Research Report

Design and Evaluation of Incremental
Data Structures and Algorithms for
Dynamic Query Interfaces

Egemen Tanin*

Richard Beigel

. +
Ben Shneiderman*

Human-Computer Interaction Laboratory®

Department of Computer Science
University of Maryland

Abstract Dynamic query interfaces (DQls) are a re-
cently developed database access mechanism that provides
continuous real-time feedback to the user during query for-
mulation. Previous work shows that DQIs are an elegant
and powerful interface to small databases. Unfortunately,
when applied to large databases, previous DQI algorithms
slow to a crawl. We present a new incremental approach to
DQI algorithms and display updates that works well with
large databases, both in theory and in practice.

Keywords Data Structure, Algorithm, Database, User
Interface, Information Visualization, Direct Manipulation,
and Dynamic Query.

1. Dynamic Querying

Dynamic query interfaces (DQIs) are a recently de-
veloped mechanism for specifying queries and visual-
izing their results [1, 2, 5, 6, 7, 9, 8, 12, 14]. Unlike
textual query languages such as SQL, DQIs are graph-
ical. A great advantage of DQIs is that they provide
continuous feedback to the user as the query is be-
ing formulated. Experiments have shown that query-
ing with DQIs is faster, easier, more pleasant, and less
error-prone than with other querying interfaces [2, 14].
A sample DQI is presented in Figure 1 (created by [8]).

*egemen@cs.umd.edu, partially supported by NASA grant
NAG 52895.

theigel@cs.umd.edu, partially supported by NSF grants
CCR-8958528 and CCR-9415410, and by NASA grant
NAG 52895, on sabbatical from Yale University until 8/1/97.

{ben@cs.umd.edu, partially supported by NSF grants EEC-
9402384 and TRI-9615534, and by NASA grant NAG 52895, also
affiliated with the Institute for Systems Research.

$address: Department of Computer Science, U. of Maryland
at College Park, College Park, MD 20742, USA, for more infor-
mation: http://www.cs.umd.edu/projects/hcil.

Fim Edil Wew Opions Hel
=] FBE| G sl mje] &)
[Length v Titm A Big Hend forhe Lite Lady =
400
I. - Acion
- Canmdy
1t ~ F Dama
~ ¥ Homor
bt -5 e
o = F My L
= F Sdenca Fiction
m ~F war
= F Woshair
= I —
25
[n}
[Pl
1]
20 (=] o Tile OB
o DD =] D EEFI Subject  Dmmes
o~ f Om Lengh 313
(=] O mm (=) Acicr Hopkins. Arhomy
=] = B-:ms garw 1I_.eslr
] ractor ims Tom
150 uf u gTmgtb Fopulerite
o A0 g Awmls | es
g o_® g DI:IHE o HE=§C! Yoot 974
- o mp lulal al Ymege  AnhomHopkne gi
oo Ao | opd_ Rl
e ey
E LR IRT: T IRT T T RT TN R T TIR T 3
I = I | _Year_v|
[ 632 oul ol 1740 poinkz bl (367 5] Lot

Figure 1. Spotfire: a good example for DQIs
(www.ivee.com). The user specifies a query
using the widgets along the left, bottom, and
right of the display. The hit set for the cur-
rent query is displayed as a starfield on the
left. This example does not contain a bar giv-
ing aggregate information about the database
but the hit set size is shown as a count at the
bottom.

Queries are made using widgets, such as range slid-
ers (for continuous data attributes), alphanumeric slid-
ers (for textual attributes), toggles (for binary at-
tributes), and check boxes (for discrete multi-valued
attributes), to specify each attribute (dimension) of
the data. Output is provided via a starfield display
(a 2-dimensional projection of the set of hits), bars
(such as a preview bar that displays the number of



100 120 200 220
> <

Figure 2. A sample range slider. By moving

Specified Range

the arrows, the user specifies a range, which
is represented by the white rectangle. The
numbers above the arrows give the current
range. The numbers on the far ends of the
range slider are the extreme values that the
attribute can take.

hits), and charts (which provide other aggregate infor-
mation). The widgets are tightly coupled: as the hit
set varies all the widgets are updated to show the hit
set’s bounding rectangle, so the widgets provide a lim-
ited form of output as well. If desired, we can even
display a histogram on each widget to show the distri-
bution of data in its dimension. The user may click
on an individual point on the starfield for “details on
demand”.

