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Abstract—
K-coverage is necessary for the proper functioning of many

applications, such as intrusion detection, data gathering, and
object tracking. It is also desirable in situations where a
stronger environmental monitoring capability is desired, such
as military applications. In this paper, we study the problem
of k-coverage in deterministic homogeneous deployments of
sensors. We examine the three regular sensor deployments –
triangular, square and hexagonal deployments – for k-coverage
of the deployment area, for k ≥ 1. We compare the three
regular deployments in terms of sensor density. For each
deployment, we compute an upper-bound and a lower-bound
on the optimal distance of sensors from each other that ensure
k-coverage of the area. We present the results for each k
from 1 to 20. It is also shown that the required number of
sensors to k-cover the area using uniform random deployment
is approximately 3-10 times higher than regular deployments.

I. INTRODUCTION

Coverage problem is a fundamental issue that needs to be
addressed in deployment of every sensor network. In general,
coverage can be considered as the measure of quality of
service of a sensor network [1]. The goal is to have each
location in the physical space of interest within the sensing
region of at least one sensor. The sensor coverage problem
has been addressed and reviewed in many surveys [2][3].

Many practical applications such as event monitoring appli-
cations require guaranteed higher degree of coverage. In such
applications, it is essential to place sensors such that every
point of the target area can be monitored by more than one
sensor. K-coverage is a more general concept of coverage,
where each point in the field is covered by at least k sensors.
K-coverage is required in sensor network applications due to
various reasons such as multiple-sensor data fusion, increased
accuracy, fault tolerance, reliability, or robustness.

High coverage degree is useful for multiple-sensor data
fusion. Data fusion techniques combine data from multiple
sensors to achieve more specific inferences that could be
achieved by using a single sensor [4]. For example, a target
position estimation may be accomplished by a triangulation or
a least-squares computation over a set of sensor measurements

[5]. The triangulation technique computes the position of an
object by measuring the distances or bearings from multiple
reference positions using various ranging techniques [6].

High degree of coverage is particularly essential for ap-
plications that demand a high degree of accuracy. For ex-
ample, reliable detection may be achievable with a relatively
coarse space-time resolution, whereas classification, needed
for tracking multiple targets, typically requires processing at
a higher resolution depending on the desired accuracy of
classification [7]. Increasing k provides a more precise target
location estimation in sensor networks, by more fine-grained
partitioning of the sensor field. For example, in a 1-coverage of
an area, we can only detect in which sensor region a target is
located. Whereas in higher coverages of the area, the location
of the target can be reduced to a certain intersection of at
least k sensor regions. It is proven that k-coverage of a target
improves the estimate of its location or velocity by a factor of√
k, if detection data are fused in an optimal manner [4].
The coverage requirement also depends on the number of

faults to be tolerated. Practically speaking, networks with a
higher degree of coverage are more reliable as they are more
robust to sensor failures and errorneous sensor measurements.
Reliability is an important issue mainly in the applications in
which failed sensors cannot be easily diagnosed and replaced,
such as in sensor networks for planet exploration [8].

We aim to investigate the k-coverage problem in deploy-
ments of sensors. There are two fundamentally different ways
to deploy sensors, deterministic and random deployments [9].
In a deterministic deployment, the sensors can be placed
exactly where they are needed, while in a random deployment,
sensors are usually placed according to a uniformly random
distribution. A deterministic sensor placement may be feasible
in friendly and accessible environments, while random sensor
distribution is generally considered in remote or inhospitable
areas, or for military applications [2].

In this paper, we first investigate regular deterministic sensor
deployments (Section III). Regular sensor deployments are of
particular importance in many applications mainly because
they provide a uniform and high consistent partitioned space.
For example, a uniform partitioned space can be utilized in
navigation applications in order to minimize the orientation



error in navigation tasks. Then, via simulations, we show
that the required number of sensors to provide k-coverage in
regular sensor deployments is approximately 3-10 times lower
than random deployments (Section IV).

