
Monitoring Moving Objects using Low Frequency Snapshots in Sensor Networks

Egemen Tanin
NEC Labs, Cupertino, CA

Univ. of Melbourne, Australia

Songting Chen
NEC Labs, Cupertino, CA

Junichi Tatemura
NEC Labs, Cupertino, CA

Wang-Pin Hsiung
NEC Labs, Cupertino, CA

Abstract

Monitoring moving objects is one of the key application
domains for sensor networks. In the absence of cooperative
objects and devices attached to these objects, target track-
ing algorithms have to be used for monitoring. In this paper,
we present that many of the applications of moving object
monitoring systems could be addressed with low-frequency
snapshot-based queries. With the realization of this query
type, we show that existing target tracking algorithms may
not be the least expensive solutions. We introduce an ap-
proach that uses two alternating strategies. We maintain a
cheap low-quality knowledge of moving objects’ location
between snapshots and trigger expensive sensor readings
only when a snapshot period has elapsed. With extensive ex-
periments we show that our approach is significantly more
energy efficient than established methods. It is also more
effective than existing data-and-query centric in-network
query processing schemes as it can maintain object iden-
tities between snapshots.

1 Introduction

Monitoring moving objects is a key application domain
in sensor networks. Objects can be tracked using tags with
identification and positioning capabilities. As an alternative,
the network itself can utilize tracking algorithms to collect
data about objects, i.e., when tags are not available due to
non-cooperative objects or other tagging difficulties. In this
paper, we aim for the application domain where objects can-
not be easily tagged or assumed to be cooperative. Exam-
ples of this domain include various wildlife monitoring sys-
tems and defense applications.

Let us consider a simple wildlife monitoring application
and assume that a scientist runs the following sample query
on a monitoring network:

SELECT animals.id, animals.location
FROM animals
SAMPLE INTERVAL 3mins
FOR 24hrs

In this application, moving objects are automatically given
some ids by the system and the query is seeking to retrieve
these id’s with location information for wildlife at three
minute intervals throughout a day.

For this application, there are basically two main direc-
tions to consider for data acquisition. First, the system can
take snapshots every three minutes of the entire deploy-
ment area and then identify the wildlife among large sets
of readings. Data association is already known to be a dif-
ficult process [13] and the complexity of the problem is
amplified with the fact that the interval of data collection,
three minutes, can potentially include all animals signifi-
cantly changing their locations in an arbitrary manner. As
a second direction, target tracking algorithms can be used
for continuously tracking the wildlife (e.g.,[18]). However,
in this case, readings and node communications will take
place throughout the three minute period even though the
user may not be interested in all the individual readings. In
fact, our example uses the same sampling period that was
used in ZebraNet [9] and [1] validates this interval as ad-
equate for statistical purposes for this vast application do-
main. In summary, with this new low-frequency snapshot
query type, we are left to either compromise from identifi-
cation information or from power consumption using exist-
ing tracking techniques.

In this paper, we introduce a new power efficient ap-
proach for addressing moving object monitoring queries
where the frequency of data collection is too low for high-
quality target tracking and standard data collection meth-
ods for sensor networks would not satisfy the identification
requirements. Our solution deploys two alternating strate-
gies for monitoring moving objects. We introduce a low-
quality and power efficient tracking algorithm with mea-
sures to prevent emerging data association and track deteri-
oration problems, and maintain targets’ tracks until a high-
quality snapshot of the moving objects is needed. With ex-
tensive experiments we show that our approach is signifi-
cantly more energy efficient than existing target tracking al-
gorithms without a loss in snapshot quality. It is also more
capable than standard data acquisition methods as we still

maintain object identification information.
We first present the related work in Section 2. We then

give the details of our work in Section 3. We demonstrate
the behavior of our approach using extensive simulations in
Section 4. Finally, we summarize our findings and future
plans with Section 5.

