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ABSTRACT
The ubiquity of GPS enabled smartphones with Internet
connectivity has resulted in the widespread development of
location-based services (LBSs). People use these services to
obtain useful advises for their daily activities. For example,
a user can open a navigation app to find a route that re-
sults in the shortest driving time from the current location
to a destination. Nevertheless, people have to reveal location
information to the LBS providers to leverage such services.
Location information is sensitive since it can reveal habits
about an individual. LBS providers are aware of this and
take measures to protect user privacy. One well established
and simple approach is to remove GPS data from user data
working with the assumption that it will lead to a high de-
gree of privacy. In this paper, we challenge this notion of re-
moving location information while retaining other features
would lead to a high degree of location privacy. We find that
it is possible to reconstruct the original routes by analyzing
turn instructions which could arguably be seen as beloning
to the service provider. We evaluated our approach using
real road network data and demonstrate the effectiveness of
this new attack in a range of realistic scenarios.

CCS Concepts
•Security and privacy → Pseudonymity, anonymity
and untraceability; •Networks→ Location based ser-
vices;
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1. INTRODUCTION
Smartphones are capable of retrieving accurate position-

ing estimates. Combined with the ability to connect to the
Internet at high speeds, this has lead to the widespread de-
velopment of location-based services (LBSs). In particular,
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LBSs provide important way-finding service for users to as-
sist them in navigation while people are traveling. However,
at the same time the location of a user being sent to LBSs
can lead to high privacy risks.

Large quantities of location data generated every day by
smartphone users during their travels. Location data is pri-
vate data. Position of users show where a user has been to a
high level of accuracy and can reveal sensitive insights about
a user upon analysis. For example, a LSP can derive health,
habits, and personnel preferences of users.

Techniques demonstrating how to preserve the trajectory
privacy of LBS users has been proposed [11, 2, 16, 17, 12].
The overall concept of these existing works is to preserve
users’ trajectory privacy by removing location information
at different levels from the trajectory data that users reveal
while they are using LBSs. However, in this paper we show
that even removing all the location information from the
trajectory data is insufficient to protect users’ privacy in a
range of scenarios.

LBS data sets consist not only user trajectory informa-
tion but also relevant advise given to users. This advise can
include turn instructions supplied to a user for navigation
purposes. We are particularly interested in the turn instruc-
tions in this paper. Turn instructions are a primary means to
guide a user in order for them to reach to their destination.
In [14, 3, 13], turn instructions are defined as instructions
on how to follow a route by providing task-oriented specifi-
cations of the actions to be carried out to reach a destina-
tion. These instructions can easily be argued as belonging
to the LSP and could be retained for a long period of time
or traded.

We present a new inference attack that uses turn instruc-
tions to find the actual route of a user. The reason for utiliz-
ing the concept of turn instructions in our paper is twofold:
firstly, turn instructions are commonly correlated with the
road network environment. Secondly, these instructions may
be exchanged by the LBS with third parties without much
legal implications. In this paper, we show that by remov-
ing location information and retaining just the meta-data
including turn instructions is not always privacy preserving
in different realistic scenarios.

As a motivational example, consider the road network of
Figure 1, a user, Bob wishes to go to a Hospital from his
current position S. He may ask the LBS to provide him a
route to the Hospital and follows straight, left and right turn
directions sequentially (red arrow line). Even when removing
the location tracks, just by using the city map and such turn
instructions, we can reveal that Bob has started from S and



Hospital

S

Figure 1: A scenario of trajectory privacy attack by following
turn instructions given by a user

ended up at the nominated destination because this sequence
is unique for this city. This simple scenario does present an
intuitive example of a situation where it is feasible to get
high-quality location information with no use of positional
information in the first place.

In summary, the main contribution of this work are as
follows:

• We show that it is possible for a trajectory data set
that does not have GPS or other specific location in-
formation, to be reverse engineered using turn instruc-
tions.

• We present experimental evaluations demonstrating the
feasibility of our proposed attack in realistic scenarios.

2. RELATED WORKS
Trajectory privacy is a relatively new research field ex-

tending from the area of location privacy. It has recently re-
ceived considerable attention as it has been discovered that
looking at a collection of location points can reveal unique
and sensitive insights about people. A trajectory is a path or
trace reported by a moving object in a geographical space. It
is commonly represented by a set of n time-ordered points
where each point consists of a geospatial coordinate pair
(xi, yi) and timestamp (ti).

Extensive research [11, 1, 9, 2, 16, 17, 12] has aimed at pro-
tecting trajectory privacy. Methods employed by researchers
can be generally classed under two categories: anonymizing
methods and spatial cloaking. Anonymizing methods [11, 1,
9] aim to preserve trajectory privacy by ensuring users are
indistinguishable from other users. Spatial cloaking methods
aim to distort [16, 17, 12] user locations.

