand,
Alice being a local driver for many years knows that incidents on
this road usually propagate to adjacent roads and decided to take
an earlier detour to follow the dashed path and avoid the incident
successfully as shown in Figure 1(b). This example, highlights lo-
cal drivers’ potential to foresee the evolution of events due to their
knowledge in the area. If captured carefully, we believe this infor-
mation can improve navigation services. It is now known there
are benefits in predicting traffic events’ impact to enhance navi-
gation systems [9]. We propose a technique that uses historical
trajectories to achieve this benefit.

In this paper, we consider providing efficient paths to drivers
using past trajectories. The problem of finding efficient paths from
a weighted graph has been studied extensively in the literature.

However, the problem of finding a path from a graph using a set
of historical trajectories has received little attention. We present a
solution that combines graph search with trajectory search to find
the fastest path that was taken to avoid a similar event in the past.
The intuition behind our solution is simple, we can avoid an event
by following the traces of the fastest driver from a similar situation
in the past. Our work can be used independently or as part of a
larger system to advise routes that can avoid traffic problems.

2 RELATEDWORK
Most of the related work focus on popular route mining and find-
ing drivers preferred routes. Only few studies suggest solutions
to find efficient routes from past trajectories. Yuan et al. [14] pro-
posed T-Drive, a system for route planning from taxi driver tra-
jectories. Similar to our work, T-Drive uses past trajectories to
estimate traffic conditions, however, T-Drive focus on estimating
general traffic conditions (over a long period of time) while our
method is event specific (focus on a short period of time). As a re-
sult, T-Drive does not distinguish between different traffic events
and does not handle each traffic event independently. In addition,
the system depends heavily on aggregation. The system assumes
that all weekdays (from different weeks and months) share the
same traffic conditions, and therefore project all weekdays trajec-
tories into a single graph. Similarly, the system builds a graph for
weekends and different weather conditions. The core data struc-
ture in T-Drive is a time-dependent graph, called a landmark graph.
The landmark graph is used to represent and summarise the expe-
rience of taxi drivers. Each edge in the graph has a single 24 hour
time travel profile estimated from the whole dataset. Also, each
edge in the graph represents multiple roads (or road segments) in
the actual road network. Therefore, T-Drive aggregates data from
different trajectories that belong to different owners and different
road segments into a single edge in the landmark graph.

Furthermore, a big part of the work done on route recommenda-
tion via historical trajectories is focused on discovering or learning
the preferred routes of drivers. Popular routes mining algorithms
aim to discover popular or most frequent routes taken by drivers.
These algorithms provide routes that may be desirable for inexpe-
rienced users. However, they are not necessarily efficient for by-
passing traffic events, and they may increase the travel cost which
is not desirable for locals (e.g. take longer routes). Chen et al. [5]
provide a framework that can find the most popular route from
one location to another. Their work improve on sequential pat-
tern mining where the popularity of a route is only measured by
the number of trajectories. They suggest more accurate popular-
ity measure that takes into account route destination. Their work
can find the most popular route towards a destination. Luo et al.
[6] argues the most popular routes change over time. So they de-
veloped popular route mining algorithm that can suggest different
popular routes for different time periods. Chang et al. [4] argues
that people prefer to take their own familiar routes and develop a
framework to discover personalised routes from a driver own tra-
jectory. Wei et al. [13] suggest algorithms to find popular routes
from low-frequency trajectories. Ceikute and Jensen [3] proposed
a system to enhance an existing routing service by using historical
trajectories to find routes that are commonly used by local drivers.

Follow The Best: Crowdsourced Automated Travel Advice MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

Figure 2: System Overview

The intuition is that routes that are used frequently by more dri-
vers are preferred routes. Therefore, at the core of the system is a
preference function that is used to score and rank routes based on:
the number of trips associated with a route, temporal aspect of the
trips and number of unique drivers. If the system can not find a
route using trajectories, it will return the routes suggested by the
external routing service.

Building on top of popular route mining methods, Su et al. [11]
proposed CrowdPlanner: a crowd-based route recommendation
platform. Themain idea in CrowdPlanner is to get human feedback
on routes generated by popular route mining algorithms. Crowd-
Planner is not suitable for avoiding traffic congestion or to aid dri-
vers in their daily commute due to following challenges. First, it
requires explicit efforts from other human workers who may be
in traffic themselves. Second, the contribution of human workers
is limited by the candidate set offered by an automated system.
CrowdPlanner tries to capture the knowledge of drivers by explic-
itly asking them about their preferred routes. The system uses ex-
isting popular or preferred route algorithms and web navigation
services to generate a candidate set of alternative routes. Then,
it attempts to evaluate the candidate set to select the best quality
route. If the system is unable to select a route to recommend, it will
generate a crowdsourcing task and explicitly ask human workers
to evaluate the candidate set. Then the system will return the best
route based on the feedback of human workers.

Furthermore, Bouros et al. [1] proposed efficient methods to
speed up path queries on historical routes collection. The goal of
the proposed algorithms is to speedup path queries in comparison
with conventional graph search (BFS) by exploiting transitive in-
formation within routes. However, the methods in this work oper-
ate on routes made of point of interest (POI) and not detailed turn-
by-turn directions like the routes we address in our work. Also, the
indexing techniques do not handle the temporal dimension of the
data and the search does not include any weight or cost of travers-
ing the route. Therefore, these methods are suitable for exploring
and finding new and interesting paths from route collections but
are not be suitable for avoiding traffic events. The authors provided
two search paradigms Route Traversal Search (RTS) and Link Tra-
versal Search (LTS). RTS expands the search by considering all suc-
cessor nodes, while LTS only considers the next link node (nodes
that are shared by more than one route). Both paradigms termi-
nate when they reach a route that contains or leads to the target,
and therefore are faster than graph search.