2 Related Work

Our work is directly related to two areas of research in
sensor networks. First, we give a brief overview of data ac-
quisition methods and present that existing methods are in-
adequate for our example query. Then, we focus on target
tracking techniques using wireless sensor networks which
we use at our base to build a new algorithm.

2.1 Data Acquisition in Sensor Networks

One of the first data acquisition methods for wireless
sensor networks, Directed Diffusion, is presented in [8]. In
Directed Diffusion, base stations regularly publish their in-
terests for different types of data. These announcements are
used to create paths to the data sources and then paths are re-
inforced through continuous acquisition. In [11, 16] authors
introduced the first prototypes for data management for sen-
sor networks (where we have also borrowed our query syn-
tax from). These systems commonly use random trees for
query dissemination as well as data acquisition. Tree based
methods benefit from packet merging and data aggrega-
tion. In addition, [11] presents Semantic Routing Trees for
improving the query dissemination process. Recently, [7]
has built upon the existing sensor data management strate-
gies to include event models for optimizing data acquisi-
tion. Also recently, [14] argued that model-based data ac-
quisition can conflict with outlier detection and introduced
spatio-temporal suppression methods for improving the en-
ergy efficiency of the acquisition process. Finally, [4] builds
upon [7] and allows for outlier detection as well. Although
there are many more data acquisition techniques in the liter-
ature, we limit our discussion to these well-known methods
to highlight our differences.

To the best of our knowledge, none of the existing sensor
network data acquisition methods address queries that in-
volve moving object ids. These methods focus on taking ef-
ficient snapshots of a sensor deployment while object iden-
tification between snapshots is not addressed. Some of the
approaches, e.g., model-driven data acquisition [7], could
be adapted to improve the energy efficiency of moving ob-
ject monitoring as well as to maintain object ids, however,
they require motion modeling and, thus, non-trivial exten-
sions to their base methods.

2.2 Target Tracking

We aim to monitor multiple moving objects with our
work. Many of the classical methods for multi-target track-
ing have mostly focused on centralized systems (e.g., [3,
12]). Recently, target tracking has become a key application
domain for wireless sensor networks. This triggered further
activity on distributed target tracking systems. We cannot
do justice to this vast area of research in this subsection
and for more information on this area the reader is encour-
aged to follow [15] and a detailed description of commonly
used technologies and methods are given in [2]. In this sub-
section, we summarize some of the key work that we are
also using methods from. The key difference between target
tracking and our work is that we do not aim to continuously
track moving objects but rather take infrequent snapshots.
However, we build upon target tracking algorithms to main-
tain object identities.

In [5], Chu et al. introduces information-driven sensor
querying methods that are used to pick the most informative
sensors to improve existing sensor readings and [10, 17, 18]
improve upon this approach for continuously tracking a sin-
gle target. We use the algorithms given in [10] at our base
(more details given in Section 2.2.1). In [10], a leader-based
algorithm is used to track a target by using probabilistic es-
timations of which next sensor, target tracking leader, could
have the “best” reading. In this manner, leadership and thus
tracking duties are passed from one sensor to another. How-
ever, unlike [10, 17, 18], our aim is not to pick sensors with
the most informative readings for tracking but rather to keep
a low-quality, cheap, version of moving objects’ localities
so that, later, identities can be associated with further read-
ings. Thus, in our work, only the snapshots contain high-
quality readings.

2.2.1 A Tracking Algorithm for Sensor Networks

In [10], Liu et al. present a leader-based algorithm for track-
ing a target in a sensor network and using their notation, we
let x(t) denote the target position at time t in two dimen-
sions, z(t) denote the sensor measurement at time t, and z(t)

gives the measurement history up to time t. Their algorithm
can be presented as an iteration over the following model
over time. At time t, a sensor receives a message containing
a probability distribution, a belief state, p(x(t)|z(t)) from a
previous leader. This sensor, new leader, then makes a mea-
surement z(t+1). Using this measurement and previous be-
lief, the new leader finds the new belief using a Bayesian
filter as follows:

p(x(t+1)|z(t+1)) ∝

p(z(t+1)|x(t+1)) ·
∫

p(x(t+1)|x(t)) · p(x(t)|z(t))dx(t)

It then guesses the next “best” leader among its neigh-
borhood of sensors and passes on the message. Here the
integral is used to convolve the old belief with the possible
next position of the target. (This is because the target can be
anywhere in a circular area centered at the previous reading
and only limited by an upper bound on target’s speed. The
integral is then combined with the new reading.) If the tar-
get direction and speed are known, then the integral can be
easily eliminated from this formula.

