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Abstract— Popular network simulation tools, such asns-2, are
useful for undertaking experiments with emerging networking
technologies. As networked applications become distributed at
scales comparable to the Internet, such as peer-to-peer applica-
tions, testing and experimentation becomes increasingly difficult
and important. With this paper, we are introducing an elaborate
extension to existing simulation capabilities by allowing realistic
highly distributed application prototypes to be attached to a
simulator for transparent testing and experimentation. We enable
developers to focus on building their applications rather than
detailing simulation scripts. Testing can then be performed in
a natural setting. PDNS is a parallel and distributed version of
the commonly used ns-2 simulation package. We describe our
extensions to the PDNS simulator which allow real application
prototypes to be run across a simulated network. We describe
our use of virtualisation as a means for sending an application’s
network traffic through the simulator. Our implementation allows
for large scale simulations with thousands of real peers and
hundereds of thousands of simulated nodes in a network, thus
we can test real peer-to-peer software at large scales.

I. I NTRODUCTION

As networked applications become decentralised and highly
distributed, it becomes more important to predict potential
failure or success of these applications before a large scale de-
ployment. Even small glitches can lead to large scale problems
and increased costs. Furthermore, it is desirable to test actual
system software code rather than basing predictions of behav-
ior on idealised models and parts of algorithms built using
scripts. Large testbeds such as PlanetLab (http://www.planet-
lab.org) provide a good basis for such testing at medium scales.
Beyond this, and when greater control of test environment
variables is required, network simulations are still a good
choice. In this paper, we discuss the role of virtualisationfor
testing real system software code on a simulated network at
large scales.

The use of virtualisation techniques is increasing across
many application domains. Uses of virtualisation range from
system partitioning, checkpointing, usermode network filesys-
tems, to program supervision. We use the technique to virtu-
alise a program’s networking, redirecting network IO requests
across a simulated network. With minimal assumptions on
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application loading behavior, our virtualisation technique is
applied transparently to existing, unmodified applications.

Testing and more specifically, debugging complex dis-
tributed applications is widely accepted to be a challenging
task [1]. Reasons include difficulties in gaining access to the
required number of machines across a wide-area, capturing
trace data from experiments, and interpreting this data to make
appropriate changes in the system. It is desirable to be ableto
go step-by-step through the messages that are passed between
components of the distributed system. Simulations providea
means to solve these problems, however they introduce their
own problems. One such problem is how to run an applica-
tion in conjunction with a simulator, since the simulator is
usually a self-contained program with its own implementation
of protocols and scripting procedures. This implementation
cannot then be used directly in a real application due to
the existence of some unintended assumptions. For highly
distributed applications, such as peer-to-peer applications, this
is an important problem. In this paper, we address this issue
by extending a popular simulator to accommodate real appli-
cations transparently.

Finally, network simulations are also computation and com-
munication expensive. From a computation point of view,
memory requirements will typically grow quadratically (orat
least linearithmically) with network size and/or packet trans-
missions. Communication requirements are a consequence of
the need for causality and the use of a globally accessed time
based priority queue of events. Parallel network simulation
can be used to increase the scale of simulations. After inves-
tigating various simulation packages, includingGTNETS[2]
and OPNET [3], we have based our work onPDNS [4]. The
PDNS simulation is a parallel/distributed version of ns-2 [5].
The authors of PDNS have run simulations with as many as
600,000 nodes in a simulated network [4] that can address
the scales that are desired by applications such as peer-to-peer
applications.

A. Our contribution

In this paper, we describe an implementation and use
of virtualisation for testing, experimenting, and debugging
complex distributed applications in conjunction with PDNS.
In particular, we provide a modified simulator, along with
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Fig. 1. How applications communicate with each other through the simulator

a library which is linked into applications at runtime. This
library redirects appropriate network traffic to the simulated
network, transparently to the application (Figure 1).

By running multiple copies of applications, each connected
to different simulated hosts, we can experiment with their
performance on a large network. Such experiments are particu-
larly useful for peer-to-peer protocols and applications,where
network traffic is not directed to and from a single, central
server. Traffic patterns of this kind require simulations oflarge
numbers of hosts and nodes in order to be realistic, as there
are many potential bottlenecks.

