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ABSTRACT
Route planning in current route guidance systems is pri-
marily based on the shortest path strategy (e.g., suggesting
a path that minimizes the travel distance between source
and destination) for an individual driver. A drawback of
such an approach is that there is a high probability that
many drivers, who share the same source and destination,
follow the same route. This can lead to over-saturated road
links. We propose a simple yet effective multiple path rout-
ing algorithm that addresses this limitation. The proposed
algorithm augments the A* search algorithm with a ran-
domization component, which helps to perturb the order of
the searched nodes and to produce diversified routes for dif-
ferent drivers with the same source and destination. Our
algorithm enables decentralized route allocations, i.e., each
vehicle computes its own route without a central server. We
validate the performance of the proposed algorithm through
microscopic traffic simulation. Experiments for various traf-
fic scenarios show that our algorithm achieves a good path
diversification while reducing the average travel time com-
pared to the traditional shortest path algorithm.

1. INTRODUCTION
Modern route planning systems predominantly use a short-
est path strategy to generate route plans. This strategy
suggests a path with the lowest travel cost, which can be
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determined by travel distance and other factors, such as the
time-dependent travel times [1, 2], the engine type of ve-
hicles [3], the traffic emissions [4], the possibility of traffic
hazards [5], the history of route choices [6] and the combina-
tion of multiple factors [7]. A potential problem with many
of the existing systems is that different drivers, who share
the same source and destination, are likely to be allocated
with the same path. This can lead to traffic congestions if
all the drivers travel on the suggested path at the same time.
To demonstrate this, Figure 1 shows an example that a num-
ber of cars travel between two small areas (SRC and DST)
in Melbourne, Australia. If all the routes are the shortest
paths, there would be a large number of road links shared by
all cars (enclosed by the dashed line). The over-saturation
of traffic on the shared road links may cause traffic conges-
tions in a large area, which should be avoided in a smart
route guidance system [8]. One way to address the prob-
lem is providing multiple paths for different drivers with the
same source and destination.

Recent research focused on multiple path routing in building
evacuations [9] and road traffic [10, 11]. In [10], Lee et. al.
propose an approach that uses a central server to compute
multiple candidate paths for a specific pair of source and
destination. Vehicles with the same source and destination
are likely to be allocated with different paths. However, this
approach can cause computation and communication bottle-
necks if the number of queries to the server is high. In [11],
Adacher et. al. propose a decentralized approach, in which
each vehicle independently computes its own route with cer-
tain perturbation of the road network data, resulting in the
diversification of paths. An advantage of this technique is
that shortest paths are computed locally, which prevents a
high level of computation workload at a central server. How-
ever, individual vehicles need to retrieve the traffic condition
of each candidate road link from nearby servers for comput-
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Figure 1: An example showing the limitation of the
shortest path strategy: 1000 cars travel from an area
(SRC) to another area (DST) in Melbourne, Aus-
tralia. The bold lines indicate the routes generated
by Dijkstra’s algorithm. The region of potential
traffic congestions is enclosed by a dashed line.

ing routes. This can be highly costly in terms of communi-
cation if there are a large number of candidate road links.

We propose a simple yet effective multiple path routing al-
gorithm that can overcome the limitations of existing tech-
niques. Our proposed algorithm is an extended and random-
ized version of the A* search algorithm. It has the following
advantages:

1. It is decentralized, i.e., each vehicle computes its own
route without the need for a central server;

2. It produces high quality routes, i.e., the travel cost of
the suggested and the corresponding routes are close;

3. It provides excellent diversification of routes.

2. BACKGROUND
Shortest path problem. A road network can be modelled
as a directed graph G = (V,E,W ), where a vertex (i.e., a
node) v ∈ V represents a road intersection, an edge e ∈
E represents a road segment connecting two nodes, and a
weight w ∈ W represents the travel cost of an edge, e.g.,
travel time or travel distance. Given two nodes, s and t, the
shortest path problem finds the path with the lowest cost
between s and t.

Dijkstra’s algorithm. A classical algorithm to solve the
shortest path problem is Dijkstra’s algorithm [12]. Dijkstra’s
algorithm works by scanning the nodes in an ascending order
of their distance to the source node s. All the nodes are
maintained in a min-priority queue Q, in which the distance
to the source is the sorting key. Each node is associated
with a score, ds(u), which is the distance of the shortest
path from s to u. Each node also keeps the predecessor
node in optimal path. At the start of the algorithm, ds(u)
of each node, except the source node, is set to an infinite
value and the previous node is set to an empty value. At
each iteration, the algorithm first extracts the node u ∈ Q
with the minimum ds(u). Then for any edge (u, v) ∈ E, the
algorithm checks whether ds(v) can be reduced if the path
is through u. If this is true, the score of v is updated and

the predecessor of v is set as u. The algorithm terminates
as soon as t is extracted from Q.