In this application of the Bayesian state estimation the-
ory to sensor networks, a key question is the selection of the
next “best” sensor for leadership during tracking. For select-
ing the next “best” leader, one can use a metric that favors
the sensor in the neighborhood with a possible future read-
ing that on average will have the greatest impact, change,
on the current belief (Liu et al [10] use Kullback-Leibler di-
vergence from information theory). In our paper, we make
decisions based mainly on object movements and thus in-
stead choose other sensors from the neighborhood for our
query type.

Let us first consider a simple example for a stationary tar-
get [5]. Figure 1 gives a simple example of different choices
that one can have for picking sensors to locate a target. In
this figure, using four range-based sensors, e.g., acoustic
amplitude sensors, A, B, C, and D, we would like to de-
termine the location of the stationary target T. If the first
reading was made using sensor A, then the probability dis-
tribution that emerges from this sensor’s reading can be ap-
proximated by the gray circular band on the left of the fig-
ure (the probability distribution within the band is assumed
to be uniform to simplify the presentation). We now have
three sensors left to further improve our belief. Ideally, us-
ing all will pinpoint this target to the best extent available in
this deployment but will also cost more energy than picking
only one or two additional sensors. Reading data from C and
D reduce the possibility of where the target is to two subre-
gions of the first gray band, i.e., intersections of the bands
of the left, middle, and right. However, reading data from B
improves our belief to a single area immediately, i.e., inter-
secting the left band with the one on the top. If possible, for
example, many application programmers would have prob-
ably liked their algorithms to pick the sequence A, C, B to
A, C, D for accuracy purposes. After reading from C, one
can decide to use B rather than D, given a quality of ser-
vice level and energy constraints. However, we will use a
different logic in picking sensors to read data from for our
problem.

3 Two Alternating Strategies

To present our two phase approach, we first visit a leader
selection algorithm that favors certain energy savings to
high-quality sensor readings. Then, we present our algo-
rithm for taking high-quality snapshots.

Figure 1. Different combinations of readings

3.1 Low Quality Tracking

Let us assume that the current leader, sensor, where the
belief is held is denoted as l(t) for an object. Let us also
assume that the neighborhood of this sensor, e.g., other sen-
sors in communication range, is denoted as a set N . We
would like to choose a k ∈ N to become the next leader,
i.e., l(t+1), so that we will pass on the belief and acquire
new readings from. We assume that l(t) knows the attributes
of the sensors in its neighborhood such as sensing ranges,
modalities, etc.

Figure 2. Metric to choose the next leader

As our purpose is to reduce the energy consumption as
much as possible and maintain a low quality knowledge
about an object’s location, our metric for leader selection
does not consider information utility of a sensor to im-
prove belief state at any given time. We introduce a greedy
heuristic that favors the sensor that the object is most likely
to spend the most time crossing, hence reducing the need
for another leader selection and communication as much as
possible. We assume that the communication costs are the
dominating factor in a sensor network. Thus, our heuris-
tic must aim at minimizing the number of leader selections
for a moving object between snapshots. For example, in a
setting like figure 2, when an object is about to move out
of the sensing range of a sensor (ranges shown on the fig-

ure), A in this figure, for the next reading, we may consider
N={B,C}. From an information utility point of view, B may
be the “best” candidate as it may perhaps reduce the qual-
ity of the belief significantly. However, C will be our choice
as it will eliminate an intermediate handover of leadership
from B to C in the near future if the object maintains its di-
rection. Thus, it is important to note that l(t+1) can be the
same node as l(t) for quite some time for our case. This
may be the most energy efficient choice although the read-
ing from C may not improve our belief by much.