Finally, Pan et al. [9] proposed ClearPath: a system that helps
users avoid the impact of traffic incidents by predicting the future

progression of traffic using road sensor data. Similar to our work,
the system distinguish between different traffic events and the au-
thors highlight the importance of including the event future impact
in route planning. However, ClearPath does not collect data from
drivers in a social network and the prediction is based on aggre-
gated traffic data that is collected from traditional street sensors.
Also, ClearPath alternative route advice is calculated using routing
algorithms and it does not directly include local driver knowledge.

3 SYSTEM OVERVIEW
We propose a client-server architecture where the client is an ap-
plication that can run on a modern mobile phone. Using the client,
the user can ask for directions specifying the source and destina-
tion. The server has two components designed around two main
functionalities: the Event Monitor and the Routing Unit. The sys-
tem overview can be seen in Figure 2.

The Event Monitor goal is to keep track of active traffic events,
and finding similar events from the events database. The server
can receive event reports from traffic authorities. When the system
receives an event report, it uses the events database to find the top
most similar event from the past and keeps this information in the
active event memory. The system will use the similar past event to
retrieve historical trajectories from the same time as the event, and
use those trajectories to build a transition model to be used by the
routing unit later. In this work, we use a simple method for event
matching and refine it in future work. To find similar events, we
use hash indexing as there is easy division by (day, hour, location,
etc.) that differentiates per event which trajectories are relevant.
Therefore, we find a similar event, the first best match, and use it
to retrieve a set of trajectories that are related to the event.

Once the server receives a routing request, it will determine if
the user will encounter any of the active events along the way and
pass the relevant transition model to the routing unit. The routing
unit will initiate a graph search and use the transition model to
assign costs to edges while searching for a path. The routing unit
is composed of two main components: (i) transition store; and (ii)
graph search component.The transition store: is an indexed data
store with the goal of providing fast access to relevant transitions
to be used during the search process. The transition store uses
the connectivity of the graph as an indicator of locality. Specif-
ically, the store uses the graph edges to access trajectories that
pass through those edges at a certain time. Currently, the index
is a basic memory mapping of edges to time-ordered transitions.
We transform trajectories into transitions in a preprocessing step
that is performed once for each event. Then, we group transitions
based on the edge they pass.The graph search component: this
component implements the leader following algorithm, a form of
graph search that uses the transition store to retrieve and evaluate
transitions for every edge.

4 ROUTINGWITH HISTORICAL
TRAJECTORIES

4.1 Preliminaries
RoadNetwork: We represent the road network as a directed graph
G = (V ,E) with a node set V of size n representing road intersec-
tions, and an edge set E of size m that represents road segments.

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia A. Aldwyish et al.

An edge e = (u,v) where u,v ∈ V . Associated to each edge there
is a weight function w(e), that represents the cost of traversing
this edge.

Path: A path P from node v1 to vk in G is a sequence of edges
e1 → e2 → e3 → . . . ek−1 that connects the node set v1 → v2 →
v3 → . . .vk . The weight of a pathw(P) is the sum of the weights
for all edges in P . The shortest path between two nodes s and d is
the path with minimum weight among all possible paths between
s and d .

Traffic Event: Let X be a traffic event represented by the set
X = {e, I } for all e ∈ E that are affected by the event X , and I =
{it : t ∈ T } is a time series that represents the impact of X on e
during the time range of the event {T |Ts < T < Te } in terms of
weights where Ts is the start time of the event, and Te is the end
time of the event, given increments of δ . Impact i ∈ I is a value
that indicates the increase in the weightw(e). E(X) ⊂ E is the set
of edges that are impacted by the event.

Trajectory: A driver trip is collected in a GPS log. A GPS log
is a sequence of timestamped GPS points p1 → p2 . . .pk . Each
point p = (latitude, lonдitude, t) consist of a coordinates pair and
a timestamp t ∈ T . Using map-matching, points in a GPS log are
transformed into trajectory Y by mapping the coordinates points
to edges in E. Thus, a trajectory Y is a time ordered sequence of
elements Y = [y1,y2, . . . ,yk], where each y = (e, [ta , . . . , td])
where e ∈ E is the mapped edge, and ta is the first timestamp that
captures when e was entered and td is the last timestamp that cap-
tures when the edge was left. We use the notation e(y) to indicate
the edge e of element y, and ta(y) and td (y) to indicate the arrival
and departure time of edge e(y) for element y. We assume that
we are working with high frequency GPS logs that are enough
to capture all edges in the graph. Thus, a mapped trajectory Y
is a time ordered sequence of edges such that there exists a path
e(y1) → e(y2) . . . e(yk) in G. A trajectory set A[ts ,te] is a col-
lection of trajectories [Y1,Y2, . . .Yj] that belong to the same time
range [ts , te].

To avoid a traffic event, we need to find a similar traffic event
from the past and follow the fastest drivers at that time to our des-
tination. Drivers have a natural reaction to traffic; when drivers
find about a traffic event, they strive to avoid it. Some of them
may not succeed, but some drivers who have knowledge about the
traffic pattern in the area will avoid it. Therefore, by looking at
historical trajectories, we will identify the routes that can help us
successfully avoid the event, and any future progression of traffic
caused by the event.