Range sliders are used to manipulate continuous att-
ributes. See Figure 2 for a sample range slider. A range
slider contains a pair of arrows, one at each end. The
user selects a range slider by clicking on it, and the
user adjusts the range by dragging either arrow with
the mouse. As the range is being adjusted, the starfield,
bars, and charts are updated. Histograms and states of
the other widgets can also be updated. Thus, for each
tiny increment of the range slider, much information
must be computed rapidly.

Toggles allow the user to specify a binary attribute
of the data. On the display they look like boxes. Inter-
nally they can be implemented directly without much
trouble or treated as a nearly trivial special case of
range sliders. List boxes, radio buttons, and various
other discrete widgets can be handled with similar ease.

Alphanumeric sliders allow the user to specify a
range of strings. Although our auxiliary data struc-
tures apply to them as well, the fine granularity of al-
phanumeric data seems to necessitate additional imple-
mentation ideas that are best described in a separate
paper.

We propose a new approach to DQI algorithms that
can handle larger databases than previous implemen-
tations. This paper expands our previous note [13] by
providing a detailed explanation and evaluation of our
DQI algorithms. We present our approach in general in
Section 2. We give a detailed explanation of the data
structures and algorithms in Section 3. We analyze the
complexity of our algorithm in Section 4. We evaluate
our approach experimentally in Section 5. We state
our conclusions and future work in Sections 6 and 7.

2. The Incremental Approach

In DQIs queries are formed in an incremental fash-
ion. For example: to set a range on a slider, the user
drags the two arrows of the slider to desired positions
on the display. This enables the user to visualize inter-
mediate results until a desired final set of positions is
reached. Also, a query can be formed via a conjunction
(or disjunction) of constraints on more than one or two
attributes. This also produces numerous intermediate
results to be displayed. Therefore, we chose the incre-
mental query formulation paradigm in our designs for
algorithms and data structures for DQIs.

The incremental approach gains its efficiency from
the following innovations:

Active subset We define an “active” subset of the
database, of limited size, which we store in main mem-
ory. (While in principle the size of main memory may
seem like a severe limitation, in practice DQI algo-
rithms seem to be limited more by time than by space).

Auxiliary data structures We augment the active
subset with data structures that facilitate continuous
querying (users can tolerate a response time of about
0.1 seconds for continuous operations [1]).

Reprocessing The auxiliary data structures change
only when the user clicks on a widget. After such an
action the user will accept a delay of approximately 1
second or less, during which we reconstruct the auxil-
iary data structures.

Incremental display Slight changes in the query
tend to cause only slight changes in the output. By
computing and displaying the difference, we can up-
date the display continuously.

We envision using the DQI algorithms in tandem
with a gquery previewer [3] that allows the user to
browse a huge database and select a manageably small
subset to scan. Once the user selects such a subset, the
query previewer passes its bounding rectangle to the
DQI, which then takes control. The bounding rectangle
for the active subset determines the extreme values for
each attribute. Therefore, the query preview approach
can also be considered as an application of the incre-
mental querying paradigm (in a more broad sense). If,
at some later time, the user wants to look outside the
active subset, then the simplest solution is for the DQI
to return control to the query previewer. This will be
considered in a future paper on the interaction between
the DQI and the query previewer. The data structures
and algorithms are given in the following section with
an example on range sliders.

3. Data Structures and Algorithms

Our DQI algorithms perform three major opera-
tions: setup, selection, and querying.



