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Abstract—Object tracking has been a prominent application
domain of sensor networks. For many applications, it is sufficient
to monitor the boundary of a physical phenomenon instead of
the full extent of the phenomenon in return for significant energy
savings. However, continuous monitoring of a large phenomena
with irregular boundaries will still incur a significant energy
expenditure in a sensor network. We propose a novel distributed
algorithm, SpatialZip, to efficiently simplify the boundary result-
ing in less energy expenditure.

I. INTRODUCTION

Wireless sensor networks (WSNs) can be used to monitor a
wide variety of physical phenomena such as toxic gas plumes,
soil wetness in vineyards or oil spills. In many cases, we can
decompose the region we are monitoring into two distinct
regions, one with some physical property above a threshold
value and the other below this threshold value, with a boundary
separating these two regions. For example, a WSN may be
deployed to monitor the soil wetness in a vineyard and will
trigger water sprinklers in different areas of the vineyard once
the soil wetness falls below a threshold value.

Communication within a WSN is achieved by relaying
information between sensors that are close to each other
using a communication protocol. A message may have to be
forwarded many times before it reaches its intended location,
which is usually the sink that disseminated the initial query.
The relevant nodes that answer the query will have to transmit
the results of the query through a series of nodes before
reaching the sink. This means that even though a particular
node need not respond to a particular query, it may have to
take part in the transmission process of the results of the query.

A well-known limitation of WSNs is the amount of energy
available to each sensor. Since sensors are usually battery
powered, when a battery runs out of energy, the sensor will no
longer be able to broadcast and relay signals. When too many
sensors in the network run out of power, the network may
become segregated and sensors on one side of the network
may not be able to send messages to the other side if there
is no routing path across the sensors that ran out of power.
Therefore it is important to develop energy-saving techniques
for applications in sensor networks.

Energy-efficient boundary detection and monitoring has
been a vital field of research [1], [2]. For example, DEMOCO
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[3] serve this task. However, ultimately these algorithms have
to report the boundary back to the sink by routing the boundary
information through the sensor network. In this paper, we pro-
pose to improve on the energy efficiency of these algorithms
by simplifying the boundary of the detected phenomenon.
The saving in energy comes from two sources: fewer sensors
on the boundary having to actively detect changes, and less
information about the boundary being reported.

Boundary simplification by overestimation is acceptable in
many applications where the phenomenon is known to be
growing, as areas close to the phenomenon are likely to be
affected soon. This means that the regions that are overesti-
mated have a high chance of being inside the phenomenon
later.

Although there has been some work done on line simpli-
fication [4], feature identification and simplification [5], [6]
and Spatial Approximation Algorithms in Sensor Networks
[7], [8], these existing algorithms are all centralized. An
important feature is to be able to locally compute a simplified
boundary. An approach using a central source (a sink) requires
additional energy as it requires additional messages between
the source and the boundary nodes. The savings from the
simplified boundary may not be able to justify the energy
initially invested in simplifying the boundary, which prompts
the need for a decentralized simplification algorithm.

The main contribution of this work is an algorithm called
SpatialZip. SpatialZip is a stateless, decentralized and effi-
cient algorithm for simplifying a boundary. To simplify the
boundary, we identify concavities in the boundary (inlets)
and zip them up. This is done recursively until no more
inlets can be identified. Efficiency is achieved by using only
information local (one-hop) to sensors when identifying inlets
hence requiring little extra communication overhead when
simplifying the boundary. Statelessness is assured by not
requiring non-local information to be stored.

In summary, advantages of the SpatialZip algorithm over
existing centralized boundary simplification algorithms are:

• identify concavities locally for energy efficiency;
• efficient simplification of a growing boundary; and
• produces a simplified boundary that can be easily moni-

tored for change.