However, when we search historical trajectories for a solution,
we need to consider that the best route does not always map to
a single trajectory. We cannot assume that all drivers in the past
are going to the same source and destination as our queries. In
other words, we need to consider routes that are formed from sub-
trajectories. In these cases, the solution cannot be found by follow-
ing a single driver, especially when the driver deviates from the
query destination. Combining the trajectories of multiple drivers
reveal better routes to take to avoid the event. Thus, combining sev-
eral trajectories is necessary to find an optimal solution. In order
to consider routes from sub-trajectories, we transform trajectories
into transitions:

Figure 3: Transition Graph Example.

Transition: A transition is a tuple that represents a driver travers-
ing from one edge to another. A transition tr = ⟨e, ta , λ⟩ where
e ∈ E, ta is the arrival time and λ is the transition duration or
travel time to another edge. Transitions are created from trajec-
tories. Given a trajectory Y , we create the following transitions
{(e(yi), ta(yi), ta(yi+1) − ta(yi)) : y ∈ Y }, where e(y) is the edge
of element y, and ta(y) is the first timestamp for edge e(y) in ele-
ment y.

Transition Graph: Given the road networkG and a trajectory
set A[ts ,te], Transition Graph G = (E,V) is a transition expanded
version of G where for every edge e ∈ E there is a new edge in E
for every transition in the transition setTRe, [ts ,te] that group tran-
sitions which pass the same edge. Note thatG is a temporal graph
since edges in E are annotated with timestamps, therefore there
might exist multiple edges between any two nodes in G. Figure 3
shows an abstract example of a transition graph.

Transition Path: A transition path TP is a sequence of transi-
tions tr1 → tr2 → . . . trk such that tr1(e) → tr2(e) → . . . trk (e)
is a path inG and ta(ri+1) > ta(tri) for any i ∈ [1,k −1]. The cost
of transition path TP is ∑(λ(tr)|∀ tr ∈ TP).

Thus, based on the above definitions we can define our problem
as finding the transition path that have minimal travel cost, we call
this problem the Fastest Transition PathQuery.

Fastest Transition Path Query: Given two nodes a source s
and a destination d a transition graph G for the time range [ts , te],
find the transition pathTP with minimal travel time between s and
d .

4.2 The Leader Following Algorithm
We present the Leader Following (LF) algorithm to solve the Fastest
Transition Path Query. The LF algorithm modify Dijkstra’s edge
relaxation step to find and select the best transition while explor-
ing nodes. The details of the algorithm is in Algorithm 1. The
algorithm constructs paths with minimum travel time from source
node to the remaining nodes, exploring adjacent nodes at each step
until the fastest path to destination node d is found. The algorithm
maintains a group of nodes in a priority queue Q to be processed.
These nodes are the frontier of paths from the source node s that
have been explored so far. The cost of each frontier is the sum
of each transition travel time from the source node to the frontier.
Initiation: first, the algorithm initiates a cost arrayC[V] = ∞ for
all nodes and C[s] = 0. Node s is settled and added as frontier in
Q . At each iteration, we extract the frontier u with the minimum
cost and update the timestamp to qt +C[u]. Edge relaxation: for

Follow The Best: Crowdsourced Automated Travel Advice MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

every node v adjacent to u that has not been settled, we query
the transition store to find the fastest transition for the edge (u,v)
and the timestamp. A new cost from source is calculated using the
transition travel time C[u] + λ(tr). If this value is lower than the
previous costC[v], then we update the cost ofv toC[u]+λ(tr) and
setu as the predecessor node of v and tr as the predecessors transi-
tion. It is important to note here that each frontier inQ must main-
tains its own timeline. Otherwise, when the search backtrack or
explore another path, it will use incorrect timestamp and retrieve
transitions from a different period of time and this will effect the
search results. Therefore, we calculate the timestamp used to query
the transition store based on the cost of the frontier C[u] and the
query start time qt . This allows each frontier in Q to maintain its
own timeline based on its cost so far. We call this mechanism time
stitching, because we are stitching transitions together using their
timestamp and travel time. Also, since we update the timestamp
based on the travel time of the driver that we are following. Any
other transitions from slow drivers will be filtered out and will not
affect the search in the next steps. Termination: this process is
repeated until the destination node is extracted from the queue. Fi-
nally, the minimum path can be recovered by running back from
the destination node through stored predecessors untill the source
is reached.

During edge relaxation, the transition store receives queries in
the form of edge and timestamp ((u,v), t) and returns the transi-
tion tr with theminimum travel time during the time range [t , t+r]
where r is variable we use to control the time range of the query.
In order to find the required transition, the store first select tran-
sitions with durations that overlap with the interval of the query.
Then, it picks the transitionwith theminimum duration as detailed
in listing 2.