Setup occurs when the query previewer passes con-
trol to the DQI. During setup, the widgets, starfield
display, bars, and charts are initially drawn on the
display. The DQI reads the active subset. In addi-
tion, it makes a copy of the active subset and re-scales
each attribute to the range [1, p] where p is the number
of pixels in the attribute’s range slider. This step is
important because we need this re-scaled information
frequently. Because setup occurs infrequently, we can
allow several seconds for it.

Selection occurs when the user clicks on a range
slider. During selection, the algorithm computes the
auxiliary data structures, which depend on the cur-
rently selected attribute and the current ranges for the
other attributes. Various experiments with user inter-
faces show that we must respond to the mouse click
in about 1 second in order not to annoy the user. At
the cost of a factor of 2 in memory, we could precom-
pute the auxiliary data structures whenever the mouse
is moved close to a new range slider. Using somewhat
more memory, we could steal cycles from the query
operation in order to precompute the auxiliary data
structures for several sliders. Thus 1 second may be an
overly conservative bound on the time for selection.

Querying occurs continuously as the user drags the
mouse to update the selected range slider. During
querying, the algorithm recomputes the hit set and
updates the output on the display. For the purpose
of timing, we say that a single query occurs each time
the DQI detects a change in the position of the mouse
on the range slider. Experiments show that DQIs must
process each query in about 0.1 seconds in order to give
a continuous response [1].

During the selection operation, the DQI computes
the mazimum hit set, which is the hit set determined
by the extreme values for the selected attribute and the
current ranges for the other attributes. Then it parti-
tions the maximum hit set into p buckets, one for each
user-specifiable value for the current attribute. This
is essentially a linear time counting sort of the max-
imum hit set. We store the size of each bucket and
all left-to-right partial sums of these sizes (an example
range slider with bucket information included is given
in Figure 3).

In selection, we also compute the information that
facilitates computation of histograms and tight cou-
pling of range sliders, i.e., the redisplay of all slider
ranges when any range is changed. To achieve this goal
a two dimensional array for each slider is kept (i.e., size
p?, shown in Figure 4).

Thus, any time the range slider is updated, even by
a large number of pixels (as might happen if the user

100 120 140 160 180 200 220 Slider Values

N W | RengeSiider
= AN -l

100 — 117 — 122 — 133 — 141 — 150 — 160 — 189 — 215 — 220  Max Hit Set

0+2 242 42 641 T+l 81 M1 i gumg

L Count for This Position
—= Total Count of the Previous Positions

Figure 3. A sample range slider with bucket
information. This example shows 10 records
distributed on the range slider sorted in as-
cending order for the related attribute. The
arrows from the range slider to the hit set
show the related positions in the sorted maxi-
mum hit set that each discrete pixel position of
the range slider maps to where the numbers
in this hit set give the values of the records
for that attribute represented by the slider.
The lower array of boxes represents the par-
tial sums of counts for a given pixel position of
the range slider. This example contains only
7 hypothetical pixels for simplicity.

moves the mouse extremely fast), we can determine the
number of hits in constant time. We can also determine
ranges for the other sliders in constant time per slider,
and histograms for the other sliders in constant time
per point. Changes to the display are determined by
scanning the buckets between the older attribute value
and the new one. The display is updated in time that
is linear in the number of changes.

If the user changes the axis parameters for the
starfield display, then the hits are redisplayed (pro-
jected on the new pair of coordinates) but none of the
internal data structures is changed. The only thing
that is updated is the starfield information.

The starfield information is equivalent to a two di-
mensional “dirty-pixel” array where for each starfield
pixel we keep a count. Whenever a pixel count reaches
zero that pixel color is set to the background color (and
visa versa 1.e., if it was zero and becomes a positive in-
teger then we plot that pixel on the starfield display us-
ing the foreground color). Programmers can use these
counts to give another form of histogram information
to the user. Also, they can immediately find the nec-
essary pixels on the starfield display that must be up-



Attribute #1

100 120 140 160 180 200 220

0 0o o o oo 1 0
= =
2 % 12 2 % 3 3k 3
ZZ ZZ ~
H*
5
g ¥ 11 2 2 22 2 1 1 g
2 : g
> 14
2 o o1 1 1 1 ]1 1 o 1 g
s ® w—
< % = > a
50 11 2 % 2 2 m 1
Z Z
0 olo o o ofo o 0
0 0oflo o o o1 1 0
i j

Specified Range by the User

Figure 4. A table containing the histogram and
This figure
uses the same data and example as Figure 3.

the tight coupling information.