II. PRELIMINARIES

In this paper, we focus on phenomena without holes, whose
boundaries are connected and contains no dangling nodes. In



Fig. 1. This image illustrates our definition of a boundary. The light gray
cells indicate the Voronoi cells that are inside the boundary. The dark gray
cells show the cells monitored by BSs. All the BSs are connected to the next
BS by a Delaunay edge, which is represented by a thin black line.

future work, we drop one or more of these assumptions.
We use a Voronoi Diagram [9] as our underlying data

structure as it captures the notion of neighborhoods. A Voronoi
diagram partitions a plane containing a set of sites S, the sensor
nodes, into a collection of cells. It associates a cell with a site
p so that all points in cell Cell(p) are closer to p than to any
other site in S. In our case, each Voronoi cell is the node’s
area of responsibility. When a node detects the phenomenon,
we assume, as an approximation, that the phenomenon covers
the entire Voronoi cell.

We assume that the Voronoi Diagram is computed prior
to any boundary detection and simplification. Energy efficient
and distributed methods for computing Voronoi diagrams
that are suitable for applications in WSN have been studied
in [10] where each node is able to generate its Voronoi
cell by just considering its immediate neighbors. Since the
Voronoi diagram only needs to be calculated once, the cost
of calculating it is included into the initial setup cost of
the deployment. Furthermore, only the sink needs the entire
Voronoi diagram for reconstructing the phenomenon using
boundary information; other nodes only require information
about their local Voronoi neighbors for our algorithm to work.

We define the Region of Interest (ROI) as the area covered
by the phenomenon and assume that its boundary can be
approximated by a discretization defined by the locations of
boundary sensors (BSs). We define a BS as a node inside the
ROI that has at least one neighboring node outside the ROI.
The neighborhood of a node p comprises the nodes that are
Voronoi neighbors of p (nodes whose Voronoi cells share an
edge with p’s cell). The boundary is a series of BSs that are
neighbors of each other. The dual of the Voronoi Diagram is
the Delaunay Triangulation. If two nodes are neighbors of each
other, they will be connected by a Delaunay edge. A Delaunay
edge must connect each BS to the next BS on the boundary
as shown in Figure 1.

As highlighted in the introduction, simplification of the
boundary is achieved by removing inlets and concavities from
the boundary. To remove an inlet from the boundary, the

node causing the inlet should be included in the ROI as the
concavity gets filled up.

To formalize the above process, we will call nodes that are
near the boundary near boundary sensors (NBSs). NBSs are
nodes not inside the ROI that have at least one neighboring BS.
If a NBS causes an inlet, we include it in the ROI by promoting
it to a virtual boundary sensor (VBS). A VBS is a NBS that
is considered to be in the ROI for boundary simplification.
Once a NBS is promoted to a VBS, it is treated like the other
BSs in its neighborhood as it delineates the sensors within the
region from those outside the region.

We will evaluate the performance of our algorithm by
first measuring the decrease in the number of nodes on
the boundary. This reduction will also decrease the energy
expended when transmitting the boundary to the sink. Second,
we will measure the increase in area enclosed by the boundary.
A larger increased enclosed area is a loss of resemblance of
the phenomenon. Furthermore, Spatialzip should not introduce
bulges to the boundary as they increase its length and the area
inside the boundary.

III. SPATIALZIP

The key idea of our algorithm is to identify the NBSs
that can be chosen as inlet cells and then promote them to
VBSs. Repeated promotion of NBSs into VBSs will result in
the simplification of the inlet. It is important to be able to
identify inlets using only local knowledge because non-local
information requires additional energy expenditure, defeating
the purpose of boundary simplification.

Limited work has been done on identifying and simplifying
certain features such as inlets on a boundary. Therefore, we
have developed geometric criteria for identifying inlet nodes
on the boundary.

The criteria depend on the identification of extreme nodes
of NBSs which we will present first.

A. Extreme Nodes

Extreme nodes are important because they determine if a
node causes an inlet on the boundary. Let x be an NBS. We
define the extreme nodes of x as the nodes in the neighborhood
of x that have NBS neighbors other than x. Extreme nodes can
be identified using purely local information provided that the
BSs neighboring x are connected. If a NBS x has more than
two extreme nodes, the boundary is disconnected in which
case x is not promoted to a VBS to avoid holes in the ROI.