To demonstrate how LF algorithm works, Figure 4 shows an ex-
ample trajectory set (Figure 4(a)) and transition graph (Figure 4(b)).
Let us assume that we have a query q = (A,T , 2) going from node
A to nodeT at time 2. At first, source node A is put into the queue
Q . When A is extracted, the timestamp is set to 2, then the transi-
tion store is queried for (A,B, 2) and (A,C, 2) to evaluate the cost
of B and C respectively. To answer the query (A,B, 2) the tran-
sition store first filters all transitions for the edge (A,B) that are
outside the time range [2, 3]. Then it will select the transition with
minimum duration, in this case tr3. Therefore, B will be added
to the queue with the cost C[B] = 0 + 1. Similarly, C will be
added to the queue with the C[C] = 0 + 2 coming from transition
tr5. Since B is the node with the smallest cost, B is extracted and
the timestamp is updated to 2 + 1 = 3 and the transition store
is queried for (B,D, 3). Then, D will be added to Q with the cost
C[D] = 1+1 = 2 since the transition with the minimum duration
under the time range [3, 4] is tr4. Next, C or D will be extracted,
since both have the same cost they have equal chance to be ex-
tracted next. If D is extracted, the search is terminated. However,
if C is extracted, a new cost for D will be calculated as 2 + 1 = 3
which is greater than the cost stored for D. Therefore, the cost is
ignored and D will not be updated. Finally, when D is extracted,
the search is terminated with A → B → D being the fastest path
by following trajectory Y1 = (tr3 → tr4).

Regarding the complexity of our algorithm, it is clear that our
algorithm is more time consuming than Dijkstra due to the extra

findOrCreate procedure we perform every time we relax an edge.
The findOrCreate procedure performs twomain operations sequen-
tially: a filter operation and minimum operation. Let t be the av-
erage number of transitions per edge, then in worst case scenario
each operation will be performed in O(t). Therefore, we can as-
sume that findOrCreate procedure complexity asO(t + t) and can
be simplified to O(t). Furthermore, Dijkstra worst case complex-
ity is known to be O(m logn) when implemented with a priority
queue. Therefore, the complexity of our algorithm assuming t is
the average number of traversals per edge is O(mt logn). How-
ever, it is important to note that t is dependent on the dataset used,
specifically, the number of transitions.

Algorithm 1 The Leader Following Algorithm
1: procedureQuery(G = (V ,E), s , d , qt)
2: for v ∈ V do
3: C[v] = ∞
4: C[s]← 0
5: Q ← s
6: while ¬Q .empty() do
7: u ← Q .extractMin()
8: if u == t then
9: return u
10: timestamp ← qt +C[u]
11: for every node v adjacent to u not in Q do
12: tr ← f indOrCreate(u,v, timestamp)
13: if C[u] + λ(tr) < C[v] then
14: C[v]← c[u] + λ(tr)
15: v .tr ← tr
16: v .prev ← u
17: Q ← v

Algorithm 2 Finding transitions
1: procedure findOrCreate(u,v, t)
2: TR(u,v) ← store[u,v]

3: tr ← minλ {tr ∈ TR(u,v) |t < (ta(tr) + λ(tr)) ∧ (t + r) >

ta(tr)}
4: if tr , φ then
5: return tr
6: else
7: return lenдth(u,v)/speed(u,v)

4.3 Extending the Base Algorithm
The LF algorithm is designed to be precise using realistic trajecto-
ries. However, keeping individual trajectories for many years will
result in terabytes of data and this will increase the cost of storage
and maintenance, also will make the search more expensive. For
this reason, we present the snapshot routing algorithm which uses
an alternative cost model for situations where only sparse trajec-
tories are available, or if storing and using terabytes of individual
trajectories is expensive for a particular company.

In this algorithm, we still operate on the same temporal graph
used in LF algorithm. The difference here is the data store, instead

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia A. Aldwyish et al.

(a) (b)

Figure 4: From trajectories to a transition graph. A detailed example for the leader following algorithm.

Figure 5: Timetable created using trajectories from Fig-
ure 4(a) with interval = 3 seconds.

of using the detailed transitions, we use a snapshot of the event
created from event-specific trajectories only. The Snapshot Rout-
ing algorithm (SNP) uses trajectories to create a timetable for each
edge in the road network that maps arrival time to a travel cost.
Travel costs are aggregated from trajectory points that belong to
the same time interval and pass the same edge. For example, as-
sume we have edge e and the time interval is five minutes, then
timetablee will contain the average travel cost for every five min-
utes aggregated from trajectories that pass e . Figure 5 shows an ex-
ample of transforming the trajectories from Figure 4(a) into a time
table with time interval equal to three seconds. We traverse the
graph in a manner similar to LF algorithm, we keep the timestamp
stitching mechanism (querying timetables based on the current
timestamp). However, instead of querying the transition store, we
query the edge related timetable and update the cost accordingly.
The key here is that the timetables are created from event-related
trajectories, we do not mix trajectories from other time frames to
calculate the travel cost. Therefore, the travel costs still capture
event spatio-temporal growth or evolution.

To compare the snapshot routing to the transition store in terms
of size, let us assume that we have a trajectory set Y[tmin,tmax]

which falls under the time range [tmin , tmax]. Let the time inter-
val/rate be ∆t and number of edges in the graph |E |. Then, we
need O(|E | ∗ tmax−tmin

∆t) pages to store time cost aggregates. The
size of the timetables in this cost model depends on the time in-
terval and the time range of the trajectory set. However, the size
in the transition store depends on the number of transitions. To
show this, assume that trajectories in Y all have the same length

LY , then the transition store would require O(Y ∗ LY) pages to
store all transitions. Therefore, the storage requirements for the
transition store increase, when the number and length of trajec-
tories increases. While, the timetables depends only on the time
interval and range of the data, which is much smaller event-wise.