Each box in the square holds a count. The
user sets the range for attribute 1. For a given
specified range of attribute 1 we can find the
valid range for attribute 2 by projecting the
hit set’s bounding rectangle onto attribute 2.
Each row is a prefix sum of counts from left to
right. So if we subtract column j from column
1 we can use the resulting difference array to
find the valid range for attribute 2. The high-
est nonzero row (k) and the lowest nonzero
row (m) give the valid range for attribute 2.
Note that the histogram information for at-
tribute 2 is just the difference array.

dated (i.e., only the pixel positions where the counts
vary).

4. Theoretical Complexity

Let r denote the number of records in the active
subset, @ the number of attributes, and b the number
of bytes needed to store the value of a single attribute.
Let p denote the length in pixels of each range slider,
f the area in pixels of the starfield, and u the aver-
age number of pixels that need to be updated in the
starfield display per query (this number depends in a
nontrivial way on the size of the starfield, the velocity
of the range slider, and the clustering of data in the
active subset). Let m denote the number of records in
the maximum hit set.

The active subset occupies r-a-b bytes. The rescaled
active subset occupies O(r - a) bytes. The bucket par-
tition also occupies O(r - a) bytes. The data structures
for tight coupling occupy O(a-p) bytes. The data struc-

tures for range histograms occupy O(a - p?) bytes. The
starfield occupies f bytes.

Setup takes time O(r - a - b).

There are four components to the time for selec-
tion. Determining the maximum hit set takes time
O(r - a). Sorting the maximum hit set takes time
O(m) (there is no log factor because we discretize the
data). Computing the auxiliary data structures for
tight coupling takes time O(a - p + m - a). Computing
the auxiliary data structures for histograms takes time
O(a - p?> + m-a). Thus, the total time for selection is
Ola-(r+m+ p?) = Ofa- (r+ %)),

There are three components to the time for query-
ing. Tight coupling takes time O(a). Computing his-
tograms takes time O(a - p). Updating the starfield
takes time O(u). Thus the total time for querying is
O(a-p+u).

5. Experiments

Preliminary experiments show that the incremen-
tal approach can deal with an active subset consist-
ing of 100,000 records with 10 attributes each [13].
In comparison, the pioneering work in the area, the
Film Finder program [1], could handle a database of
10,000 records with 10 attributes, and some of the stan-
dard data structures analyzed in [10] and tested in [11]
demonstrated scalability up to 20,000 records with 10
attributes.

The following subsections describe the experimenta-
tion on an implementation made by using our methods
and show the results. First, we describe the implemen-
tations and the environment for the experiments. The
experimentation method and the results are presented
next. After this we show the derivation of the experi-
mental run time behavior (complexities) obtained from
the experiments. Then we test the validity of these ex-
perimental complexities and finally state some conclu-
sions.

5.1. Experimentation Environment

We implemented a sample DQI using range sliders.
The interface consisted of a starfield display, a preview
bar (to show aggregate information about the query
that is being formed), and a number of range sliders
depending on the number of attributes in the input
dataset. The starfield display and the points in the
starfield display could have variable sizes. Also the
range slider sizes could vary.

We used a SUN SPARC Station 5 with 32MB of
RAM that runs a standard UNIX operating system
for our experiments. Motif and C were used in our
implementations.

We timed the setup, selection, and querying sepa-
rately by considering CPU time spent for each opera-



tion (to avoid defects that might come from a multiuser
environment). File read, data structure setup, and sim-
ilar sub-setup and sub-selection times were also mea-
sured. Also all the experiments were repeated without
a preview bar and a starfield display to measure the
querying time (without giving any visual output to the
user, this is the “pure” querying time).