The extreme nodes can be readily computed in
O(d(x) log d(x)) time where d(x) is the number of boundary
nodes in the neighborhood of x. We construct a convex hull
[11] of the neighboring boundary sensors and the two nodes
that are connected by an edge on the convex hull without a
corresponding Delaunay edge will be the two extreme nodes
(see nodes e1 and e2 in Figure 2). The Delaunay edges
do not need to be calculated during the identification of
extreme nodes because the Voronoi Diagram is assumed to
be precomputed from which Delaunay edges can be obtained.

It should be noted that extreme nodes cannot be found if a
NBS only has two neighboring BSs. This is not a limitation
of our method: if a NBS only has two neighboring BSs,



Fig. 2. The dark gray cells are the Voronoi regions of the nodes inside
the boundary. The gray cells are the nodes on the boundary. The white cells
are the nodes not in the boundary. The light gray cell is the NBS we are
currently considering. The thin solid lines are the Delaunay edges and the
thick dashed line is the edge of the hull that has no corresponding Delaunay
edge. Nodes e1 and e2 are the extreme nodes identified. It is obvious that e1
and e2 determines if x causes an inlet or not.

Fig. 3. e1 and e2 are the extreme nodes of x. Clearly, the distance from
e1 to e2 through x is less than the path length along the original boundary.
Hence the Length Criterion is met and x should be promoted to a VBS.

promoting the NBS to a VBS will result in a longer boundary
and hence should not be considered in the first place.

B. Geometric Criteria
Now that we have established the notion of extreme nodes,

we present our geometric criteria for inlet identification.
1) Length Criterion: The Length Criterion for identifying

inlets states that if the sum of the distances from extreme node
e1 to x and from x to another extreme node e2 is less than
the distance from e1 to e2 along the original boundary, then
x must be an inlet (see Figure 3). In an ideal scenario, we
could connect e1 to e2 with a straight line hence closing the
inlet without bulging. If there is no direct path between these
two nodes, the path most similar to a straight line is taken
because it will introduce the least bulging or indentation to the
boundary. By geometry, this occurs when the alternative path
is lowest. Furthermore, given a uniform distribution of nodes,
the number of nodes on the boundary should be proportional
to the length of the boundary hence it is desirable to reduce
the boundary length.

2) Extended Length Criterion: The extended length cri-
terion is a extension of the length criterion. The node x
is temporarily promoted to a VBS. If at least one of x’s
neighbors is promoted to a VBS by either the Length Criterion
or the Extended Length criterion as a result of x’s temporary
promotion, then x’s promotion should be made permanent. If
no neighbor is promoted as a result of x’s promotion, x should
be demoted back to a NBS. This criterion is useful for inlets

Fig. 4. e1 and e2 are the extreme nodes of x. e3 and e1 are the extreme
nodes of y. x and y are both NBSs. Both x and y are in an inlet: if they are
both promoted, the boundary will be shorter. x and y will not be promoted
by the Length Criterion alone. However, if x were temporarily promoted to a
VBS, x would become an extreme node of y and the distance from e3 to x
through y would be shorter than the distance through the original boundary.
Therefore y would be promoted to a VBS by the Length Criterion. Since y’s
promotion was a result of x’s temporary promotion, x will remain a VBS
according to the Extended Length Criterion.

that require more than one NBS to be promoted at the same
time to fully zip up (see Figure 4).

Note that the Extended Length Criterion can propagate
to nodes that are not one-hop neighbors of x. When x is
temporarily promoted, its neighbors may also be temporarily
promoted if they meet the Extended-Length Criterion. The Ex-
tended Length Criterion is stateless because it only maintains
the state of one-hop neighbors.

3) Other Criteria: Other possible geometric criteria have
been examined. We investigated using the number of neighbors
as well as the convex hull of neighbors to determine if a node
is causing a inlet. Preliminary experimentation conducted on
these geometric criteria showed little promise since they were
at times either too conservative in identifying inlets, which
resulted in inlets not being zipped, or were too optimistic in
identifying inlets, causing unnecessary bulging. Hence, further
investigation of these criteria was not pursued.

C. SpatialZip Algorithm

Now that we have defined how we will identify inlets, we
present our boundary simplification algorithm in Algorithm 1.