B. Related work

Other approaches have been taken for the simulation of
networks, running real applications. Techniques range from
routers performing the simulation [6], to capturing trafficfrom
virtualised operating systems [7]. However these techniques
are not appropriate for the scale of simulations we would
like to perform, or the computer power available to many
enterprises.

A similar approach to ours has been used in the past,
to redirect sockets via a SOCKS [8] proxy [9]. However
our work differs in scale. We wish to simulate hundreds if
not thousands of application processes, each with numerous
sockets. It is important therefore to multiplex all socketsfrom
an application into a single socket connecting to the simulator.
If we used the SOCKS model, the simulator would have as
many real socket connections as it does simulated sockets.
This would be likely to test operating system limits that the
simulator runs on, i.e., particularly on shared cluster machines
used for experimentation.

In [7] and [10], User Mode Linux (UML) was used as an
environment for each simulated host. This involves running
a special Linux kernel which runs entirely in the user space
of another. A virtual network device can then be used to send
Ethernet frames to and from the simulation. This approach has
the advantage of using a real TCP/IP stack, the overhead of
UML is considerable, as hardware is not accessed directly by
the kernel. In addition, each simulated host requires its own
operating system kernel and file system.

An alternative approach to running simulations of real

software is to port a networking framework to a simulator. One
example is the porting [11] of the Click Modular Router [12]
to ns-2. This framework is built on a software architecture for
building routers which can then run in the Linux and FreeBSD
kernels. While an efficient technique for such code, it is
limited to modules for a particular framework and architecture.
This makes comparisons with existing protocols difficult in
simulations. It also places restrictions on the software outside
of the simulation.

II. V IRTUALISATION TECHNIQUE

Our virtualisation relies on the ability provided by operating
systems to preload a library (Figure 2). This feature allows
a library to provide functions which would otherwise be
provided by standard system libraries. It is done without
the knowledge of the application, however since it relies on
dynamic linking, it will not work if the application has been
statically linked against the functions to be replaced. The
advantage of simply replacing user-space functions, is that
the approach is relatively portable, compared with trapping
system calls. It can also be done without special privileges,
and is suitable for use on generic clusters.
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Fig. 2. Shows how the virtualisation library interacts withthe simulator and
application

In contrast to techniques such as [13], where a modified
router is used to simulate packets travelling through a simu-
lated network, ours can be run as a standard user on either a
single machine or a cluster. It does not require special access
to any machines or any specific hardware.

A. Socket trapping

Rather than trapping the system calls directly, our library
simply replaces the standard C library functions used for
networking. Alternatives exist, such as using theptrace
debugging facility [14], [15], often used by debuggers.

Our method of trapping a program’s networking calls uses
theLD PRELOAD facility provided by most POSIX operating
systems, such as Linux. It works by loading our library which
will provide the application with the appropriate symbols,
rather than the C library versions. Thus when an application
makes a call to a function such assocket, the function in
our library is called. A list of the functions we provide is given
in Table I, along with a brief description of the more involved
functions.



TABLE I

V IRTUALISED FUNCTIONS PROVIDED BY OUR VIRTUALISATION LIBRARY

Function Comments
socket Creates a dummy socket locally, to keep the file

descriptors in-sync with the kernel, then sends a
message to the simulator informing it of the new
socket.

connect Instructs the simulator to create a connection, either
blocking or causing a timeout if the connection
cannot be made.

bind Sends the bind request to the simulator, which checks
its own table of sockets for the host. This is needed
because multiple applications may be running on the
same simulated host, so the library cannot check if
the bind will succeed by itself.

accept Creates a new socket locally, and sends this file
descriptor value to the simulator (so it can store this
value itself), then waits for the simulator to either
return with a new socket, or fail.

listen Tells the simulator to begin listening on the socket.
read Requests the next block of data from the simulator,

and waits until it is received.
write Sends a block of data to the simulator, and waits for

an acknowledgement.
close Tells the simulator the socket has been closed.
recv As above forread
recvfrom Similar to read
recvmsg Similar to read
send As above forwrite
sendto Similar to write
sendmsg Similar to write
select Sorts the fd sets into virtualised sockets and local file

descriptors. Sends a select message to the simulator
for the virtualised sockets, then calls select on the
remaining file descriptors, as well as a newly created
pipe. The pipe is written to by the message receiving
thread when the select reply arrives. This way the
call can be awaken by the simulator or another file
descriptor. The simulator will send a reply if the
timeout value is reached, waking the call. This way
the timeout works in simulated time.