Figure 3. Considering alternatives

Thus, considering figure 3, lets look at the logistics of
eliminating alternative leaders for an object. In this figure,
leader F is about to handover the leadership realizing that
at time t + 1 the target could be out of its sensing range.
For a given N of F, F has to consider only the sensors that
are in sensing range of the target at t + 1 (shown by a circle
centered at target position at t+1) assuming a motion vector
maintained from target’s previous motion from t − 1 to t.
These are D and E. Among these sensors, the sensor with
the range encapsulating the longest segment of the assumed
trajectory should be chosen. This is sensor E for our case.
This sensor is our l(t+1). Another choice will not be needed
until the object is about to move out of range from this new
leader. We call this metric the maximum predicted trajectory
coverage metric. Discrete versions of this metric as well as
versions that include a level of random or learnt deviation
in motion can also be developed.

Hence, to achieve our goal, we require that moving ob-
jects prefer to keep their direction between leader hand-
overs so that we can utilize the target dynamics to predict
the next “best” leaders most of the time. (We also assume
that the reading intervals and the deployment structure are
fine grain enough so that we can catch any target within
a neighborhood multiple times.) We will revisit the impli-
cations of this assumption with our experiments, altering
various parameters, and in comparison to classical tracking
algorithms, and see that our approach is resilient to change
in target dynamics.

The initial leader selections can be trivially done by
choosing the nearest sensors that objects enter the deploy-
ment area and suppressing the other sensors in their vicinity.
For detecting an object’s direction, multiple initial measure-
ments by the first leader can be used. An object id can be as-
signed using the unique id of the sensor for this deployment
and combining this id with another id, e.g., a value from
a counter hosted in this sensor. For environments where a
perimeter is not defined, more elaborate methods for tar-
get initiation could be needed to suppress multi-track/leader
generation per object.

3.1.1 Recovery

When a moving object updates its direction, we also update
the direction attached to this object. However, a direction
change may require a relatively complicated recovery pro-
cedure. The leader selection algorithm may have chosen a
different leader using the old direction of the moving ob-
ject (during the previous belief update) than the one that can
read this moving object. Thus, the current leader may not be
able to read the object at this round at all. As we rely heav-
ily on the choice of the leader and due to the lower qual-
ity of our belief state, we will face problems, especially in
the presence of multiple objects. We address these problems
while we address the data association problem for tracking
multiple targets.

Classical target tracking also addresses the data associ-
ation problem, e.g., when multiple target tracks intersect.
Nearest neighbor (NN) algorithms are frequently used, due
to their simplicity, in data association. Other alternatives in-
clude Multiple Hypothesis Tracking (MHT) [12] and Joint
Probabilistic Data Association (JPDA) [3] which are more
accurate but computationally more expensive methods. Re-
cently, more advanced methods for wireless sensor net-
works have been developed [6, 13]. In our work, we do
not aim to improve existing data association algorithms but
use a known algorithm and combine with our track deteri-
oration problem/solution. We present a NN based approach
for recovery and data association. However, our work is not
limited to any specific data association algorithm.

If the previous belief, combined with the target’s pos-
sible future positions, cannot be directly associated with a
reading, i.e., two probability distributions do not overlap,
we start a recovery procedure to re-associate the id with a
reading from the neighborhood. The current leader sends
a broadcast message to its neighborhood and collects all
the readings. It then combines them (similar to Figure 1)
to obtain a single distribution. For the object that the leader
suppose to keep track of, it finds the nearest neighbor to
the predicted belief (e.g., using center of weights) and asso-
ciates this reading with the id. For a less greedy algorithm,
leaders can communicate in a region and assign readings to
ids by minimizing an aggregate deviation function.