In [11], the authors employ the concept of k-anonymity to
make a certain trajectory indistinguishable from k-1 other
trajectories via a generalization-based algorithm. Privacy is
ensured by releasing only a randomly generated set of rep-
resentative trajectories. The authors in [1] proposed an al-
gorithm that ensures k-anonymity from a different angle.
It proposed cluster-based algorithms that utilize an uncer-
tainty threshold, which is inherent to trajectory data to
group k co-localized trajectories within the same time period
to form an aggregate k-anonymized trajectory.

There is a drawback in changing the entire trajectory as
a means of preserving privacy; this leads to a more-than-

necessary distorted database and considerably decreases the
quality of mining opportunities. On the other hand, some
new studies have focused on destination points along a path
as the most sensitive parts of a trajectory and proposed
solutions to protect these points.

In [9], the authors attempted to preserve sensitive desti-
nation points by generalizing them into l-diverse zones, i.e.,
areas that contain at least l distinct place types such as
restaurant, hospital, park and etc. In [9], they treated all
the stop points as equal, while in reality, some places like
hospitals should be treated as more sensitive compared with
other places like shopping malls.

The main idea of spatial cloaking is to preserve users’
locations by blurring their locations into spatial regions that
satisfy the user-specified k-anonymity level and/or minimum
spatial region. Authors in [2, 16, 12, 17] propose solutions
based on spatial cloaking techniques.

The basic idea of [2, 17] is that a querying user u forms
a group with other k -1 nearby peers and blurs u’s location
into a spatial area that contains all the group members as a
cloaked spatial area. However, this technique may incur high
computational overhead for a large area. To address this is-
sue, [12] minimized the size of a cloaked spatial region. An
alternative approach proposed in [17] hides the users’ real
trajectories by using historical footprints and cloaked the
spatial region with other k -1 predicted footprints. The over-
arching idea of these existing works is to preserve users’ tra-
jectory privacy by suppressing trajectory information from
the data that users reveal while they are using LBSs. How-
ever, the trajectory data sets contain some location infor-
mation at the end.

Map matching researches have also exploited turning an-
gles and distances to accurately predict the actual route a
user has traveled along. The use of path shapes was pro-
posed in [7] where authors create a shape represented by
angles and distances and find similar shapes as derived from
the road network to map match the trajectory a user trav-
eled along. This work was extended in [6] to use only angle
information to perform successful map matching. The use of
turn instructions has been studied in [15] to determine the
probability of a user reaching their destination. Coarse turn
instructions such as (left, right, straight) can be ambiguous
given the road network context. The authors suggest to use
instructions such as sharp left or slightly right. In our work,
we use very coarse turn instructions to demonstrate that
even sharing this information can present a privacy issue as
the users actual route can be identified.

3. PROPOSED ATTACK MODEL
In this section, we present an overview of our proposed

method. Section 3.1 describes the preliminary steps of our
proposed attack. Section 3.2 describes an algorithm for gen-
erating turn instructions. Section 3.3 discusses how to find
identical sequences of turn instructions on a road network.

3.1 Preliminaries
We represent the road network as a graph structure. In

this section, we describe how to represent the road network
as a graph and compute the shortest path between two con-
secutive locations in the network.

3.1.1 Road Network
A road network RN can be represented as an undirected



graph GRN = (VG, EG), where VG is a set of nodes repre-
senting intersections and EG is a set of edges representing
roads i.e., EG ⊆ VG × VG consists of an edge ei,j = (ni, nj)
where ni, nj are adjacent junctions on a road.

A function w : EG −→ R is used to associate a weight with
each edge e. This weight can be used to model proximity
between nodes, including Euclidean distance or travel time.
We use dGRN

(n) to denote the degree of a node n with
respect to the graph GRN . A route rp is a path on GRN ,
i.e., a sequence of nodes from VG. The length l of a route
rp represents the total distance covered along this route. A
shortest path Sp is a path that minimizes the total length
that needs to be covered from a given source to a destination.

3.1.2 Shortest Path Computation
The shortest path computation is finding a path of mini-

mum weight (distance, time) connecting two specified nodes
in a graph. There has been many algorithms to compute
shortest paths in networks

Dijkstra’s algorithm [4] is the most well known method to
solve this problem and we adopt it for evaluating the shortest
distance between two locations in our road network RN as
choice of algorithm has little effect on our attack model.
Dijkstra’s algorithm takes a starting node and can find each
node n in a GRN , the shortest path Sp from the start node
ns. It uses a weight function w : EG −→ R that determines
the cost of traversing an edge e. These costs are represented
as the edges’ labels. Starting from the origin ns, at each
step the edge with the lowest costs is selected, which is then
marked as visited. The costs for reaching all unvisited edges
adjacent to the current node nc are then updated. In this
manner a format for reviewing other nodes in the network
is generated and maintained.