II. RELATED WORK

A number of previous works [10] [1] are proposed to check
if k-coverage of the target area is possible with the already
deployed sensors. Given a set of sensors deployed in a target
area, their goal is to determine whether every point in the
area is covered by at least k sensors, where k is a given
parameter. One naive solution is to find out all sub-regions
divided by the sensing boundaries of all n sensors, and then
check if each sub-region is k-covered. This could be difficult
and computationally expensive since there may exit as many
as O(n2) sub-regions divided by the circles. Also, it may be
difficult to calculate these sub-regions [10].

Instead of determining the coverage of each sub-region,
Huang and Tseng [10] look at how the perimeter of each sen-
sor’s sensing region is covered. They proved that when no two
sensors are located in the same location, the whole network
area is k-covered if and only if the perimeter of each sensor
in the network is k-covered. They present polynomial-time
algorithms, in terms of the number of sensors, to determine
whether a sensor’s perimeter is k-covered or not.

Many studies address the problem of selecting a minimum
number of sensors to activate from an already densely de-
ployed set of sensors such that the field remains k-covered
and all selected sensors are connected. This also leads to an
effective approach for energy conservation in wireless sensor
networks because a subset of denslely deployed sensors are
selected to stay active at any time interval, while other sensors
are scheduled to sleep.

Kumar et al. [11] consider three kinds of sensor de-
ploymemts on a unit square – a

√
n×
√
n grid, random uniform

(for all n points), and Poisson (with density n). They computed
the number of sensors, given the sensing radius (r), network
life-time (p), and coverage (k), in order to guarantee that all the
points in the field are k-covered. In their sleeping model, time
is divided into periods and each sensor independently decides
whether to remain awake for each period (with probability p)
or go to sleep. Using this model, they find that the number of
sensors needed in the grid deployment is of the same order as
in random deployments.

It has been shown that selecting a minimum subset of
sensors to k-cover a field from an already deployed set of
sensors is NP-hard [12]. [12], [13], [14], [15], [16] present
approximation algorithms to solve the connected k-coverage
problem using a minimum number of sensors.

However, the proposed works do not answer the sensor
placement problem to provide k-coverage, for k ≥ 2. Kim et
al. [17] addressed the problem of placing sensors to provide 3-
coverage of the entire target area satisfying the minimum sep-
aration requirement, which is the minimum required distance
between the sensors. They propose two methods, overlaying
and TRE-based methods. The overlaying method overlays the

1-coverage optimal placement solution three times ensuring
minimum separation among the sensors in different layers.
The TRE-based method firsts forms a 3-covered region called
TRE (Triple-Rounded-Edge area), which is an intersection of
coverage circles of three sensors equally separated by d from
each other, and then places the TREs repeatedly to cover the
whole target area. They proved that the TRE-based method
gives a better coverage redundancy than the overlaying method
when the minimum required distance between the sensors is
not greater than 0.232R, there R is the sensors’ sensing range.

In this paper (Section III), we evaluate the k-coverage
problem in regular deterministic sensor deployments. To the
best of our knowledge, this is the first analytical work on k-
coverage problem in regular deterministic sensor deployments.
We also compare the regular deterministic sensor deployments
with the uniform random sensor deployment in terms of sensor
density (Section IV).

III. K-COVERAGE IN REGULAR DETERMINISTIC SENSOR
DEPLOYMENTS

A tiling of a two dimensional plane with a geometric shape
with no overlaps and no gaps is called a tessellation. It is well-
known that there are only three regular tessellations – tessella-
tions composed of regular polygons – tiling the plane, which
consist of equilateral triangles, squares and regular hexagons.
In regular deterministic sensor deployments, the sensors can
be placed at the polygon’s vertices of a regular tessellation
covering the whole sensor field [18]. Figure 1 illustrates the
three regular sensor deployments, which are called triangular,
square and hexagonal deployments throughout this paper.