3.2 Snapshots

We assume that a query for monitor moving objects can
be based at any randomly chosen location in the network.
Snapshots are collected at this base station regularly. In our
example query, in Section 1, this is done at every three
minutes. The belief state is updated at a higher frequency,
e.g., using the previously established notation, at every 0.5
seconds such as t = 0, t + 1 = 0.5, and so on. The be-
lief state update is, thus, 360 times more frequent than the
reporting rate per object. (We do not present any specific
data acquisition structure or method such as a random tree
as our method can be combined with multiple acquisition
strategies easily, e.g., [11].)

In a classical target tracking algorithm, the period be-
tween reports is not much larger than the belief state update
period, e.g., the belief state update period could be 0.5 sec-
onds while reports can be send to a base station every 5 sec-
onds [10, 18]. Classical tracking algorithms sometimes use
lengthy reports (or store them at individual sensors) regard-
ing the full track information that occurred in between re-
ports. However, this is redundant for our query type. When
the time to report comes, sending the belief state to the base
station, with the id of the associated target, would suffice.
For our method, as we maintain a belief state that is of
possibly lower-quality, we have to do more work. Due to
the significant difference between snapshot and belief-state-
update frequencies, for our work, our experiments show that
this extra cost can easily be tolerated.

For snapshots, comparable to the case presented in Sec-
tion 3.1.1, the current leaders for targets communicate to
the nodes in the sensing ranges of their targets when the
snapshot period elapses. After receiving the responses, they
aggregate these readings to achieve high-quality beliefs on
their targets and then send this information to the base sta-
tion with the ids. As we include all the nodes in a sens-
ing range, a report per target is at the highest quality that
the deployment can provide for that snapshot. However, un-
like Section 3.1.1, the readings from multiple sensors can
be combined using a simple product operation (i.e., similar
to Figure 1) without further data association.

4 Experiments

4.1 Costs

Let us assume that a network of sensors is deployed uni-
formly at random with a density of s sensors per m2 and
each sensor has a sensing range of r meters. Also, lets as-
sume that a single moving object travels on a straight line
in this deployment for L meters with a constant speed of
v meters per second. In addition, lets assume that we take
snapshots at every D seconds and reevaluate the leadership
and update our belief state at every d seconds. Thus, the ob-
ject will move across the sensing range of approximately

s(πr2 + 2Lr) sensors. This is basically the area swept by a
circle with a radius of r moving for L meters. At any given
time, the object will be in the vicinity of approximately
sπr2 sensors. Our leader selection algorithm can pick as
little as L/2r sensors (leaders) for this object assuming that
the arrangement of sensors align with the object movement.
This is in fact the theoretical minimum on the number of
sensors that can be used to cover a path of length L. On the
other hand, [10] can potentially change leadership as much
as L/vd times. For example, for an object that travels 600m,
a network density of one sensor per m2, a sensing range of
10m, a leadership reevaluation period of 0.5 seconds, re-
porting at every 300 seconds to a base station, and an object
speed of one meter per second, we will use 30 sensors as
leaders in the best case. However, [10] can use as much as
1200 leaders (out of approximately 12314 sensors). In real-
ity, the target path is not known and fixed, and sensors do
not perfectly align with the object’s path.

One important aspect of our method that we did not in-
clude in the example above is that we take a large number of
readings for snapshots at every D seconds. Assuming that
the classical method reports the readings at every D sec-
onds like our method does, we do in fact have a bound on
D. At every snapshot we will send one broadcast message
and combine the readings from sπr2 many sensors per tar-
get (and then send a report to the base station). Thus, for a
given target, there will be L/vD many such reports while
the classical tracking will have no extra effort. Given the
example above, we will have 2 reports. Each report will use
approximately 314 sensors, i.e., in total 628. It appears, for
these values, our method can use almost half the number of
messages used by a classical tracking algorithm excluding
message passing costs to the base station. We may also have
a higher quality reading for the reports.