Although SNP reduces the size of the data and is less expensive
than LF, it is not suited for finding personalised or individualised
advice. By using aggregates, we lose the information about individ-
ual trajectories, and thus loss of this data will make profile based
and other improvements to the system impossible in the future.

5 EXPERIMENTAL STUDY
Our main objective in this evaluation is to study the effectiveness
of our proposed algorithms, LF and SNP, under different scenarios.
Our goal is to show that our methods are effective at helping dri-
vers avoid traffic events. We use the Average Travel Time (ATT)
as the measure to evaluate the effectiveness of our approach. Al-
though computation time is not our main focus in this paper we
evaluate the performance of our algorithms using Average Query
Time (AQT) as well. We compare our approach against two other
methods: fastest path (FP) and real-time (RT) based methods. Both
methods use Dijkstra as graph search approach and travel time as
edge weight, but they differ in the way they estimate the travel
time. The FP method is the conventional speed limits approach
where the travel time is calculated based on the maximum allowed
speed of the road. This is a basic approach and does not get traffic
updates. The RTmethod estimates the speed of each road based on
the average speed of vehicles traversing the road at a given time in-
terval, and then computes the fastest path based on the estimated
speeds. The RT method estimates and updates graph weights ev-
ery five minutes based on speed samples collected during the past
five minutes. Note that the FP approach represents the worst case
scenario, since the weight is static and is not affected by traffic.
Thus, this approach is not aware of any speed drop caused by the
traffic event and will send vehicles to the event if the fastest path
of the vehicle pass by the event. In addition, to test whether block-
ing the event location is enough to re-route from the event, we use
a variation of FP approach (FP2) that is aware of the speed drop at
the event location and re-route vehicles.

Follow The Best: Crowdsourced Automated Travel Advice MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

5.1 Evaluation Methodology
In our evaluation we use a microscopic traffic simulator called
SMARTS [10]. The simulator is used to test our method as well
as to generate synthetic trajectories. The simulator employs multi-
ple traffic models (such as car-following and lane-changing), and
the simulated vehicles obey various road rules. Thus, the simulator
is capable of generating trajectories of realistic driver behaviour.

Simulation scenario: Using SMARTS, we run a simulation sce-
nario using real road networks extracted from OpenStreetMaps
(OSM) [8]. The simulation scenario is designed to test the effec-
tiveness of a given routing method in helping drivers avoid traffic
events. In this simulation scenario, we create a set of test vehicles
that go through an event, and use a given routing method to re-
route test vehicles. Then, we measure the simulated travel time
using the trajectory of test vehicles. The simulation scenario is de-
signed to be focused on the surrounding area of the traffic event.
We fix the simulation time to one hour and the simulation region
to the suburb that includes the event location. During the simula-
tion, a traffic event will be activated on a selected road, and this
will reduce the road speed according to the given event impact pa-
rameter. The speed drop caused by the traffic event is visible to
all routing methods (except for FP) and when test vehicles are re-
leased into the road network they are re-routed using the routing
method under test (FP, FP2, RT, LF, SNP). During the simulation,
trajectories for test vehicles are recorded and exported. We run
this scenario for the five routing methods under test, and use the
trajectories of test vehicles to measure and compare the methods.

Test vehicles generation: We generate 100 test vehicles for
each experiment. Test vehicles in the simulation are generated
using the following steps. First, we randomly select source and
destination pairs. Then, using the fastest path routing method we
assign a route for each pair. Each route must go through the event
location, or we replace the source-destination pair with a new one
and find a new route. Next, each test vehicle is assigned a start time
selected based on the experiment parameters (see Section 5.2).

Historical trajectory generation: We also use the simula-
tor to generate trajectories needed by the LF method. To gener-
ate these trajectories we use a simulation scenario similar to the
above, except that the event is not visible to vehicles and we do
not re-route vehicles. First, we randomly select source and desti-
nation pairs from the nodes in the road network. Then, using the
FPmethod we assign a route for each pair. Each route must have at
least three or more turns, otherwise we replace the source and des-
tination pair with a new one. Then, we run the simulator given the
generated routes and export the trajectories. In this process, we do
not control or alter the paths to avoid the event, and vehicles will
always follow the fastest path at given time. We have considered
including smart driver behaviour. However, since we do not have
local drivers’ data, we did not want to bias the experiment with
unrealistic smart choices which may have a global view of traf-
fic. Therefore, if there is a vehicle that is going towards the traffic
event, it will get stuck and will not be re-routed. We thus rely only
on having trajectories with different sources and destinations and
our algorithm work by patching these trajectories to find out how
to bypass the event. In real life we may get even better results as

Table 1: An example of synthetic historical trajectories used
in one of our experiments.

Statistic Value
Duration of Simulation 1 hour
Number of Trajectories 10155
Average Transition Time 11 seconds
Average Transition Distance 39.5 meters
Average Trip Time 367.68 seconds
Average Trip Distance 1356.79 meters
Average Trip Speed 3.6 m/s

Table 2: Experiment Settings.

Parameter Default Range
Event Location Inner City {Inner City, Outer Suburb}
Event Impact %90 {50%, 90%}
Traffic Volume 1000 {500, 1000}
Peak Time peak hour {peak hour, off-peak hour}
Event Start Time 5 {5, 10, 15}
Release Time 8 {3, 8, 13}

Table 3: Details of the road network used in each map.