3.2 Generate Turn Instructions
Fundamentally, turn instructions are a persons actions

while they travel on a road. For example, left turn, right
turn, continue straight. Based on a known [14, 3, 13] defini-
tion, turn instructions refer to instructions on how to follow
a route; they are task-oriented specifications of the actions
to be carried out to reach a destination.

In our work, we consider three basic types of turn instruc-
tions without loss of granularity namely left (δl), straight
(δs) and right (δr) (see Figure 3.2). The turn concept at
road intersection points and conceptualize actions, i.e., the
direction to take at an intersections as opposed to viewing
the road network structure.

A small set of trajectory finding primitives suffices to char-
acterize most paths, paths directions and path finding ac-
tions [10]. The authors in [10] considered seven directional
primitives. But, we use three distinct primitives in this paper
to make our point. Commonly, the average degree of a node
(dGRN

) in a road network is less than four, thus the possible
number of upcoming directions is three. For example in Fig-
ure 3, Alice wishes to go to a supermarket from her current
location after reaching an intersection n1. n1 consists of four
routes including the route that Alice is on. Alice can reach
her destination by choosing from the three possible ways i.e.,
left (δl), straight (δs) and right (δr), respectively.

We set an angle range for each direction between two roads
to decide on a turn instruction for labeling purposes. We
restrict each direction using two reference angles, they are α
(right angle) and β (left angle) (see Table 1 and Figure 3),

n1

Alice

δs

δrδl

Figure 2: Three Ways of Traveling at a Decision Point

βs
αs

n1

Alice

Figure 3: Going Straight

Turn Instruction(Ti) Reference Angles
δl αl,βl
δs αs,βs
δr αr,βr

Table 1: Turn instructions with their reference angles

we also set the range of the total antropy ∈ for them.
For example, straight instruction is established with ref-

erence angles αs and βs in Figure 3, if any line or edge lie
in this range (called ∈) the direction is considered to be
straight.

To derive turn instructions in a road network, we propose
an algorithm for generating turn instructions based on the
concept above. Given a source and a destination, and the
initial orientation of a driver, a sequence can be trivially
generated using the shortest path algorithm and enumerat-
ing the turn instructions per junction with the above angle
range concept.

Algorithm 1 describes how to generate the turn instruc-
tions using our approach.

Algorithm 1: GenerateTurnInstructions: Gener-
ate a sequence of turn instructions

Input: Starting point n0, destination point n1 and a
road network graph GRN = (VG, EG)

Output: A sequence of turn instructions TS
1 TS ← ∅
2 rp ← shortestPath(n0, n1, GRN )
3 for i← 0 to |rp| − 1 do
4 n0 ← ri, n1 ← ri+1

5 δ ← calculateTS(n0, n1)
6 TS ← TS ∪ δ
7 return TS



Figure 4: Melbourne Downtown Area

Figure 5: Essendon Inner Suburb

3.3 Interpretation of Instructions
In this section, we illustrate how to interpret turn instruc-

tions on a real road network i.e, we discuss the algorithm for
translating turn instructions into possible paths during trav-
eling on road.

Suppose we have a set of turn instructions Ts. A turn
instruction is represented as a tuple comprised of a turn
primitive tp (left, right, straight) and a distance measure
representing the distance traveled since the last junction dt.
Thus, Ts contains a set of tuples (tp, dt). This is the most
common method that is available in online and in care nav-
igation systems.

For each possible source in a road network, we first tra-
verse each connected edge and derive the turn primitive and
distance. Once derived, provided it is a match to the first
element of the set, we then traverse the connected edges of
the corresponding edge and look for a match to the second
element in the set. This process is repeated until the number
of junctions followed is equal to the length of the given turn
instructions set. Each time the traversal leads to a complete
match, a identical path counter is incremented. The number
of resulting identical paths indicates the privacy level of a
user’s traveled route as the user could have traveled on any
one of them.

If only one candidate path is found, then it is known for
certain what a route a targeted individual traveled along. If
only a small number of paths are found, it is very likely that
an adversary will still be able to infer the correct path by

Figure 6: Lilydale Outer Suburb

Figure 7: Healesville Rural Area

using additional background knowledge. This attack appears
to be infeasible as given a set of instructions, in a real large
city, we imagine that there could be many matches to a given
trip when stripped down to its turn instructions especially
in the grid like downtown areas.

Algorithm 2 describes our approach to find matching paths
given a sequence of turn instructions.