We varied the total number of attributes, the total
number of records, the starfield size, the point sizes on
the starfield, the range slider sizes, and the jump sizes
(the displacements, in pixels, of a single side of a range
slider between consecutive queries). The experiments
were controlled by a batch process. This was neces-
sary to get accurate timings using exact jump sizes.
We generated random numbers according to a uniform
distribution for our datasets in our experiments. This
was also necessary because the starfield display has its
slowest performance when there are many pixels to be
updated on the display. To make a worst case analy-
sis, we tried to reduce the number of overlaps on the
display. Although this might eliminate some of the
computations for updating the overlapping points, it
increases the starfield update times which is more ex-
pensive than the count updates.

We considered the worst case that might occur in a
single selection operation. This occurs when m is equal
to r that might not occur very frequently in real appli-
cations. So our experiments show some over-estimated
times for querying, selection, and setup. In real-life
applications we expect to observe better performances
from our experiments.

5.2. Experiments and Results

We ran 7200 experiments to assess the performance
of our implementations. 3600 of them ran with the
starfield display and the preview bar enabled and the
other 3600 ran with them disabled. The following val-
ues were used in our experiments:

Number of attributes (a) 2, 4, 6, 8, or 10
Starfield size (f) 4002, 5002, or 600% pixels
Point size (d) 1%, 32, 5%, or 7% pixels
Range slider size (p) 150, 200, or 250 pixels
Dataset size (r)

10,000, 25,000, 50,000, 75,000, or 100,000

records

Jump size/range slider size (j/p)

1/50, 1/25, 1/10, or 1/5

In the first 3600 experiments we measured the time
to update the internal data structures (without any
user interface updates). In general we observed that
the “pure” querying time is no more than 20 millisec-
onds (average of 10 milliseconds). This was negligible,

with respect to the starfield display times obtained, es-
pecially when the number of records got larger (with a
starfield display that does not use our methods, query-
ing time becomes even less significant with respect to
the update times for the starfield display). This sug-
gests that the starfield update times must be optimized
first for a faster DQI.

The second set of 3600 experiments were used to
measure the querying times including the starfield dis-
play update times. The complexity analysis depends on
these remaining 3600 experiments, which we present in
the following subsections (Figure 5).

5.3. Experimental Complexity

Let s, denote the estimated setup time. Let s, de-
note the setup time observed from our experiments. In
an ideal analysis we must always observe an equality
between the two times. Obviously there are some er-
rors in the experiments and in the formula itself (due
to neglecting some low-order terms). We ran a multiple
linear regression on our experiments where |s, — s.| is
minimized over all the experiments. This is equivalent
to finding the best constants for s, = A+ B -r - a for-
mula (again over all the experiments) where A and B
are the constants and r - @ term is obtained from the
theoretical complexities given in O notation in previ-
ous sections. The setup has a constant A as we need to
represent file open and close times spent in the experi-
ments. After the regression we obtained A = 1.16 and
B =0.0000177. Hence, s, = 1.16 4+ 0.0000177 - r - a.

We did a similar analysis with the selection times.
Let S, denote the estimated selection time. Let S,
denote the selection time observed from our exper-
iments. Therefore, we can get the formula S. =
B.r-a+C-a-p?. Selection does not have a constant like
A as we had in setup so A = 0. The regression pro-
duced B = 0.00000121 and C' = 0.00000116. Hence,
S. = 0.00000121 - r - a + 0.00000116 - a - p2.



Times in Seconds Times in Seconds

Times in Seconds

Querying Times
01

0.08 —0—2 —A—4 —X—6 ——38 ——10
Attribute Counts
0.06 ——
/ /
0.04 e

I —
0.02

0+ } } t {
10000 25000 50000
Record Counts

Selection Times

16 —X—2 —0—4 ——6 ——8 - —10/
14 Attribute Counts

Y.
X
I
t

50000

Record Counts

Setup Times
20
—X—2 —0—4 —A—6
15 Attribute Counts

s -
/

Record Counts

Figure 5. A subset of experiments (25 exper-
iments out of 3600): The starfield size is 5002
pixels, the range slider size is 200 pixels, the
point size is 52 pixels, and the jump size is
200 x 1/25 = 8 pixels (which forms the average
case for our experiments). The querying times
given in this graph show that the average case
for our experiments is an order of magnitude
faster than the ones observed in the previous
experiments with other data structures and al-
gorithms.