XXX

Fig. 1. Regular sensor deployments using (a) regular triangles (b) squares
(c) regular hexagons

It is well-known that the optimal sensor deployment for 1-
coverage is the triangular deployment, in which the sensors
are placed X = R

√
3 away from each other, as shown in

Figure 2. This deployment achieves the minimum overlapping
of sensor regions and hence, requires the minimum number
of sensors [19]. In this paper, we aim to find the optimal
regular sensor deployment to k-cover the sensor field, for
k ≥ 2. The optimal deployment is assumed to be the
one with the minimum required number of sensors. In each
regular deployment, the side of the polygon constituting the
deployment is shown by X (Figure 1) and is refered to by
the deployment-side, throughout this paper. The sensor density
in each deployment is determined by the value of the its
deployment-side. Therefore, in next section, we find an upper-
and a lower-bound on the optimal value of the deployment-
side, X , that provides k-coverage in any of the three regular
deployments.



R X

Fig. 2. Optimal 1-coverage of a deployment area

A. Proof of an upper- and a lower-bound on the value of X

1) Assumptions: We adopt the following assumptions and
notations throughout the discussions in this section.
• Sensors can be deployed anywhere in a deployment area.
• Sensors can monitor a circular region centered at the

sensor’s location, whose radius R equals the sensing
range of the sensor.

• All sensors have the same sensing range, R.
• To eliminate the effect of area boundaries when evaluat-

ing the sensor placement algorithms, we assume that the
size of the deployment area is sufficiently larger than the
size of sensing region of each individual sensor.

2) Problem Statement: In each deployment, the problem
of coverage of the deployment area reduces to the problem of
coverage of a single regular polygon constituting the deploy-
ment (shown in dark in Figure 1), due to the symmetric and
periodic deployment scheme. Furthermore, each constituting
regular polygon can be further divided into six, eight and
twelve right triangles of the same shape and size, in triangular,
square and hexagonal deployments, respectively (Figures 3(a)
to 3(c)). The constituting triangles are the smallest constituting
polygons of each deployment that are similar in terms of their
shape and size as well as the relative placement of sensors
to their vertices. As a result, the optimal k-coverage of the
deployment area can be further reduced to the optimal k-
coverage of a constituting triangle ∆abc, or simply ∆ (Figure
3), for each deployment.

a b

c

(a)

a b

c

(b)

a b

c

(c)

Fig. 3. The constituting triangles of (a) triangular (b), square (c) hexagonal
deployments

Following the above discussion, finding an optimal k-
coverage of the sensor field can be stated as follows. In a
regular deployment of sensors with sensing range of R, we
aim to find the optimal deployment-side, Xopt, such that the
triangle ∆ is k-covered, for any k greater than one.

3) Lower- and upper-bounds on the value of Xopt for k-
coverage of triangle ∆: Now, we compute a lower-bound and
an upper-bound on the value of Xopt for k-coverage of the

triangle ∆. First in Lemma 2, we prove that if X is set to any
value greater than the computed upper-bound, Xk

H , the triangle
∆ is not fully k-covered. Then, in Lemma 3, we prove that if
X is set to the computed lower-bound, Xk

L, the triangle ∆ is
at least k-covered. The following notations and definitions as
well as Lemma 1 are used in the proofs in Lemmas 2 and 3.

Notation 1: The distance between Sensor Si and vertices
a, b and c of triangle ∆ are denoted by Da

i , Db
i and Dc

i ,
respectively.

Notation 2: Dmax
i is the maximum distance of Sensor Si

to vertices of triangle ∆, i.e. Dmax
i = max(Da

i , D
b
i , D

c
i ).

Definition 1: For vertex a of ∆, we define an ordered set
DA as DA = (Da

i1
, Da

i2
, . . . , Da

in
), where n is the number of

sensors in the field and ∀ 1 ≤ k ≤ n : Da
ik
≤ Da

ik+1
. The

ordered sets of DB and DC are defined similarly.
Notation 3: DAk, DBk and DCk are the kth elements of

the ordered sets of DA, DB and DC, respectively.
Notation 4: Dabc

k is defined as the maximum of the kth

elements of the ordered sets of DA, DB and DC; i.e. Dabc
k

= max(DAk, DBk, DCk).
Definition 2: We define an ordered set of Dmax

i values as:
DX = {Dmax

i1
, Dmax

i2
, . . . , Dmax

in
}, where n is the number of

sensors in the field and ∀ 0 ≤ k < n : Dmax
ik
≤ Dmax

ik+1
.