Algorithm 1 SpatialZip(x,V Nx)
/*V Nx is the set of Voronoi Neighbors for node x */

1: [e1,e2]=compute extreme nodes(x,V Nx)
2: if Length Criterion(x,V Nx,e1,e2) OR
3: Extended Length Criterion(x,V Nx,e1,e2) then
4: V BSx ← TRUE //Promote x to VBS
5: for all i in V Nx lying outside the region do
6: SpatialZip(i,V Ni)
7: end for
8: end if

The whole zipping process is initiated when a node discov-
ers that it causes a inlet on the boundary. It will turn into a
VBS and the zipping propagates to neighboring nodes until no
more inlets can be identified. Consequently, the perimeter of
the boundary in that region will have reached a local minima.



Fig. 5. The above figure illustrates our notion of a theoretical average result.
The thick gray lines and the thin black lines represent the boundary before
and after simplification respectively. The dotted line shows the circle from
which at inlet was cut to create the phenomenon. This boundary will only be
formed with ideal placements of nodes.

IV. PERFORMANCE EVALUATION

A. Evaluation Parameters

We first formalize the evaluation parameters that we use to
analyze the performance of SpatialZip.

1) Reduction in Boundary: A measure of our algorithm’s
effectiveness in reducing energy expenditure is the reduction in
the number of nodes on the boundary. If there were originally
N nodes on the boundary and M nodes on the boundary after
SpatialZip, we define the reduction in boundary (BR) to be:

BR = (N −M)/N

2) Increase in Area inside Boundary: The increase in
contained area (IA) signifies the cost of the simplification
of the boundary. The original ROI is always a subset of the
ROI resulting from SpatialZip since we are simplifying by
overestimation. Let the area enclosed by the original boundary
be A and the area enclosed by the simplified boundary be B,
the IA is defined as:

IA = (B \A)/A

B. Theoretical Average Solution

In order to provide a benchmark for the performance of
SpatialZip, we introduce the theoretical average solution.

We define the theoretical average solution to be the BR and
IA resulting from removing the inlet from a boundary that
exactly bounds the phenomenon. This is illustrated in Figure
5. The theoretical average solution is an indicator of how the
BR and IA are affected by the experiment settings if they
were only constrained by our definition of our boundary. For
a boundary to be in-line with our definition of a boundary,
each BSs must be a neighbor of the next BS on the boundary.
Discrepancies between the trend of the theoretical average
solution’s performance and SpatialZip’s performance can be
attributed to properties of our algorithm and how it is affected
by the distribution of sensor nodes.

Tonguz and Ferrari [12] showed that the average distance
r between Voronoi Neighbors for an average uniform node
spatial distribution is given by 1/

√
ρ where ρ is the node

spatial density. A node distribution is uniform if there exists a

Voronoi tessellation in which every Voronoi cell is contained
in a disk of radius r. The node spatial density can be shown to
be equal to the probability P of a cell having a node placed in
it. Therefore, the average distance between Voronoi Neighbors
can also be expressed as 1/

√
P .

The theoretical average BR can be found by dividing the
change in perimeter of a phenomenon when removing its
inlet by the average distance between Voronoi Neighbors
in the deployment. The following relationship expresses the
theoretical average BR in terms of P , R (radius of the
phenomenon), d (depth of the inlet), w (width of the inlet)
and θ (which can be expressed as arcsin w

2R ):

1− 2R(π − θ) + w

2R(π − 1 + cos θ − θ) + 2d+ w

Similarly, the theoretical average IA can be deduced to be:

R2(π − θ + 1
2 sin 2θ)

R2(π − θ + 1
2 sin 2θ)− w(d−R+R cos θ)

− 1

C. Experiment Variables
The following phenomenon settings will affect the perfor-

mance of SpatialZip.
1) Depth of rectangular inlet (d): As the inlet gets deeper,

if SpatialZip completely zips it up, we can expect the boundary
reduction to increase. However, if the inlet is too deep,
SpatialZip may get stuck at a local minimum where the inlet
is not completely zipped up yet. Therefore, we determine at
what depth SpatialZip’s performance deteriorates.