Map Name Nodes Edges Area Density
Inner City 3213 4293 2.4 km2 1788.6
Outer Suburb 5697 9437 18 km2 524.3

people do make better choices. Table 1 shows statistics about a
historical trajectory set generated for one of our experiments.

Finally, the procedure for evaluating a single experiment involves
running the simulator six times. All six simulations are run accord-
ing to the simulation scenario above, and they share the same con-
ditions and parameters (Section 5.2) per experiment except for the
routing method. We repeat each experiment five times and take
the average ATT.

5.2 Evaluation Parameters
To evaluate our methods, we use six parameters that control and
change how the traffic event propagates. The parameters are (i)
Event Location, (ii) Event Impact, (iii) Traffic Volume, (iv) Peak
Time for Event Location, (v) Event Start Time and (vi) Release Time
of Test Vehicles. The settings for all experiments parameters are
presented in Table 2 and explained below in details.

Event Location: We selected two different locations in two
different areas. The areas were chosen from OSM of Victoria, Aus-
tralia, to represent different road network layouts. The suburbs are:
Melbourne City Centre (Inner City) and Ringwood (Outer Suburb).
Table 3 lists the network characteristics for each suburb.

Event Impact: In these experiments, we vary the severity of
the event impact. The impact variable has two levels: low and
high. The impact of a traffic event is represented as a percentage
of loss in speed for a specific road. For example, if an event have
90% impact on a road with max speed of 40km the road speed will
be reduced to 4km.

Traffic Volume: We test our method under two levels of traffic
congestion: light and heavy. The traffic level affects the number

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia A. Aldwyish et al.

(a) (b)

Figure 6: (a) ATT values for the incident on inner city loca-
tion. (b) Performance results for FP, LF and SNP using the
inner city map.

of random vehicles in the simulation. The number of random vehi-
cles remains constant during the simulation. For example a traffic
volume of 1000 implies that there will be 1000 background vehicles
at any time during the simulation.

Peak Time: While the traffic volume parameter controls the
number of background vehicles, background vehicles are randomly
distributed around the map (they have random source and destina-
tion), and they are not guaranteed to pass through the event loca-
tion. This parameter helps us represent scenarios like rush hour
traffic. If peak time is true, the flow through the event is increased
by increasing the number of background vehicles that are headed
to the event.

Event Start Time & Release Time of Test Vehicles: The
event start time parameter controls when the event is triggered
and activated during the simulation time. For example, when event
start time is five minutes, the event will be activated and take ef-
fect after five minutes of the simulation start. Similarly, the release
time parameter controls when the test starts. The release time in-
dicates the time a vehicle gets released into the road network by
the simulator. This is relative to the event start time. For example,
if the release time is eight, test vehicles will be released into the
simulation 8 minutes after the event start time.

6 RESULTS
In this section, we use a real world setting to test the scenario
we presented in the introduction, where Bob was not able to es-
cape the event impact even after being re-routed. In particular, we
wanted to see how much of time saving we would achieve with
our approach. In this experiment, the simulation was performed
onMelbourne City Centre, with the event starting at minute 5, test
vehicles are released after 8 minutes, with the event impact set to
90% and the traffic volume set to maximum of 1000 vehicles during
peak time.

The result for this experiment is shown in Figure 6(a). The fig-
ure shows that the FP method has the longest ATT (2133 seconds)
as expected. Also, the figure shows that FP2 has reduced the ATT
to 870 seconds, which means blocking the event location help part
of test vehicles but not all of them as the high ATT indicates that
some vehicles still experienced a significant delay. Similarly, the
RT method has ATT close to FP2 (759 seconds), which shows that

(a) Traffic incident for the Inner City location.

(b) Traffic incident for the Outer Suburb location.

Event
Location

Blocked
Intersection

Future Traffic
Propagation

Alternative
Road

Figure 7: The locations of traffic incidents used in our exper-
iments, and examples of their future propagation. In 7(a),
the traffic propagation will spread and block the closest al-
ternative road (Flinder St.). In 7(b) the alternative road (Mul-
lum Rd) is far from the event location and safe from future
traffic propagation.

using the RT method has a small improvement over blocking the
event location. Furthermore, the figure shows that LF and SNP
methods reduced ATT significantly with ATT of 381 and 394 sec-
onds for LF and RT respectively. To show the improvement our
methods achieved over the RT method we present, in Table 4, the
number of test vehicles that had better travel time using our meth-
ods and the time reduction achieved by our methods over RT. The
table shows that LF method reduced the travel time for 329 vehi-
cles by 47.5% on average. Similarly, the SNP method reduced the
travel time for 321 by 46.6% on average.

The RTmethod did not perform well in this experiment because
the propagation of traffic event was faster than the update rate
of the RT method. This leads the congestion to spread to alter-
native routes used by the RT method and blocked all the vehicles
re-routed via these alternative routes. This is visible in Figure 7(a).
The figure shows the map of Melbourne City, the event is located
on Collins St. (indicated by the caution mark) and the dashed ar-
rows show the direction of traffic propagation. The RT method
updates the graph every five minutes and routes vehicles based on
data collected from the past fiveminutes. However, the RTmethod

Follow The Best: Crowdsourced Automated Travel Advice MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

Table 4: Improvement achieved by LF & SNP over RT.

Method Number of Vehicles Time Reduction
LF 329 47.5%
SNP 321 46.6%

is not aware of changes in traffic between updates nor can it esti-
mate the future. In this case, the RT method was not proactive
about traffic propagation towards Flinders St. and re-routed some
vehicles via Flinders St. which lead these vehicle to get stuck in
traffic again.