Our experiments show that our method use a signifi-
cantly smaller number of messages with respect to the clas-
sical tracking method in [10] under various realistic set-
tings.

4.2 Experimental Settings

We have run experiments comparing our approach to
the tracking algorithm in [10] (Section 2.2.1). The classi-
cal tracking algorithm uses the same NN-based data asso-
ciation and recovery method as our approach for compari-
son purposes. So tracks lost in our comparisons are solely
due to the quality of readings and not due to the differences
in association methods. Also, for a better comparison, we
use the same angular and speed limits to diffuse the object
dynamics for both approaches, i.e., the integrals and thus
the areas used in our Bayesian filter for convolving the old
belief with the possible next position of the target are the
same. This should not to be confused with leader selection.
Leader selection and snapshots constitute the main differ-
ences between the two competing approaches that we test

in our experiments.
We use J-Sim (www.j-sim.org) at our base to implement

a simulation environment. Unlike other comparable simula-
tions, our moving objects do not have active tags. We simu-
late realistic acoustic amplitude sensors with noisy readings
on J-Sim.

We simulate a 500 meter by 500 meter area monitored
by a 50 by 50 sensor grid. The sensing range of each sensor
is 15m and the communication range is 25m. Our moving
objects are wildlife that roam in this area. We assume that
the area is fenced and hence targets are forced to turn when
they reach the boundaries.

Our default parameter values include: 10 animals mov-
ing in the area (with a varying speed of 1 to 5 meters per
second and they each follow a linear path, with some jitter,
until a turn is forced via random turns or they hit a boundary
fence); 0.5 seconds as the interval between sensor readings;
reports are send at every 3 minutes to the base station lo-
cated at one of the corners of the deployment.

The simulation runs for 1 hour in simulated time and we
measure the communication and sensing costs as well as the
quality of tracking for the two algorithms for that hour of
our given example query. In average, objects are observed
to make 120 turns during this time with our default settings.
Each comparative experiment is run 5 times and averages
are reported in our results.

Figure 4. Readings, sensors a and b

Figure 4 illustrates a moving object “1” and four sensor
readings for this object to present our experimentation en-
vironment. The readings are represented as small grids of
probability distributions (labeled with an object id plus sen-
sor name pair on the figure; only one object and two sensors
are shown).

4.3 Results

Figure 5 presents our first comparative result. We ab-
breviate and refer to our approach as Tracking For Low
Frequency Snapshots (TFLFS) in our charts. For this ex-
periment we altered the frequency of reports and observed
the number of messages used in the two methods (message
loads are the same for both methods). We see a significant
gain in number of messages in the system (thus energy)
with our method for low-frequency snapshots (up to 9.38
times at 300 seconds/report). For very high frequencies, as

expected, our method does not perform as well as the clas-
sical tracking (up to 1.23 times more messages). It is impor-
tant to note that our gains are quite visible for most of the
frequencies that we have tested. In the same experiment,
we have also observed the number of sensor readings (Fig-
ure 6). As expected, the number of readings decrease when
we take a smaller number of snapshots with our approach
(from 260K messages to 75K) and remain a bit higher than
classical tracking due to costs of snapshots (1.08 times more
readings at 300 seconds/report).

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300
Seconds/Report

N
um

be
r o

f M
es

sa
ge

s TFLFS

Classical
Tracking

Figure 5. Altering the reporting period

0

50000

100000

150000

200000

250000

300000

0 100 200 300
Seconds/Report

N
um

be
r o

f R
ea

di
ng

s

TFLFS

Classical
Tracking

Figure 6. Readings vs reporting period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300
Seconds/Report