2) Density of sensors (ρ): The density of sensors will play
a role in determining the performance of our algorithm even
though our average theoretical solution says otherwise. With a
higher sensor density, more NBSs need to be promoted before
the inlet can be zipped up and may therefore cause SpatialZip
to terminate before the inlet is completely closed. The density
of the sensors can be changed by changing the (common)
probability of a cell in the grid having a sensor inside it.

V. RESULTS

A. Simulation Setup and Test Methodology
In this section we will show that our algorithm can success-

fully simplify the boundary of a phenomenon being monitored
by a sensor network. We will run our experiments using the
evaluation parameters mentioned in the previous section; the
BR and IA will be used to gauge how these phenomenon
settings affect the performance of SpatialZip.

We run SpatialZip on a variety of phenomenon settings in
our custom-developed simulator. We generate the location of
the sensors by first placing a 100 cells by 100 cells grid
over the XY plane. Each cell is both 10m in height and
width and has a common probability of having a sensor
placed in a random location inside the cell. From preliminary
investigations, a probability of 0.3 has been selected as the
default probability in order to simulate a realistic deployment
and to provide meaningful results. The phenomenon being
monitored is represented by a circle with a rectangular inlet
cut into it. The radius of the phenomenon will be 40% of the
height and width of the deployment to allow for some adjacent



Fig. 6. The above image shows the simulation results for a 600m-deep
inlet. The circles represent the sensors that are detecting the phenomenon.
The thick gray line shows the boundary initially detected and the thin black
line represents the boundary resulting from SpatialZip.

cells for the ROI to grow. The inlet will be 200m deep (half
of the radius) and 50m wide unless otherwise specified.

As mentioned above, we will measure the BR and IA for a
variety of experimental settings. We will vary the inlet depth
between 100m to 600m and the sensor density from 0.1 to
1; only one variable will be changed at a time to allow us to
see their impact on SpatialZip’s performance. Furthermore we
will compare the boundary resulting from SpatialZip with the
theoretical average solution discussed in the previous section.
Each test is run 100 times on randomly-generated sensor
deployments to obtain a representative average result, and a
sense of the variation in the quality of the Zip program.

Besides comparing the performance of SpatialZip on a vari-
ety of phenomenon settings, we will also test the convergence
of SpatialZip to see if the resulting boundary will change if
different nodes initiate the zipping process. Since SpatialZip
is a distributed algorithm, it might not always converge to
the same simplified boundary meaning that its performance is
dependent of the initiating node.

Finally, to convince ourselves that SpatialZip works on
different types of phenomena besides circular ones, we will run
SpatialZip on a square phenomenon containing a rectangular
inlet. If SpatialZip works not just on circular phenomena,
SpatialZip should be able to zip up the inlet in a square
phenomenon just as it would in a circular one.

B. Discussion
Figure 6 shows a graphical result of our simulation. Figures

7-10 show the numerical results of our simulation.
As demonstrated by Figure 7, as the inlet gets deeper, the

BR increases. SpatialZip performed as expected and closely
matches the trend of the performance of the theoretical average
solution. Even when the depth of the inlet was 75% of the
diameter of the phenomenon, SpatialZip was able to zip up
the inlet consistently. Furthermore, SpatialZip achieved a BR

Fig. 7. Simulation BR for increasing inlet depth.

Fig. 8. Simulation BR for increasing sensor density.

of 0.38 at this inlet depth, which means that the length of the
boundary was reduced by almost 40%.

It is worth noting that although the number of nodes lying
on the inlet increases linearly, the BR with an increasing inlet
depth does not exhibit a similar behavior. This is because the
resulting boundary is the same for all inlet depths and hence
the average of the resulting boundary lengths should remain
constant. Due to the definition of BR, if the resulting boundary
length remains constant, the increase in BR should be inversely
proportional to the original boundary length.