As Dijkstra’s algorithm scans all the nodes that are closer
to s than t, its search space can be approximated by a circle
centred on s with the radius equal to the distance from s to t.
The size of the search space can have a significant impact on
the efficiency of computation [13]. Certain variations of the
algorithm help to reduce the search space by goal-directed
techniques that guide the search toward the destination and
skip the nodes that are not on the direction from s to t.

A* search algorithm. A classic goal-directed shortest
path algorithm is A* [14]. Given a source s and a target
t, A* search is similar to Dijkstra’s algorithm except that
the score of each node v ∈ Q is defined as f(v), which is the
length of the best path from s to t through node v. f(v) is
computed as the sum of two values (Figure 2). One is the
length of the shortest path from s to v, ds(v). Another is
the estimated length of path from v to t, which is computed
from a heuristic function, ht(v). At each step, the A* al-
gorithm chooses the most promising node (i.e., node with
the smallest f(v)) to extract next. This process is repeated
until t is extracted from the priority queue.
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Figure 2: Demonstration of A* search. There are
two possible paths from node s to node t, one is
through node a, another is through node b. In this
example, f(a) = ds(a) + ht(a) = 1 + 2 = 3 and f(b) =
ds(b) + ht(b) = 1.5 + 1 = 2.5. Therefore, b is extracted
before a during the search.

By introducing the heuristic function, the search is goal-
directed and pulls faster to the destination. Even though
being a heuristic search, A* algorithm is guaranteed to find
an optimal solution as long as ht is an admissible heuristic
function, or never overestimates the actual distance between
two nodes. The tighter the estimate is, the faster the search
is toward the destination. However, A* algorithm is not
efficient for road networks (especially if the travel cost is
measured based on travel time) as the estimated bounds are
poor and the performance gain can be marginal [15].

Overdo A*. Overdo A* algorithm is a modified version
of A* in which the admissibility of the heuristic function is
no longer guaranteed [16]. Overdo A* works by increasing
the contribution of the second component, ht, in calculating
the score of a vertex v. This multiplicative factor is called
overdo parameter [16]. Assuming the overdo parameter is k,
the score of a node v is computed as f(v) = ds(v)+k×ht(v).
Intuitively, this corresponds to giving the destination a high
potential and biasing the search towards the destination
faster. When k equals to one, the search becomes A* search.
With higher k values, the search space is reduced substan-



tially but the optimal solution is not guaranteed to be found.
However, empirical studies show that the Overdo A* search
runs much faster while the solution quality is acceptable
from a practical point of view [16].

3. RANDOM A* SCALING ALGORITHM
We propose Random A* Scaling algorithm (RandomAS),
an extension and a randomized version of A* and Overdo
A*. The details of RandomAS are described in Algorithm 1.
RandomAS uses a priority queue Q to manage a list of nodes
to be processed next. At first, only the source node s is in
the queue. At each iteration, the node with the minimum
score is extracted from Q. The score of a node v ∈ Q is a
weighted combination between ds(v), which is the shortest
distance from s to v, and ht(v), which is the estimated dis-
tance from v to target t. The combination is specified as
f(v) = ds(v) + k × ht(v), where k is the overdo parameter
randomly selected from a range, [1, kmax] (kmax is the only
parameter of RandomAS). Whenever a node u is extracted
from Q, the overdo parameter k is randomly selected from
the specified range. The scores of the nodes in Q are then
updated with the new k value. Each edge (u, v) ∈ E is then
checked and v is put into Q, if v is not already in Q and has
not been extracted from Q. This process is repeated until
the destination node is extracted from Q.

By assigning the overdo parameter k to a random value in
a specified range and changing it over time, the order of the
nodes to be extracted from the queue is perturbed and this
helps to randomize the route generated by the algorithm in
each run. To demonstrate how RandomAS works, Figure 3
shows an example graph. In this example, the measurement
of distances is based on Euclidean distance. There are three
different routes from A to F: R1 = (A,B, F ), R2 = (A,C, F )
and R3 = (A,D,E, F ) with the route length l(R1) = 14,
l(R2) = 15, and l(R3) = 17. We assume that kmax = 2.
At first, the source node A is put into the queue Q. When
A is extracted from Q, the overdo parameter, k, is set to a
random value between 1 and 2. Let us assume that k is set to
1.6. The three successor nodes, B, C and D, are then put into
Q with the corresponding scores, f(B) = 5 + 1.6 ∗ 9 = 19.4,
f(C) = 8+1.6∗7 = 19.2 and f(D) = 5+1.6∗10 = 21. As C
is the node with the lowest score, C is extracted in the next
iteration. Assuming k is set to 1.2 when C is extracted, the
scores of the remaining nodes in Q are updated as f(B) =
5 + 1.2 ∗ 9 = 15.8 and f(D) = 5 + 1.2 ∗ 10 = 17. The
successor node of C, F, is then put into Q with the score
f(F ) = 15. As F has the lowest score in Q, it is extracted in
the next iteration and the algorithm terminates. Therefore,
the final route is R2. We should note that other routes
may be returned at different running times with different k
values.