Furthermore, to show the runtime performance for our meth-
ods, Figure 6(b) presents the average query time (AQT) for FP, LF
and SNP using the city map. Themeasurements focus on the query
operation for the LF and SNP algorithms. The figure shows that LF
method takes more time than SNP or FP. Nonetheless, the results
show that the AQT for the LF method is 2.8 milliseconds which is
acceptable to answer user queries. Also, AQT for the SNP method
is 0.9 millisecond which is third the time of LF method. As wemen-
tioned before, our algorithm is expected to be slower than Dijkstra,
however, the results show that it is still within the accepted quality
of service.

6.1 Elasticity
In this section, we study the effectiveness of our methods when the
behaviour of the event changes based on the parameters shown in
Table 2.

6.1.1 Effect of Event Impact. In this set of experiments, we vary
the event impact parameter. Figure 8(a) shows ATT when we
change the event impact. We notice that test vehicles do not ex-
perience any significant delays when the impact is 50%. This is
clear because the ATT value for test vehicles when they go through
the event without re-routing (FP method) is 564 seconds. This in-
dicates that re-routing vehicles is not necessary since this setting
does not disrupt the traffic significantly to cause congestion. On
the other hand, increasing the event impact to 90% introduces a a
considerable delay for test vehicles and in turn increases the ATT
value for FP significantly (1830 seconds). In this case, the event
causes congestion and will delay some vehicles that are being re-
routed by the RT and FP2 methods.

6.1.2 Effect of Traffic Volume. In this experiments, we reduce
the traffic volume from 1000 to 500. Figure 8(b) shows ATT val-
ues when we change the traffic volume parameter. We notice that
decreasing the traffic volume from 1000 to 500 slightly decrease
ATT overall. This decrease occurs because the number of vehicles
going towards the event has decreased. However, the change is
small and suggests that traffic volume does not have a dramatic
effect on the event as the event impact parameter does, unless a
high volume of traffic is sent to the event directly.

6.1.3 Effect of Peak Time. We use the Peak Time parameter to
increase the flow to the event and concentrate the vehicle distri-
bution around the area. Figure 8(c) shows the ATT during Peak
Hour and Off-Peak Hour. The figure shows that during off-peak
hour, we can see that the RT and LF are almost equivalent in terms
of ATT. This suggests that both methods managed to reduce ATT

and successfully re-route test vehicles away from the event im-
pact. During peak-hour, the increased flow to the event causes the
congestion to propagate blocking nearby alternative routes and in-
troducing significant delays to FP2 and RT. This is visible in the
increase of ATT during peak-hour where ATT is increased by ap-
proximately 416 seconds for RT, while our method only experi-
enced slight increase about 40 seconds. This indicates that our
method has helped the drivers, who got stuck by the RT method
during peak-time.

6.1.4 Effect of Event Location. In this experiment, we change
the location of the event. Event location plays a big role on how the
event behaves. Figure 8(d) shows the results of our experiments
with two locations, Inner Melbourne City and Ringwood Suburb.
The figure shows higher ATT overall for Ringwood. Furthermore,
the figure shows that RT, LF and SNP for the Ringwood location is
almost similar with ATT of 663, 610 and 680 seconds respectively.
The reason for this is that traffic propagation does not reach the al-
ternative route due to event being located on the middle of a long
highway in Ringwood (as shown in Figure 7(b)). The capacity and
speed of the highway makes traffic propagation slow (compared
to the speed of a tertiary street in the city). Consequently, traf-
fic propagation takes a long time to reach the roads used by the
alternative routes.

6.1.5 Effect of Test Vehicle Release Time. In this experiments,
we vary the Release Time parameter to test our methods during
different phases of the event lifetime. Figure 8(e) shows ATT val-
ues when we change the test time to (3, 13). When the test vehicles
are released after 3 minutes from the event start, the results show
that FP method experience less ATT (compared to 8 minutes), a
possible reason for this is that the event have just started and traf-
fic has not yet started to build up. Therefore, vehicles that arrive
first at the event location will experience shorter delays. We can
also notice that the LF method has higher ATT values than when
the release time is 8 or 13. This happens because at the start of the
event there is no traffic congestion and the vehicles start to queue
up slowly. In this initial period of the event, the delay experienced
by vehicles varies, and this affects the LF method since it relies on
following the fastest driver. However, this variation does not af-
fect SNP method because it uses the average travel time instead
of following the fastest driver. Furthermore, we can see that FP
method experience shorter ATT when test vehicles are released af-
ter 13minutes. This is probably because test vehicles were released
earlier than other experiments and therefore spent more time wait-
ing in congestion. Other than this, releasing the test vehicles after
13 minutes have similar trends to 8 minutes.

6.1.6 Effect of Event Start Time. In this experiment, we vary the
start time of the event during the simulation. Figure 8(f) shows the
ATT values when we change the start of the event during the sim-
ulation from minute 5 to minute 10 and 15. The results show that
the ATT for FP2 is (870, 934, 792) seconds, and ATT for RT is (759,
818, 755) seconds when the event time is (5, 10, 15) respectively.
While the ATT for LF is (381, 382, 387) and the ATT for SNP is
(394, 382, 380) seconds. These results confirm that reduction of
time achieved by our methods persist even when we change the

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia A. Aldwyish et al.