The experimental results also show that when the sensor
density is above 0.2, SpatialZip’s performance deteriorates
(see Figure 8). This contrasts the theoretically predicted trend,
which suggests that sensor density will not affect the level of
zipping. This deterioration in performance is likely a result
of an increasing number of nodes that need to be identified
as inlets before the entire inlet can be completely zipped up.
This property of SpatialZip is desirable: as the sensor density
increases, the boundary becomes more refined. This means that
the boundary is an accurate representation of the extent of the
phenomenon and simplifying the boundary will be guaranteed
to reduce accuracy substantially. If the sensor density is low,
the original boundary is less accurate and hence it is not
possible to tell whether the simplified boundary is more or less
accurate than the original. Therefore when the sensor density
is high, the boundary should not be simplified significantly.

Figure 9 to 10 shows the IA with different experiment
settings. As expected, as the BR increases, the IA increases
as well. As explained previously, IA is a measure of the
reduction in accuracy and since a high BR results from a
reduced accuracy, as BR increases, IA should increases too.

We note that there is a significant variance in every result.
For example, the standard deviation of the BR in the experi-
ment with a sensor density of 0.1 is up to 26% of the mean BR.
These large variances suggests that SpatialZip’s performance



Fig. 9. Simulation IA for increasing inlet depth.

Fig. 10. Simulation IA for increasing sensor density.

heavily depends on the distribution of sensor nodes. This is
expected since we are using geometric properties to identify
inlets that are dependent on the node distribution.

Although we plotted the theoretical average results on the
same graphs as the SpatialZip results for comparison, the
values for BR and IA for the theoretical average solution
cannot be compared directly with the values of BR and IA
for SpatialZip. The higher BR for SpatialZip than for the
theoretical case is due to the fact that SpatialZip does not
produce a boundary that is as accurate as the boundary used
to calculate the theoretical solution. This is substantiated by
the IA for SpatialZip being significantly higher than the IA
for the theoretical solution. Whether the SpatialZip boundary
or the average theoretical boundary is more desirable is hard
to decide. It is not possible to definitively state if it is worth
sacrificing accuracy for the resulting energy savings, since this
depends on the application. This evaluation parameter should
be determined per application by the user to see if the accuracy
trade off is worth the energy savings.

To test the convergence of SpatialZip, we initiated the zip-
ping process from every NBS once to see if the boundaries are
identical. After doing this on multiple experimental setups, we
conclude that SpatialZip does converge to the same boundary
regardless of which node initiates SpatialZip. Consequently,
we do not need to identify which node to initiate the zipping
process with to get the optimal performance.

When we ran SpatialZip on a square shaped phenomenon
containing a rectangular inlet, SpatialZip was able to zip up
the inlet. Therefore, we are confident that SpatialZip works
not just on circular phenomena.

VI. CONCLUSION

Methods for conserving energy in wireless sensor net-
works are very important. Boundary simplification is one such
method used to achieve the conservation of energy. Exist-
ing boundary simplification algorithms are centralized and

therefore aren’t energy efficient. In this paper, we presented
an algorithm called SpatialZip for efficiently simplifying the
boundary of a phenomenon in a wireless sensor network. The
algorithm achieved this by repeatedly identifying local inlets
and zipping them up.

Our experiments justify the design of SpatialZip. We found
that SpatialZip significantly reduces the length of the bound-
ary, thus reducing the battery consumed in transmitting the
boundary to a sink. Furthermore, it is shown that if the initial
boundary is highly refined, SpatialZip will not change the
boundary significantly thereby maintaining a true representa-
tion of the boundary.

Empirically, SpatialZip demonstrated that it converges to the
same boundary no matter which sensor initiates the zipping
process. As a result, it is not required to identify inlets to
initiate zipping with to provide the optimal amount of energy
savings since the no matter which sensor starts this process,
the resulting boundary will be the same.

There are several research directions for future work. As
mentioned above, we aim to investigate whether SpatialZip
works with phenomena with holes, whose boundaries are
disconnected. Furthermore, additional geometric criteria for
identifying inlets can be investigated. For example, an addi-
tional criteria may leverage on the M2 Advantage described in
[13] to use non-local information attained without additional
energy expenditure to determine if a NBS is a inlet or not.
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