Tr
ac

ki
ng

 Q
ua

lit
y

TFLFS

Classical
Tracking

Figure 7. Tracking quality

We also wanted to collect data on our tracking quality
with the first experiment. Figure 7 presents this information.
The tracking quality is measured as the average distance in
meters between the center of weight of a reading and the

actual position of a moving object. As we see in the figure,
our tracking quality is significantly low for our default set-
tings (0.53 meters of deviation for 180 seconds/report). The
only time our quality is comparable to classical tracking is
when the readings are improved with high frequency snap-
shots. However, for the snapshots themselves, we obtain a
significantly better result consistently, due to the fact that
we combine readings from all the sensors in the sensing
range for a target (Figure 8: 2.83 times more accurate for
180 seconds/report). Thus, our approach enables significant
energy savings without loss of quality in snapshots.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300
Seconds/Report

R
ep

or
t Q

ua
lit

y

TFLFS

Classical
Tracking

Figure 8. Report quality

For the next experiment, we have altered the sensing fre-
quency. Figure 9 shows that this has a large impact on the
number of messages (due to leadership change) for the clas-
sical system while it has almost no impact on our method.
This is an important result as it means that our benefits al-
low for a large bracket of flexibility for the sensing fre-
quency parameter without a significant impact on energy
consumption. It is important to note that a period of 2 sec-
onds between two readings (especially for an object moving
at 5m/s) allows only a few readings within a sensor’s range
even under perfect circumstances where an object crosses
the range from the diameter. Our method still outperforms
the classical method. The number of readings per method
decrease in comparable amounts for both methods in this
experiment. Thus, the figure for this result is not presented
for the brevity of the presentation. In addition, as changing
the sensing frequency can be seen as a dual for analyzing
the effect of changing the average speed of targets, we skip
this parameter in this paper.

Figure 10 presents an interesting result for changing the
sensing frequency. We see that our method has a different
tracking quality for different levels of sensing frequency
while the classical tracking does not fluctuate much. The
reason for this is that with a very high number of readings,
we actually delay changing leadership more than the classi-
cal method does and therefore we cannot get a reading from
a new sensor on the same target easily. As the frequency de-
creases, we approach to the classical method. However, for
a small number of readings, our method now starts to loose
the benefits obtained from switching leaders. The report

quality, with changing sensing frequency, is not affected for
both of the methods (and thus not reported here) and there-
fore we conclude that the changes in our method’s tracking
quality does not affect our method significantly. Hence, we
choose the sensing time that is used throughout the exam-
ples in the paper, 0.5s, to be able to compare our benefits
using the time preferred in related work [10, 18].

0

20000

40000

60000

80000

100000

120000

0.25 0.75 1.25 1.75
Seconds/Reading

N
um

be
r o

f M
es

sa
ge

s

TFLFS

Classical
Tracking

Figure 9. Impact of sensing frequency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.25 0.75 1.25 1.75
Seconds/Reading

Tr
ac

ki
ng

 Q
ua

lit
y TFLFS

Classical
Tracking

Figure 10. Quality with sensing frequency

0

20

40

60

80

100

40 80 120 160 200 240 280 320 360
Number of Turns

P
er

ce
nt

ag
e

of
 In

co
rr

ec
t

Id
en

tif
ic

at
io

n

TFLFS

Classical
Tracking

Figure 11. Loosing an object

For the next experiment, we wanted to see the number
of target ids that we get confused on, i.e., loosing the track
of a target forever, in comparison to the classical tracking.
With our default settings we did not see a significant dif-
ference between the two methods and hence we altered the
number of targets to 30 and the period between sensor read-
ings to 1.5s to stimulate more data association problems
in the system. We changed the number of turns an object

0
20000
40000
60000
80000

100000
120000
140000
160000

1 6 11 16
Number of Moving Objects

N
um

be
r o

f M
es

sa
ge

s TFLFS

Classical
Tracking

Figure 12. Increasing the number of objects

takes as the parameter that we alter to compare the behav-
ior of the two methods. Figure 11 presents the results. Even
under these circumstances, we did not observe a very sig-
nificant difference between the two methods although our
method performed worse than the classical method with a
small margin in some runs. Both methods gradually loose
more targets with the increasing number of turns. Thus, our
method does not necessarily lead to a significant increase in
targets lost under these settings.