Finally, let @, denote the estimated querying time.
Let @, denote the querying time observed from our
experiments. Again using the theoretical complexities
we can get Q. = A+ B-a-p+ Cu. Due to initialization
routines, we found the existence of A appropriate in
this formula (eventually it turned out to be a small
value). Unfortunately, the analysis for querying is not
trivial, as we have to find an estimate for u in terms
of display size, point size, and etc. We saw that the
u term is directly proportional to the jump size and
the number of records needed to be updated on the
starfield. Since we paint more than one pixel per point
(in general) the formula counts the number of pixels
that are updated. So our estimate for u is r-j-d?/p
where d? is the number of pixels to be painted per each
point and j is the jump size. Hence, Q. = A+ B -a -
p+Cubecomes Q. = A+ B-a-p+C-r-j-d?/p for our
case. Similarly, the regression produced A = 0.00528,
B = 0.0000157, and C' = 0.000000263. Hence, Q. =
0.00528 4+ 0.0000157 - a - p 4+ 0.000000263 - r - j - d*/p.

5.4. Evaluation

To evaluate the approach we used two methods.
The first one is to run the X? test to assess the cor-
relation between our experiments and the theoretical
terms. Then we ran another set of experiments to see
whether we can estimate the outcomes of these new
experiments with our old formulas (and hence with the
old constants) or not.

The X? test, for all of the three measurements
(setup, querying, selection), showed that the estimated
values and the actual values obtained from the experi-
ments were highly correlated.

We ran 1000 new experiments and obtained the
same times with the similar methods used for the pre-
vious set of experiments (the starfield display was al-
ways active in this set of experiments). We had a ran-
dom combination of the following values for our exper-
iments: point size varied between 12 to 102, jump size
varied from 1 to 50, display size varied from 3002 to
6002 (with range sliders of size 250 pixels a user in-
terface with a starfield of 6002 pixels nearly fills the
display), and the slider sizes varied from 150 to 250.
The only values that were fixed during these new set of
experiments (i.e., same values with the previous set of
experiments) were the dataset sizes and the attribute
counts (as it is practically impossible to generate all
the possible (random) datasets (either in terms of time
or space) on the fly for these new set of experiments).
The differences between the estimates and the actual
times were obtained. The average deviation observed
for setup time was 9.50 percent; for selection, 3.97 per-
cent; for querying, 16.63 percent.



5.5. Discussion

Using the incremental approach we achieved better
querying times than previous implementations (that
had standard data structures for querying which were
not specifically designed for DQIs). We also consumed
less memory as we created the data structures when-
ever they were needed. The new approach enabled us
to give preview bar, histogram, and tight coupling in-
formation to the user without making any additional
queries or spending additional processing times. The
size of the main memory that is being used by the im-
plementations remained as a secondary problem. We
saw that there are problems in the selection times
before we reached to the memory limits of our ar-
chitecture (more than 1 second generally annoys the
user). The selection times were mostly around 1 sec-
ond. Hence, memory still remained as a secondary
problem for DQIs. As r increases, terms that con-
tain the r factor become more significant. The starfield
display times were significant for huge r’s and our ap-
proach gains its power from the incremental starfield
display updates (but huge jumps in range sliders can
still cause high display update times).

The average deviation for the selection times was
smaller than we expected for the random set of ex-
periments. The setup times were also acceptable as
the disk input caused fluctuations in setup times. The
querying time estimates were less accurate than we ex-
pected but were again acceptable. The reason for this
was the high precision measurements that were made
on a system that has lower precision settings than the
required ones.