Lemma 1: If for Sensor Si, Dmax
i = R, then Si covers the

whole triangle ∆.
Proof: If R equals Dmax

i , by Notation 2, Sensor Si covers
the three vertices of triangle ∆. As a result, the whole triangle
∆ is covered by the region of Sensor Si.

Based on these lemmas and definitions, Lemma 2 and
Lemma 3 define an upper-bound and a lower-bound on the
value of Xopt for the k-coverage of triangle ∆.

Lemma 2: Suppose that the deployment-side, X , is set to
Xk
H such that Dabc

k equals R. Then, triangle ∆ is not fully
k-covered when X is greater than Xk

H .
Proof: For all values of X greater than Xk

H ,
R becomes less than Dabc

k . By Notation 4, Dabc
k =

max(DAk, DBk, DCk). By Definition 1 and Notation 3, if
R is less than DMk, for m ∈ {a, b, c}, then vertex m of ∆
is covered by less than k sensors. Therefore, triangle ∆ is not
fully k-covered.

Lemma 3: Suppose that the deployment-side, X , is set to
Xk
L such that Dmax

ik
equals R. Then, triangle ∆ is at least

k + m-covered, where j is the greatest non-negative integer
such that Dmax

ik
= Dmax

ik+m
and Dmax

ik+m
6= Dmax

ik+m+1
.

Proof: If Dmax
ik

equals R, by Lemma 1 triangle ∆ is
covered by all sensors whose corresponding values in DX
(Definition 2) are less than or equal to Dmax

ik
. By Definition 2

DX is sorted and by considering the lemma’s condition, there
are k+m such sensors. Therefore, all points in triangle ∆ are
definitiely covered by k + m sensors. Therefore, the trianlge
∆ is at least k +m-covered.

B. Calculation of the lower- and upper-bounds

Based on Lemmas 2 and 3, an upper-bound and a lower-
bound on the optimum value of X to k-cover the deployment
area can be computed in any of the three regular deployments.



Based on definitions and lemmas in Section III-A3, Xk
H and

Xk
L values are computed using the distances of sensors to the

vertices of a constituting triangle ∆ and the sensing range of
the sensors, R. To compute the euclidean distances, without
loss of generality, it is assumed that vertex a of triangle ∆ is
placed at coordinate (0,0). Figures 4 shows the coordinates of
some sensors in the field for triangular, square and hexagonal
deployments. Please note that x and y scales both equal X
for square deployment, while for triangular and hexagonal
deployments, x and y scales equal X and

√
3
2 X , respectively.

(-4,0)       (-2,0)       (0,0)        (2,0)        (4,0)

(-3,2)       (-1,2)        (1,2)        (3,2)

(-2,4)        (0,4)        (2,4)

(-3,-2)      (-1,-2)       (1,-2)      (3,-2)

(-2,-4)      (0,-4)       (2,-4)

a(0,0) b(1,0)

c(1,2/3)

(a)

(-2,0)       (0,0)        (2,0)       (4,0)

a(0,0) b(1,0)

c(1,1)

(-2,2)       (0,2)        (2,2)       (4,2)

(-2,-2)     (0,-2)       (2,-2)     (4,-2)

(-2,-4)      (0,-4)       (2,-4)     (4,-4)

(b)

(-4,0)                      (0,0)       (2,0)                      (6,0) 

(-3,2)       (-1,2)                     (3,2)        (5,2)

(-4,4)                      (0,4)        (2,4)                      (6,4)

(-3,-2)      (-1,-2)                   (3,-2)       (5,-2)

(-4,-4)                    (0,-4)       (2,-4)                   (6,-4)

(-3,6)       (-1,6)                    (3,6)         (5,6)

a(0,0) b(1,0)

c(1,2)

(c)

Fig. 4. Sensor coordinates in the deployment area

Using the Euclidean distance formulae, the distance from
Sensor Si(x, y) to vertices a, b and c of triangle ∆ , rep-
resented by Di

a, Di
b, D

i
c as in Notation 1, can be computed

as shown in Equations 1, 2 and 3 for triangular, square and
hexagonal deployments, respectively.