As the final experiment, we altered the number of ob-
jects in our setup. We observe that in Figure 12, with the
increasing number of objects, our benefits are amplified. As
expected, with each object, we gain more energy savings in
comparison to the classical approach. (The number of read-
ings for the two approaches linearly increase by comparable
amounts and thus this figure is not presented here.)

5 Conclusions and Future Work

We have introduced the problem of efficiently monitor-
ing moving objects using low-frequency snapshots. Using
existing data acquisition methods object ids cannot be eas-
ily mapped between snapshots while existing target track-
ing techniques can be expensive solutions to the problem.
Our method, using two alternating strategies in tracking,
is shown to significantly outperform existing tracking algo-
rithms. We maintain low-quality track information between
snapshots and switch back to high-quality readings when a
snapshot period elapses.

The low-frequency snapshot-based queries for tracking
moving objects leads to many new future research direc-
tions. Using a less greedy heuristic for leader selection
could lead to more energy conservation. Also, we will
investigate methods that use a constraint-based extension
where most of the objects are known not to span large dis-
tances between snapshots. Thus, inter-snapshot perimeters
can be guarded for efficient low-quality tracking. Snapshots
can then be taken over small regions of the deployment if
an object is known to be still in that region.

However, we will first consider to test our work on irreg-
ular deployments where coverage holes exist. We suspect
that multi-step track estimation may perform better for such

settings, leading to our longer term future work.

References

[1] J. Altmann. Observational study of behavior: sampling
methods. Behavior, 49:227–267, 1974.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang,
V. Naik, V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi,
T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko,
A. Vora, and M. Miyashita. A line in the sand: a wireless
sensor network for target detection, classification, and track-
ing. Comput. Networks, 46(5):605–634, 2004.

[3] Y. Bar-Shalom and T. Fortmann. Tracking and Data Associ-
ation. Academic Press, New York, NY, 1988.

[4] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Ap-
proximate data collection in sensor networks using proba-
bilistic models. In ICDE, pages 48–60, 2006.

[5] M. Chu, H. Haussecker, and F. Zhao. Scalable information-
driven sensor querying and routing for ad hoc heteroge-
neous sensor networks. Int. Jour. of High Perf. Comp. Appl.,
16:293–313, 2002.

[6] M. Chu, S. Mitter, and F. Zhao. Distributed multiple target
tracking and data association in ad hoc sensor networks. In
ISIF, pages 447–454, 2003.

[7] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. In VLDB, pages 588–599, 2004.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In MobiCom, pages 56–67, 2000.

[9] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with Ze-
braNet. In ASPLOS, pages 96–107, 2002.

[10] J. Liu, J. Reich, and F. Zhao. Collaborative in-network
processing for target tracking. EURASIP Jour. on Appl. Sig.
Proc., 4:378–391, 2003.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for sen-
sor networks. ACM Trans. on Database Sys., 30(1):122–
173, 2005.

[12] D. Reid. An algorithm for tracking multiple targets. IEEE
Trans. on Automatic Control, (6):843–854, 1979.

[13] J. Shin, L. Guibas, and F. Zhao. Distributed algorithm for
managing multi-target identities in wireless ad-hoc sensor
networks. In IPSN, pages 223–238, 2003.

[14] A. Silberstein, R. Braynard, and J. Yang. Constraint chain-
ing: on energy-efficient continuous monitoring in sensor net-
works. In SIGMOD, pages 157–168, 2006.

[15] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley.
Tracking multiple targets using binary proximity sensors. In
IPSN, pages 529–538, 2007.

[16] Y. Yao and J. Gehrke. Query processing for sensor networks.
In CIDR, pages 233–244, 2003.

[17] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative
signal and information processing: an information-directed
approach. Proceedings of the IEEE, 91(8):1199–1209, 2003.

[18] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic
sensor collaboration for tracking applications. IEEE Sig.
Processing Mag., 19(2):61–72, 2002.