pselect Currently the same as select
poll Transforms the call into a select call and runs as

above.
fcntl Passes options through to the simulator.
getpeername Asks the simulator for the IP address of the remote

host.
getsockname Returns the IP address of the simulated host.
getsockopt Retrieves options which have been successfully set.
setsockopt Passes some options through to the simulator, others

are handled locally, and some are ignored.
ioctl Passes some options through to the simulator.
sigaction Needed to simulateSIGPIPE for sockets.
sigprocmask Needed to allow the library access toSIGPIPE.
sigpending Needed to allow the library access toSIGPIPE.
sigsuspend Needed to allow the library access toSIGPIPE.
signal Needed to simulateSIGPIPE for sockets.
sleep Tells the simulator to reply after the required elapsed

time. This causes the sleep to occur in simulated
time.

gettimeofday Queries the simulator for the current simulated time.

From an application’s point of a view, a socket is rep-
resented by a file descriptor, which is simply an integer.
Our virtualisation library must provide the same interface. To
do this, it needs to ensure that real file descriptors do not
clash with file descriptors given to virtualised sockets. We
considered two approaches for this. The first was to map file
descriptors seen by the application into the file descriptors used
by the kernel. The second approach was to create a real socket
for each virtualised socket, so that the kernel’s file descriptors
matched up with those seen by the application. In this second
method, the only information we need to maintain is whether
a particular file descriptor is a virtualised socket or not. Note
that the socket created for virtualised sockets is actuallynever
used, its sole purpose is to reserve a file descriptor for our
own use.

When a virtualised function is called, it first checks to see
if the file descriptor is virtualised. If it is not, the original call
is immediately initiated. Otherwise, the function interacts with
the simulator.

All state is kept in the simulator, so these functions simply
pass a message to the simulator and wait until they receive a
reply, giving them the return anderrno values, and any other
data needed. It is necessary to refer to the simulator’s state
because sockets can be shared between processes (consider the
case where a web-server forks off multiple processes to handle
requests). There may also be multiple applications runningon
the same simulated host, so the allocation of TCP/UDP ports
becomes an issue.

B. Handling auxiliary services

In order to create a realistic environment for applications,
we must virtualise other functions as well as those for net-
working. We virtualise the functions related to time, such as
gettimeofday andsleep.

By virtualising time related functions, the application is
unaware that the simulation time may not be the same as real
time, and everything appears to happen in simulation time.
The only exception to this is the amount of CPU time the
application receives. Currently we simply ensure the simula-
tion runs slow enough that applications, which are assumed
to generally be IO-bound, receive enough CPU time. The
simulation of network elements can be slowed if applications
are not receiving enough CPU time. How to automatically
adjust the rate of the simulation is an area for further work.

C. PDNS interface

Our virtualisation implementation interfaces with a modi-
fied version of the PDNS simulator. However, the protocol
used for communication between the library and simulator is
generic enough for the implementation to be possible in other
simulators. Indeed, using federation of a simulation [16],it
would be possible to create a simulation running on more
than one simulation package concurrently. This could be useful
where a specialised simulation exists for a particular type
of network. For example, by having a specialised wireless



TABLE II

INITIALISATION PARAMETERS SENT FROM THE LIBRARY TO THE

SIMULATOR

Parameter Comments
IP Address The IP address of the host the application will run

on within the simulation.
Start Time The simulated time in seconds at which the applica-

tion should begin running.
Identifier An optional unique identifier, so that a simulation

created process can be identified and located by the
simulator. This means the simulator knows when the
application it just created has connected.

network simulation package running in conjunction with a
generic network simulator such as PDNS.

Initial development of the virtualisation library was per-
formed with a simple daemon acting in the place of a simula-
tor. Rather than performing a realistic simulation of a network,
it handed data between nodes immediately. This daemon can
be used to validate the virtualisation library without the added
complexity of a simulator.