D
i
a =

X

2

√
x2 +

3

4
y2 D

i
b =

X

2

√
x2 + y2 − 2x+ 1

D
i
c =

X

2

√
x2 +

3

4
y2 − 2x− y +

4

3
(1)

D
i
a =

X

2

√
x2 + y2 D

i
b =

X

2

√
x2 +

3

4
y2 − 2x+ 1

D
i
c =

X

2

√
x2 + y2 − 2x− 2y + 2 (2)

D
i
a =

X

2

√
x2 +

3

4
y2 D

i
b =

X

2

√
x2 +

3

4
y2

D
i
c =

X

2

√
x2 +

3

4
y2 − 2x− 3y + 4 (3)

Using the calculated values of Di
a, Di

b and Di
c for each

deployment and by Notation 4 and Definition 2, the values
of Dabc

k , Dmax
ik

are computed for every k from 1 to 20.
Then, using Lemmas 2 and 3, the values of Xk

H and Xk
L are

calculated for every k from 1 to 20, which can be represented
as:

R =
Xk
L

2

√
αkH R =

Xk
H

2

√
αkL (4)

Generally, the relation between R and X (Xk) to provide
k-coverage in any of the deployments can be shown as:

R =
Xk

2

√
αk (5)

The value of αk shows the relation between the sensors
range R and the deployment-side X . When αk equals αkH for
a given deployment, the area is at least k-covered and when
αk is less than αkL, the area is not fully k-covered. The values

of αkH and αkL for the three regular deployments, for k for 1
to 20, are shown in columns 2 to 7 of Table I.

We use the sensor density λ, as defined in [18], to evaluate
the three regular deployments. Let Ap denote the area of the
constituting polygon, Np the number of nodes composing the
polygon, and Nn the number of polygons that share a node,
then λ can be computed as λ = Np/ApNn. Therefore, the sen-
sor density for triangular, square and hexagonal deployments
can be computed as follows, where X is the deployment-side.

λt =
3

√
3
4 X

2 × 6
λs =

4

X2 × 4
λh =

6
3×
√
3

2 X2 × 3
(6)

The sensor densities of triangular, square and hexagonal
deployments when αk equals αkH (X=Xk

L) are shown by λtH ,
λsH and λhH , respectively. Similarly, the sensor densities of
triangular, square and hexagonal deployments when αk equals
αkL are shown by λtL, λsL and λhL, respectively. Note that the
sensor density in each deployment is inversely proportional
to the value of X2 (Equation 6) . Using Equations 4 and 6,
the ratio of the sensor densities of the three deployments are
analyzed and discussed in the next section (Table I).

C. Analysis and comparison

For a given regular deployment, the optimum value of α
to provide k-coverage, αkopt, is defined to be the value that
provides full k-coverage of the deployment area with the
minimum number of sensors. By Lemmas 2 and 3 and by
Equation 4, the value of αkopt lies between the two values of
αkL and αkH , for each k in any regular deployment.

The full k-coverage of an area in any of the deployments can
be achieved by setting the αk value to the upper-bound value
αkH (Lemma 2). Thus, the narrower the gap between αkL and
αkH , the lower is the increase of the sensor density comparing
to the optimal case. Columns 14, 15 and 16 of Table I, λ

t
H

λt
L

, λ
s
H

λs
L

and λh
H

λh
L

, show the worst case increase in the sensor densities
if αk is set to αkH . Therefore, the worst-case increase in the
sensor densities is 33%, 60% and 71% for triangular, square,
and hexagonal deployments, respectively.