To demonstrate how RandomAS works on real road net-
works, we use RandomAS to generate routes for the same
scenario as shown in Figure 1. The results are shown in Fig-
ure 4. We can see that the routes suggested by RandomAS
are significantly more diversified, compared with the routes
suggested by Dijkstra’s algorithm. This can help to prevent
the heavy use of certain shared road links as observed in
Figure 1. In addition, the routes returned by RandomAS
are still close to the optimal routes.

Algorithm 1 Random A* Scaling algorithm

Input: Road network GV,E,W , source s, destination t, kmax

Output: A route from s to t
1: Q← ∅, Q′ ← ∅
2: for vertex v ∈ V do
3: ds(v)←∞; ht(v)←∞; f(v)←∞
4: end for
5: ds(s)← 0;ht(s)← 0; f(s)← 0;
6: Q.Insert(s);
7: while ¬ Q.Empty() do
8: u ← Q.ExtractMin();
9: Q′.Insert(u);

10: if u⇔ t then
11: return;
12: end if
13: k ← random(1, kmax);
14: for vertex v ∈ Q do
15: f(v)← ds(v) + k × ht(v);
16: end for
17: for edge eu,v ∈ E do
18: if v ∈ Q′ then
19: continue;
20: end if
21: if v /∈ Q then
22: Q.Insert(v);
23: end if
24: ds(v)′ ← ds(u) + weighte
25: ht(v)′ ← EstimateCost(v, t)
26: f(v)′ ← ds(v)′ + k × ht(v)′

27: if f(v)′ < f(v) then
28: ds(v)← ds(v)′

29: ht(v)← ht(v)′

30: f(v)← f(v)′

31: prev(v)← u;
32: end if
33: end for
34: end while

4. EXPERIMENTS
In order to evaluate the performance of RandomAS, we
conduct experiments using the real road network data of
Melbourne, Australia. The road network is extracted from
OpenStreetMap (https://www.openstreetmap.org/), cov-
ering an 15km× 10km area of Melbourne with 38278 nodes
and 63920 edges. The performance of our method is com-
pared against Dijkstra’s algorithm using various evaluation
measures. All algorithms are implemented in Java.

4.1 Evaluation measures
Three measures, the route ACCuracy (ACC), the Road Us-
age Index (RUI) and the Simulated Travel Time (STT) are
used in the experiments. The details of each measure are
described in the following subsections.

4.1.1 Route accuracy
The accuracy of a route R is defined as:

ACC(R) =
l(ROpt)

l(R)
(1)

where l(ROpt) is the length of the optimal route and l(R) is
the length of R. The route accuracy achieves the maximum
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Figure 3: A demonstration of RandomAS. A is the
source and F is the destination. The number at-
tached to a node shows the distance between the
node and the destination. The numbers attached to
the edges show the length of the edges. R1, R2 and
R3 are the three possible routes.
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Figure 4: RandomAS routes for the same set of ve-
hicles in the scenario presented in Figure 1.

value, 1, when the length of R is equal to the length of the
optimal route.

4.1.2 Road usage index
Given a set of routes, SR = {R1, R2, ..., Rm}, generated by
RandomAS and a set of routes, SD = {D1, D2, ..., Dn}, gen-
erated by Dijkstra’s algorithm, the road usage index mea-
sures the ratio of the aggregated route length between the
two sets of routes:

RUI(SR) = 1− Road usage length(SD)

Road usage length(SR)
(2)

where the road usage length is computed as the sum of the
lengths of the distinct road links used by all the routes in
the specified set. If different routes use different roads, the
traffic can be well distributed, i.e., there is no common road
shared by a large number of vehicles. Therefore, the road
usage index provides a measure of path diversification. A
higher value means a higher diversification of routes.

Table 1: Average route accuracy (ACC) and road
usage index (RUI) of RandomAS on 1000 source-
destination pairs.

kmax 1.5 2 3 4 5

ACC 0.99 0.97 0.94 0.93 0.91
RUI 0.53 0.66 0.75 0.79 0.81

4.1.3 Simulated travel time
In addition to the static measures such as route accuracy
and road usage index, we employ a microscopic traffic sim-
ulator to simulate and measure the travel time of vehicles
in various realistic scenarios. The traffic simulator imple-
ments a number of traffic models to simulate realistic driver
behaviour, such as car-following and lane-changing. The
simulated vehicles obey various road rules, such as give-way
rules at roundabouts and intersections. Traffic lights are
also simulated.