Communication between the library and simulator occurs
over a TCP socket. While not having the speed of shared
memory or other communication methods, it does have the ad-
vantage of making distribution of applications across machines
straightforward. To avoid hitting socket limits in the simulator
process, all virtualised sockets in a process are multiplexed
across a single socket between the library and simulator. When
a process forks, the new process closes the old socket and
opens its own to the simulator. Both data and control messages
pass across the same socket.

Upon application startup, the virtualisation library creates
a connection to the simulator, and sends an initialisation
message, informing the simulator of some parameters, as
shown in Table II. Having this information passed by the
library on startup allows applications to be started externally
from the simulator. This is useful for running a handful of
applications on a desktop machine to observe or interact with
the simulation. An alternative would be to have all applications
started by the simulator, but this removes such flexibility.

Once the library has sent its initialisation message to the
simulator, it waits for a reply, which signals that it should
begin running the application. This is implemented by having
the library initialisation constructor wait for the reply.The
application, or indeed other libraries it needs, cannot execute
until the virtualisation library’s initialisation is complete.

D. Virtualisation Limitations

Our current implementation is not completely transparent
to applications. We have not yet implemented thefork and
exec function calls. These two functions interact with the
loader and dynamic linker, and would require a little more
work than others. They would also require work to allow
sharing of file descriptors between processes, which our library
cannot currently handle.

set monitor [new WrapperDaemon 22334]
$monitor start-thread

Fig. 3. A code fragment demonstrating how the connection handling thread
of the simulator is initialised.

To avoid hitting operating system limits on file descriptors,
it would be useful to avoid creating a dummy socket for every
socket the application creates. However, as mentioned, this
would require a complex mapping between real and virtualised
file descriptors, and may break some applications.

As mentioned earlier, performance could be increased by
using a faster method for communication between the wrapper
library and the simulator.

III. S IMULATOR ENHANCEMENTS

Our work adds additional functionality to the PDNS sim-
ulator, adding facilities for external applications to pass data
through the simulated network. PDNS was chosen because it
is based on the widely used ns-2 simulator, which many in the
field are already familiar with. Creating simulations usingour
virtualisation technique is in most cases easier than before, as
the researcher simply needs to create a network topology, add
any extra network traffic, and create instances of applications
to attach to nodes. Specifically, they do not need to implement
protocols in the simulator, which can be cumbersome due to
the different socket programming model used.

A. Connection handler

The simulator acts as the central daemon to which applica-
tions connect. This allows for flexibility in running applica-
tions by various means, one of which is through methods in
the simulator. If the users wish to use our virtualisation, they
must create and initialise an instance of theWrapperDaemon
class we provide. It is up to the users to specify the TCP port it
should listen on. The code fragment in Figure 3 demonstrates
its use.

When a new connection is received and accepted, the
simulator finds the node which has the IP address requested
by the application. An agent is then created corresponding to
the application, which will handle all the sockets it creates.
There can be more than one such agent for a given node, each
corresponding to a different application. When an application
forks, it will create a new connection to the simulator. Threads
of the same application will share the same connection. This
architecture is shown in Figure 4.

The flexibility introduced by allowing connections from
any external process introduces a complication in knowing
when to begin. Because the simulator does not know about
all applications which should be connected to it, it does not
know when the simulation is ready to run. To work around this,
theWrapperDaemon class has a methodwait-for which
blocks until a given number of applications have successfully
connected. A call to this method then simply needs to be
placed in the simulation script, before the command to begin
the simulation. Note that having this method does not preclude
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Fig. 4. Extra classes added to the PDNS simulator

applications from coming and going during the simulation. It
is simply up to the writer of the simulation script to know
how many applications should be connected at the start of the
simulation.

B. Scheduler

Our modifications to PDNS include a wrapper around
the existingRTI scheduler used for distributed simulations.
Because of the additional thread created to accept connections,
we require the scheduler to be thread-safe. In addition, to
handle IO on existing connections, we must ask the TCL
interpreter to check this on our behalf.

We made the wrapper scheduler thread-safe by requiring all
calls to the underlying scheduler to acquire a single lock. The
only time two threads will both access the scheduler is when a
new connection is being handled, which requires a start event
to be placed in the event queue. Our implementation handles
this safely.