Moreover, as shown in Table I, for some values of k,
the lower- and upper-bounds of αk met, which gives us the
optimum value of αk in that deployment (αkH = αkL = αkopt).
For example, to achieve a 1-coverage of the deployment
area in triangular, square and hexagonal deployments, the
deployment-side, X , is best to be set to 2R/

√
1.33, 2R/

√
2

and 2R/
√

4 (Equation 5), respectively.
Using Table I, we can also compare the three regular

deployments in terms of their required sensor densities to
provide k-coverage, for every value of k from 1 to 20. Column
pairs of (8,9), (10,11), (12,13) show the ratio of the sensor
density of the triangular, square and hexagonal deployments,
when αk = αkH , to the sensor densities of the other two
deployments when αk = αkL. For example, the values of λt

H

λs
L

and λt
H

λh
L

are shown in columns 8 and 9 of Table I, respectively.



(a) (b) (c)

Fig. 5. Optimal regular deployments to provide optimal (a) 2-coverage (b) 3-coverage (c) 5-coverage

Therefore, as an example, for any k with corresponding values
of λt

H

λs
L

and λt
H

λh
L

less than one, the triangular deployment
provides the optimum k-coverage of the area in terms of the
sensor density. As a result, we can conclude that the optimum
regular deployment to k-cover the area is triangular for k=1,
3, 5, square for k=7, 13, 14 and hexagonal for k=2.

For k equal to 1, 2, 3, 5, 7, 14, the optimum deployment-side
is also known for the given deployment, because αkH = αkL.
Figure 5 (a-c) show the optimal regular deployments to k-
cover an area for k=2, 3 and 5, which are the hexago-
nal deployment with deployment-side of 2R/

√
4, triangular

deployment with deployment-side of 2R/
√

4 and triangular
deployment with deployment-side of 2R/

√
7, respectively.

Generally, Table I assists in comparing the three regular
deployments to k-cover an area for any given k between 1
and 20, even for the values of k for which finding the optimal
regular deployment is not possible.

D. Validation of the theoretical results

The theoretical results presented in Section III-B is veri-
fied via simulations. In these simulations, the sensors were
deployed in a square area of side L equal to 1800, while
the sensors’ sensing range was set to 80. All three regular
deployments, triangular, square and hexagonal, were deployed
and the simulations were run for every k from 1 to 20. We
observed a match between our theoretical derivations and the
simulation results. The simulation area was at least k-covered
when the deployment-side, X , was set to Xk

L = 160/
√
αkH

(Equation 4), and the area was not fully k-covered when X

became greater than Xk
H = 160/

√
αkL (Equation 4).

Furthermore, the optimum deployment-side of each deploy-
ment, Xk

opt = 160/
√
αkopt, for the given area was computed

as follows. For every k in each deployment, the value of αk

was changed from αkH to αkL (shown in Table I) by steps of
0.1. The sensors were deployed within the square area using
the deployment-side values corresponding to αk values, using
Equation 5. The maximum value of Xk that provided a full
k-coverage of the area was the optimum value of Xk, Xk

opt,
in our setup. Last three columns of Table I show the optimum

value of αk – αkopt – to provide k-coverage for every k from 1
to 20 for the three deployments. The optimal values are used in
the next section to compare the sensor densities of the regular
deployments with uniform random deployment.

IV. UNIFROM RANDOM DEPLOYMENT

In this section, we compare the number of sensors required
to provide k-coverage in the three regular deployments in a
given area with the number of sensors required to provide k-
coverage in uniform random sensor deployment for values of
k from 1 to 20. The minimum required number of sensors to
k-cover an area in uniform random deployment is computed
via simulations for each k. The sensors were deployed in a
square area of side L equal to 1800, while the sensors’ sensing
range were set to 80. Under uniform random distribution, the
sensors were distributed uniformly over the deployment area
until every point in the area was covered by k sensors. Each
sensor had an equal likelihood of being at any location in
the area. We performed 100 iterations for each k. Figure IV
shows the average number of required sensors to k-cover an
area, for k from 1 to 20. The results are shown along with
the required number of sensors to achieve k-coverage in the
same area in the three regular deployments (using the αkopt
values in Table I). As shown in this figure, the required number
of sensors in regular deployments is 3-10 times lower than
the required number of sensors in random deployments for
different values of k.