4.2 Parameter setting
We examine the impact of the input parameter, kmax, on the
quality of the routes generated by RandomAS. We randomly
select 1,000 source-destination pairs and run RandomAS 100
times for each pair. Table 1 shows the average route accu-
racy (ACC) and the road usage index (RUI) of RandomAS
routes when kmax increases from 1.5 to 5. We can see that
there is a slight decrease in ACC when kmax increases. ACC
in all the cases is above 0.9. RUI increases with the increase
of kmax, which means that we can get a better route distri-
bution with higher kmax values. To achieve a good balance
between ACC and RUI, kmax is set as 2 in all of the following
experiments.

4.3 Experimental results
We compare RandomAS with the shortest path strategy in
various realistic scenarios using the microscopic traffic sim-
ulator (Section 4.1.3). The routes of vehicles are generated
with the shortest path strategy (i.e., Dijkstra’s algorithm)
and the RandomAS algorithm. The average travel time of
vehicles is collected from the simulations.

4.3.1 Single pair test case
We simulate the scenario, where a number of cars travel from
source A to destination B. Figure 5 (a) and 5 (b) show the
routes generated by Dijkstra and RandomAS, respectively
when the number of cars is 1000.

If all the cars use the shortest path strategy, they follow the
same route, which is highly likely to cause traffic congestions.
In contrast, if RandomAS is used, the cars are assigned to
diversified paths, which can help to prevent the formation of
traffic congestion. Figure 6(a) shows the average travel time
for each strategy when the number of cars increases from
50 to 2,000. When the number of cars is small (i.e., 50 or
100 cars), the average travel times of the two strategies are
similar. However, when the number of cars increases, the
cars following RandomAS routes arrive their destinations in
a significantly shorter time, compared with the cars follow-
ing Dijkstra routes. When there are 2000 cars, RandomAS
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Figure 5: (a) Dijkstra and (b) RandomAS routes for
1000 cars from A to B. The average ACC and RUI
of RandomAS routes are 0.94 and 0.87, respectively.

can reduce the travel time from the shortest path strategy
by more than 30%.

To simulate more realistic situations, we randomly generate
5000 background cars, in addition to the cars that travel be-
tween the specified source and destination. The background
cars are generated with random sources and destinations.
When a background car reaches its destination, a new back-
ground car is generated. In other words, the number of
background cars remains constant throughout a simulation.
The results in Figure 6(b) shows the advantage of Rando-
mAS in this scenario. RandomAS can reduce the travel time
from the shortest path strategy by more than 30% when the
number of cars is at the highest level.

4.3.2 Full scenario test case
In this experiment, we simulate the scenario, where a num-
ber of cars travel toward Melbourne CBD from eight lo-
cations around the area during peak hours. Figure 7(a)
and 7(b) show the routes generated by Dijkstra and the
routes generated by RandomAS, when there are 1000 cars
starting from each of the locations.

Figure 8 shows the average travel time of the cars that fol-
low Dijkstra routes and RandomAS routes when the num-
ber of cars that start from each location varies between 50
and 1500. There are 10000 additional random background
cars during the simulations. The results show that there is a

Figure 6: Average travel time vs. number of cars
following Dijkstra routes and RandomAS routes on
(a) an empty road network; (b) a road network with
5000 random background cars. The gap between the
two types of routes is larger in (b) than (a).

negligible difference in the travel time between the two algo-
rithms when the number of cars starting from the locations
is small (i.e., 50 or 100 cars per location). However, as the
number of cars increases, RandomAS shows its advantage
over the shortest path strategy with a significant reduction
of the average travel time. This is due to the fact that Ran-
domAS distributes the cars over different paths in the road
network and prevents the formation of traffic congestions
on the road segments that are shared by a large number of
cars. When there are 1500 cars starting from each of the
locations, RandomAS can reduce the travel time from the
shortest path strategy by 30%.

5. CONCLUSION
RandomAS is a novel multiple path routing algorithm that
diversifies routes in transportation networks. RandomAS is
more advanced than other multiple path algorithms as it is
easy to implement and is fully decentralized. The algorithm
enables a natural mechanism to reduce traffic congestions.
Our experiments show that RandomAS can reduce the aver-
age travel time of vehicles by more than 30% from the short-
est path algorithm while the randomized routes are close to
the optimal shortest paths.
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Figure 7: (a) Dijkstra routes and (b) RandomAS
routes for the full scenario test case. There are 1000
cars starting from each of the eight locations, S1

to S8. The destination area is DST. The average
ACC and RUI of RandomAS routes are 0.98 and
0.72, respectively.

Figure 8: Average travel time of the cars starting
from eight locations (Figure 7) vs. number of cars
starting from each of the locations. In addition to
the cars starting from the specified locations, the
traffic network also contains 10000 background cars
with random sources and destinations.
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