In handling IO, we have used theIOHandler class. This
class is used by the existing network emulation code, but it
normally requires the real-time scheduler to be used. Apart
from keeping the simulation clock in time with the wall clock,
the real-time scheduler also makes periodic checks for IO.
Because we do not wish to restrict our simulations to real-
time, we simply make these IO checks in our own scheduler.
Our simulations can run at faster than real-time because the
virtualisation library fools the application into thinking time
is moving at the rate of the simulation.

C. Additional Methods

In addition to the classes added as mentioned earlier, the
Node class in TCL has been extended. It now contains a
start-wrap-app-at method, which loads an application
using the virtualisation library and connects it to the node. By
calling this method, the user does not need to know about the
library preloading.

IV. EXPERIMENTS AND EXAMPLES

We have implemented the techniques described and made
our implementation available athttp://p2p.cs.mu.oz.
au/software/vpdns.

A. Cluster specifications

The cluster used for simulations is made up of 97 nodes,
each with dual Xeon 2.8 GHz CPUs and between 1 and 2 GB
of RAM.

B. PDNS scripts

After selecting PDNS as the simulator to build upon,
some experiments were run with simple PDNS scripts. We
were able to achieve 391,314 packet hops per second, while
simulating over 415,000 nodes and 400,000 traffic streams.
This simulation was performed with 10 nodes in the cluster,
each using 2 CPUs. 890MB of memory was used across all
10 machines. The simulation run was the 417,200 node script
at [17].

The major bottleneck we faced was memory usage. The
distributed nature of PDNS means this can be largely over-
come by distributing across more cluster nodes. We used the
autopart [18] tool to partition our simulations across a cluster.
This tool takes an ns-2 script, which must adhere to a special
format, and outputs a given number of scripts, each of which
is run on a separate machine. It is also capable of producing
multiple scripts for machines with more than one CPU.

C. Telnet and server

While providing a relatively trivial interface,telnet ac-
tually tests numerous features of the virtualisation library. The
principal problem we faced was the client’s use ofselect
to multiplex input and output from both the socket connection
and the terminal.

A simple daemon is used in our solution which accepts con-
nections before outputting data sequences of varying lengths,
interspersed with calls tosleep. This verifies that changes in
time are controlled by the simulation. When the simulation was
run interactively, the sleep calls were not noticeable, however
the simulator’s time had indeed progressed by the correct
amount.

The daemon also outputs to its own terminal any data
received on its end of the socket. Using this tool we were able
to verify that keystrokes from the client end were received by
the telnet client and sent to the remote daemon.

D. Peer-to-peer

The primary reason for developing the virtualisation tool
is to test peer-to-peer software. The peer-to-peer software we
used is multithreaded and each peer creates many connections
to other peers.

To handle multithreaded applications, the virtualisationli-
brary must be thread-safe, meaning that calls to its functions
from multiple threads at the same time are handled safely.
For the library this requires protecting its data structures and
managing access to its socket connection to the simulator.

Our library protects its data structures and write access
to the simulation connection using standard mutual exclusion
locks. Messages are received from the simulator by a separate
thread created by the library for its own use. This thread simply
reads messages off the socket and places them in a queue.



It then checks whether a thread is waiting for the message,
and wakes it up if so. Other schemes were tried, including
having the first thread which waits for a message read from
the socket. Complications may arise, because if an application
calls select it must also be woken by events on other file
descriptors. Table I has a more detailed explanation of how
this waiting occurs in practice.

Experiments with simple peer-to-peer applications are run.
These show that the virtualisation and the simulator can easily
work together for highly distributed application testing.We
are now in the process of running large scale simulations of a
complex peer-to-peer application that we are developing.

V. CONCLUSION

This paper describes the implementation of a network
simulator using virtualisation to test highly distributedappli-
cations. We have made modifications to a well known network
simulator, PDNS, allowing an external library to connect toit,
directing an application’s network traffic through the simulator.
The virtualisation library allows a wide variety of existing
applications to be run unmodified while using the simulator.
This then removes the need to create a separate protocol
or application scripting for simulation purposes. It has been
engineered to allow it to scale to large numbers of application
processes, including distribution across a cluster.

Such simulations are an important tool for testing and de-
bugging complex highly distributed networking applications.
One such example is peer-to-peer applications, which are often
utilised with thousands of peers across a variety of different
networks and connection types.
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