V. CONCLUSION

Regular sensor deployments are of particular importance
in many applications mainly because they provide a uniform
and high consistent partitioned space. In this paper, we com-
pared the three regular sensor deployments, triangular, square
and hexagonal deployments, based on the required sensor
density to k-cover the deployment area, for k ≥ 1. For
each deployment, we computed an upper-bound and a lower-
bound on the optimal distance of sensors from each other that
ensure k-coverage of the area. Further, we showed that the
regular sensor deployments are preferable to uniform random
deployment in terms of the sensor density for k-coverage of
an area, for k ≥ 1.



triangular square hexagonal densities comparison triangular square hexagonal

k αkH αkL αkH αkL αkH αkL
λt
H
λs
L

λt
H

λh
L

λs
H
λt
L

λs
H

λh
L

λh
H
λt
L

λh
H
λs
L

λt
H
λt
L

λs
H
λs
L

λh
H

λh
L

αkopt αkopt αkopt

1 1.33 1.33 2 2 4 4 0.77 0.50 1.30 0.65 2.00 1.54 1.00 1.00 1.00 1.33 2 4
2 4 4 4 4 4 4 1.15 1.50 0.87 1.30 0.67 0.77 1.00 1.00 1.00 4 4 4
3 4 4 5 5 7 7 0.92 0.86 1.08 0.93 1.17 1.08 1.00 1.00 1.00 4 5 7
4 5.33 5.33 8 5 12 7 1.23 1.14 1.30 1.48 1.50 1.85 1.00 1.60 1.71 5.33 5.6 7.9
5 7 7 10 10 13 12 0.81 0.88 1.24 1.08 1.24 1.00 1.00 1.00 1.08 7 10 12
6 9.33 7 10 10 16 12 1.08 1.17 1.24 1.08 1.52 1.23 1.33 1.00 1.33 7.33 10 12
7 9.33 9.33 10 10 16 16 1.08 0.87 0.93 0.81 1.14 1.23 1.00 1.00 1.00 9.33 10 16
8 12 12 13 10 16 16 1.39 1.13 0.94 1.06 0.89 1.23 1.00 1.30 1.00 12 11.1 16
9 12 12 16 13 19 16 1.07 1.13 1.15 1.30 1.06 1.13 1.00 1.23 1.19 12 13 17.4
10 13 12 17 16 28 16 0.94 1.22 1.23 1.38 1.56 1.35 1.08 1.06 1.75 12.3 16 20.2
11 16 13 18 16 28 19 1.15 1.26 1.20 1.23 1.44 1.35 1.23 1.13 1.47 13.5 16.3 21.3
12 16 13 20 16 28 19 1.15 1.26 1.33 1.37 1.44 1.35 1.23 1.25 1.47 13.8 17.7 21.8
13 17.33 17.33 20 18 28 28 1.11 0.93 1.00 0.93 1.08 1.20 1.00 1.11 1.00 17.33 18.1 28
14 17.33 17.33 20 20 28 28 1.00 0.93 1.00 0.93 1.08 1.08 1.00 1.00 1.00 17.33 20 28
15 19 19 25 20 28 28 1.10 1.02 1.14 1.16 0.98 1.08 1.00 1.25 1.00 19 21.2 28
16 21 19 26 20 31 28 1.21 1.13 1.19 1.21 1.09 1.19 1.11 1.30 1.11 19.1 22.3 29.5
17 21.33 19 26 26 36 31 0.95 1.03 1.19 1.09 1.26 1.07 1.12 1.00 1.16 20.23 26 31
18 25.33 19 26 26 36 31 1.13 1.23 1.19 1.09 1.26 1.07 1.33 1.00 1.16 21.23 26 31.8
19 25.33 21.33 29 26 37 31 1.13 1.23 1.18 1.22 1.16 1.10 1.19 1.12 1.19 21.83 26 34.7
20 28 28 32 26 43 36 1.24 1.17 0.99 1.15 1.02 1.27 1.00 1.23 1.19 28 26.6 36

TABLE I
SENSOR DENSITIES
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Fig. 6. Comparison of regular and random deployments in terms of the
number of sensors
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