6. Conclusions

The new incremental approach for queries and dis-
play updates introduces a better way of dealing with
large databases. Experiments show that this approach
is faster than previous approaches and can deal with
an order of magnitude of larger datasets (i.e., 100,000
records with 10 attributes). The querying time is
dominated by the starfield update time (also observed
in [11, 13]). The incremental approach enables faster
display because only the difference between consecu-
tive queries is updated in the data structures and on
the starfield display.

7. Future Work

Our goal is to make another order of magnitude in-
crease in the size of the datasets that DQIs can deal
with (1,000,000 records with 10 attributes). We plan

to:

e implement other widget types, e.g., alphanumeric
sliders.

e try spatial data structures like k-D trees to see

how they effect the times for selection and query-
ing. (As a general non-worst-case rule of thumb,
spatial data structures answer range queries in
time O(|H|'~'/%) where H is the set of hits and
a is the number of attributes in the input dataset.
This could be good for selection, because it is sub-
linear. But it could be bad for querying, because
it is close to linear, and prior work seems to con-
firm this doubt [10, 11, 13]. Instead, we will use
an incremental approach where we compute the
difference A H between consecutive hit sets, which
in practice should take time only O(|AH|'=1/2).)

combine our DQIs with a query previewer [3] in or-
der to produce a new state of the art in interactive
dynamic database access.



References

[1] Ahlberg, C. and Shneiderman, B., Visual Informa-
tion Seeking: Tight Coupling of Dynamic Query Fil-
ters with Starfield Displays, Proc. ACM SIGCHI ’94,
1994, pp. 313-317.

[2] Ahlberg, C. and Wistrand, E., IVEE: An Infor-
mation Visualization and Exploration Environment,
Proc. IEEE Information Visualization, 1995, pp. 66—
73.

[3] Doan, K., Plaisant, C., and Shneiderman, B.,
Query Previews in Networked Information Systems,
Proc. Forum on Advances in Digital Libraries, IEEE
Computer Society Press, 1996, pp. 120-129.

[4] Eick, S., Data Visualization Sliders, Proc. ACM
User Interface Software and Technology, 1994, pp.
119-120.

[5] Fishkin, K. and Stone, M. C., Enhanced Dynamic
Queries via Movable Filters, Proc. ACM SIGCHI
95, 1995, pp. 415-420.

[6] Goldstein, J. and Roth, S. F., Using Aggregation
and Dynamic Queries for Exploring Large Data Sets,
Proc. ACM SIGCHT 94, 1994, pp. 23-29.

[7] Human-Computer Interaction Laboratory (HCIL),
University of
Maryland at College Park, Homefinder, 1992. The
down-loadable PC demonstration is available from
ftp://ftp.cs.umd.edu/pub/hcil/Demos/DQ/dq-

home.zip.

[8] Information Visualiza-
tion and Exploration Environment (IVEE) Develop-
ment AB, http://www.ivee.com/. Online Java demo
and down-loadable demos for various platforms.

[9] Ioannidis, Y., Dynamic Information Visualization,
ACM SIGMOD Record, Vol. 25, No. 4, 1996, pp.
16-20.

[10] Jain, V. and Shneiderman, B., Data Structures for
Dynamic Queries: An Analytical and Experimental
Evaluation, Proc. Advanced Visual Interfaces, Avail-

able from ACM, New York, 1994, pp. 1-11.

[11] Pointek, J., personal communication, reachable
via email: pointek@cs.umd.edu, 1995.

[12] Shneiderman, B., Dynamic Queries for Visual In-
formation Seeking, TEFEE Software, Vol. 11, No. 6,
1994, pp. 70-77.

[13] Tanin, E., Beigel, R., and Shneiderman, B., Incre-
mental Data Structures and Algorithms for Dynamic
Query Interfaces, ACM SIGMOD Record, Vol. 25,
No. 4, 1996, pp. 21-24.

[14] Williamson, C. and Shneiderman, B., The Dy-
namic HomeFinder: Evaluating Dynamic Queries
in a Real-Estate Information Exploration System,

Proc. ACM SIGIR °92, 1992, pp. 339-346.