(a) Varying the Event Impact parameter. (b) Varying the Traffic Volume parameter. (c) Varying the Peak Time parameter.

(d) Changing the Event Location. (e) Varying the Test Vehicle Release Time parameter. (f) Changing the Event Start Time.

Figure 8: ATT under different parameter values.

time of the event. Thus, different start times have no major impact
on the event behaviour or performance of our methods.

7 CONCLUSION
We presented two route recommendation algorithms (LF and SNP)
that uses past trajectory data to help users avoid traffic problems.
The algorithms can find the fastest route from past trajectories be-
tween two locations and a departure time. The LF algorithm is a
form of graph searchwhich uses a historical trajectories every time
it relaxes an edge to find the fastest transition left by drivers. The
LF algorithm evaluates routes that are constructed from complete
trajectories or sub-trajectories, concatenation of different drivers
trajectories. Our work can fallback to traditional road speed limit
if there is a gap in the data. This ensures that LF algorithm can find
a path even when there is no data for a particular road.

We presented an experimental evaluation done usingmicro-traffic
simulation with multiple realistic scenarios. We reported on the
effectiveness of our approach measured by the simulated travel
time. In our study, we compared our approach with classical FP
(speed road limits) method and real-time traffic analysis based (RT)
method. The experiments show that the RT approach cannot esti-
mate the future propagation of a traffic event. Therefore, it could
lead drivers to congestion. Our method was able to suggest al-
ternative routes that avoid the evolution of the traffic event and
achieved up to 47.5% reduction in travel time on average. In addi-
tion, the RT method requires continues communication and fre-
quent updates which is costly for both users and servers. Our
method does not require updates and works as well as the RT in
most situations.

In the future, we plan to focus on event similarity and match-
ing. Currently, we assume a simple matching that uses trajectories
from a similar event. We will work on more improved matching
technique and add support for aggregating or combining trajecto-
ries from multiple similar events.

REFERENCES
[1] Panagiotis Bouros, Dimitris Sacharidis, Theodore Dalamagas, Spiros Skiadopou-

los, and Timos Sellis. 2012. Evaluating path queries over frequently updated
route collections. IEEE TKDE 24, 7 (2012), 1276–1290.

[2] Vaida Ceikute and Christian S. Jensen. 2013. Routing service quality - Local
driver behavior versus routing services. In IEEE MDM, Vol. 1. 97–106.

[3] Vaida Ceikute and Christian S Jensen. 2015. Vehicle routingwith user-generated
trajectory data. In IEEE MDM, Vol. 1. IEEE, 14–23.

[4] Kai-Ping Chang, Ling-Yin Wei, Mi-Yeh Yeh, and Wen-Chih Peng. 2011. Discov-
ering personalized routes from trajectories. In ACM SIGSPATIAL. 33–40.

[5] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. 2011. Discovering popular
routes from trajectories. In IEEE ICDE. 900–911.

[6] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M Ni. 2013. Finding time period-
based most frequent path in big trajectory data. In ACM SIGMOD. 713–724.

[7] Carl-Stefan Neumann. 2015. Mckinsey Report. (2015). http://www.
mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/
big-data-versus-big-congestion-using-information-to-improve-transport
[Online; accessed 16-May-2017].

[8] OpenStreetMap. 2017. OpenStreetMap Foundation. (2017). http://www.
openstreetmap.org/ [Online; accessed 16-May-2017].

[9] Bei Pan, Ugur Demiryurek, Chetan Gupta, and Cyrus Shahabi. 2015. Forecast-
ing spatiotemporal impact of traffic incidents for next-generation navigation
systems. Knowledge and Information Systems 45, 1 (2015), 75–104.

[10] Kotagiri Ramamohanarao, Hairuo Xie, Lars Kulik, Shanika Karunasekera, Ege-
men Tanin, Rui Zhang, and Eman Bin Khunayn. 2016. SMARTS: Scalable Mi-
croscopic Adaptive Road Traffic Simulator. ACM TIST 8, 2 (2016), 26.

[11] Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiaofang
Zhou. 2014. Crowdplanner: A crowd-based route recommendation system. In
IEEE ICDE. 1144–1155.

[12] TomTom. 2014. TomTom Online Navigation Services. (2014). http://www.
tomtom.com/lib/doc/14Q3_US_A5hr.pdf [Online; accessed 16-May-2017].

[13] Ling-Yin Wei, Yu Zheng, and Wen-Chih Peng. 2012. Constructing popular
routes from uncertain trajectories. In ACM SIGKDD. 195–203.

[14] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2013. T-drive: Enhancing
driving directions with taxi drivers’ intelligence. IEEE KDE 25, 1 (2013), 220–
232.

http://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/big-data-versus-big-congestion-using-information-to-improve-transport
http://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/big-data-versus-big-congestion-using-information-to-improve-transport
http://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/big-data-versus-big-congestion-using-information-to-improve-transport
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.tomtom.com/lib/doc/14Q3_US_A5hr.pdf
http://www.tomtom.com/lib/doc/14Q3_US_A5hr.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Routing with Historical Trajectories
	4.1 Preliminaries
	4.2 The Leader Following Algorithm
	4.3 Extending the Base Algorithm

	5 Experimental Study
	5.1 Evaluation Methodology
	5.2 Evaluation Parameters

	6 Results
	6.1 Elasticity

	7 Conclusion
	References