Algorithm 2: FindMatchingPaths: Returns the
matching candidate paths given a set of turn instructions

Input: A sequence TS = {(tp1, dt1), (tp2, dt2), . . .}, a
road network graph GRN = (VG, EG) and a
counter c

Output: A list of paths with matching turn
instructions to TS

1 P ← ∅
2 if c > |TS| then
3 return P

4 for all verticies v0 ∈ GRN do
5 C ← connectedEdges(v0, GRN )
6 for all connected vertices (v0, v1) ∈ C do
7 δ0 ← TSc, δ1 ← calculateTS(v0, v1)
8 if δ0 ≡ δ1 then
9 P ← P ∪ FindMatchingPaths(TS, GRN ,

c+1)

10 return P
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Figure 8: Melbourne Downtown - Avg. No of Identical Paths
found for Generated Paths by The Number of Turn Instruc-
tions (1-10, 10,20, 20-30, 30-40)
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Figure 9: Essendon - Avg. No of Identical Paths found for
Generated Paths by The Number of Turn Instructions (1-10,
10-20, 20-30)

4. EVALUATION
In our evaluation, we consider the privacy level to be based

on the measurement of finding the number of paths with
identical turn instructions of a specified path given a road
network. We considered a real road network. The aim of our
evaluation was to determine the conditions that can lead to
turn instructions exposing the route of a user traveled and
what circumstances allow for turn instructions to be safely
exchanged. We found that there are many situations where
user privacy is exposed if turn instructions are shared.

The city we considered suitable for testing was Melbourne,
Australia. This is due to the road network in the inner city
approximating a grid while in the suburbs the road network
is more sparse which is common in many cites around the
world. The actual trajectory of a user can be indirectly in-
ferred in instances where only a few identical paths can be
identified. Conversely, the privacy of a user is preserved when
a large number of paths have the same turn instructions.

Paths residing in Melbourne’s inner city and surround-
ing were generated with turn sequences and used to search
for identical sequences. The road network data was sourced
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Figure 10: Lilydale - Avg. No of Identical Paths found for
Generated Paths by The Number of Turn Instructions (1-10,
10-20)
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Figure 11: Healesville - Avg. No of Identical Paths found for
Generated Paths by The Number of Turn Instructions (1-10,
Note: Paths with longer turn instructions could not satisfy
the road network)

from the OpenStreetMap [8]. A bounding box with an area
of 4km2 was placed around areas of consideration. We gen-
erated 100 paths within the test areas. Paths were gener-
ated randomly selecting a source and destination pair. The
shortest path is then found using Dijkstra’s algorithm and
the turn sequences are derived.

The Melbourne downtown is arranged in a grid like man-
ner with many intersections leading into main arterials as
well as smaller streets and lanes as can be seen in Figure
4. Our results demonstrated in Figure 8 that even when a
seemingly large number of combinations possible, user paths
are still unique on average.

Similar results were found in the inner city suburb of Es-
sendon and suburbs in its extended area in Figure 9. Es-
sendon is arranged in a grid like structure as can be seen in
Figure 5 and has a reasonably high population density for
an inner city suburb.

In the outer suburbs, it is easier to infer a path a user
takes due to the graph being less interconnected. Consider
the suburb of Lilydale in Figure 6, it can be seen that there



are sections of the road network that are not interconnected.
The results charted in Figure 10 indicate that at most nine
identical turn sequences can be derived and this reduces
down to two identical sequences for longer turn instruction
sequences.

Rural areas unlike city areas have simplified road net-
works. Take the map of Healesville, a semi-rural town. It
can be seen in Figure 7 that the road network for Healesville
is simplified compared to the areas closer to the city. Our
results given in Figure 11.

In summary, many paths even in reasonably populated ar-
eas with grid like infrastructure can be inferred easily with-
out the need of additional background information. Our find-
ings indicate that data providers that wish to exchange turn
direction information in a privacy preserving manner need
to consider adding noise using techniques such as differential
privacy [5] to ensure privacy is protected.

5. CONCLUSIONS
In this paper, we have highlighted that turn instructions

are sufficient to infer a path without access to the original
GPS data.

We described our approach for representing a road net-
work, finding the shortest path and methods to derive the
turn instructions between a source and destination and re-
verse engineered them.

The proposed attack we described uses a set of turn in-
structions, traverses every node in a road network and incre-
mentally expands until a match could be found. Extensive
experiments over real road networks have been conducted
to evaluate the effectiveness of our proposed attack. LSPs
need to be carefully exchanging directions with partners as
the original path of a user can be inferred in a majority of
cases despite the fact that the data is sanitized from GPS
traces such as source and destination locations.

In future work, we plan to determine the metrics on turn
instructions and build a system to advise users about po-
tential privacy violations. We also want to investigate meth-
ods that can allow for the exchange of these turn directions
safely. One possible method we want to explore is differential
privacy by adding noise to the instructions.
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