
Fast Learning of Optimal Connections in a
Peer-to-Peer Network

Aaron Harwood, Egemen Tanin, and Minh Tri Truong
Department of Computer Science and Software Engineering

University of Melbourne, Victoria, 3010, Australia
http://www.cs.mu.oz.au/p2p

Abstract— Peer-to-Peer (P2P) protocol design is widely under-
taken with the assumptions that peers and network connections
are homogeneous resources. In practice this assumption is un-
true. Furthermore, while there are some P2P networks that
provide asymptotic cost optimal topology or routing, very few
existing protocols combine topology optimization and resource
optimization, the resulting performance is resource oblivious.
We propose a class of traffic based learning protocols, called
FLOC protocols, that learn new connections between neighbors
of neighbors. For an average routing table size of d and n

peers, our protocol is seen to quickly converge from an inefficient
network to an asymptotic cost optimal diameter of O(log

d
n), and

simultaneously reduce network delay by approximately 50% in
highly heterogeneous networks. We provide extensive simulation
results to show FLOC’s behavior.

I. INTRODUCTION

The performance of peer-to-peer [3] P2P protocols is an
interesting research topic that requires studying both topology
and optimization of resource usage. Results have lead to var-
ious P2P protocols, with varying performance characteristics,
e.g., Chord [22], Tapestry [24], CAN [17], and Pastry [20].
A widely held assumption is that the peers and network
connections are homogeneous. In practice, peers are not ho-
mogeneous because, for instance, some peers are large multi-
processor servers connected to the Internet via fast Ethernet
and some peers are small desktop PCs connected to the
Internet via slow dialup lines. In this paper we propose a traffic
based learning1 protocol that rapidly converges to asymptotic
cost optimality and simultaneously takes into account the het-
erogeneity of peers. Also, without modification, our protocol
can augment the wide variety of existing P2P protocols, with
surprisingly little effort.

In general, peers follow a given protocol to form an in-
terconnection network (e.g., using TCP/IP connections) and
the network exhibits topological properties that describe its
overall expected performance. P2P networks are dynamic
and actual connections, along with resource capability, will
vary according to when individual peers enter and leave the
network. We consider P2P protocols that converge to a static
network, i.e., if no peers are entering or leaving then, in a finite
time, the P2P network is described by a directed, simple graph,
G = (V,E), where V is the set of peers and E is the set of
connections between peers. Peers may make a persistent TCP
connection to each peer in their connection table (in which

1By learning we mean caching with localized decision making.

case the graph model is undirected) or make a connection
only when messages need to be sent (in which case the graph
model is directed).

Typically, a logical space of locations, L ⊆ Z, is distributed
over the peers such that each peer is responsible for some
subset. A hash function, H : K → L, is a many-to-one
mapping of keys (arbitrary byte strings) to locations. A good
hash function will appear with high probability to be a one-
to-one mapping. A P2P protocol specifies how peers must
interact in order to maintain this space and in order to locate
the peer responsible for any particular key. In our work, we
simply use u, v ∈ V to represent a peer’s Internet address.
Usually, u is hashed into the space, giving H(u), to associate
the peer with some subset of the space. Requests to access a
k ∈ K are routed from the requesting or source peer, say
u, to the destination peer, say v, which is responsible for
maintaining H(k). A path from u to v in G is a (logically)
shortest sequence of connections from u to v and the path
length is the number of such connections or hops. While
the length of the path is minimum it may not be the path
with minimum delay because delay is a function of resource
capacity. The maximum of path lengths between all pairs of
peers, i.e., for all possible requests, is called the diameter of
the network and gives rise to a theoretical asymptotic behavior
for request delay, e.g., O(log n) (Chord, Tapestry, and Pastry)
or O(n1−ε) (CAN) where n is the number of peers and ε is
some small positive constant. It is not hard to have a sub-
logarithmic diameter, O(log n

log log n
), with logarithmic routing

table size, O(log n), which is superior to Chord and others.
A routing table is maintained by each peer and for each

arriving request the table is consulted for the next peer to
which the request should be forwarded. The size of the table
is important for performance because it dictates how much
overhead is required to maintain the diameter and to maintain
the network connections in the presence of transient events,
such as peers leaving and joining the network. Fundamentally,
if the routing table is small then the diameter is large and the
overhead for maintenance is small; and vice versa. For a peer,
u, the size of its routing table, d+(u), is called the outdegree
of u. The size of the set, { v : (v, u) ∈ E }, is the indegree,
d−(u), of u. The degree, d(u) = d+(u) + d−(u), is the total
number of connections that a peer (and programatically the
host upon which the peer is executing) must support at any
one time. For generality, a directed graph is converted to an

undirected graph with the addition of at most |E| directed
edges. Then, for a degree of d and a diameter of k, the
cost, c = dk, is a well-known performance indicator [8]. The
properties are related via Moores Bound [10], in terms of the
maximum number of peers, n(k, d), that can be contained in
a network of diameter k and degree d:

n(k, d) ≤
d(d − 1)k − 2

d − 2
= O(dk).

A network is said to be asymptotically cost optimal (a.c.o.)
if its cost c is a constant factor from the minimum cost. It
follows that with d > 2 and constant k:

c > d logd−1

(

n − 2
d
(n − 1)

)

= Ω(d logd n)

Extensive network theoretic analysis of P2P networks is
provided by Loguinov, Kumar et. al. [12] and independently
by others [13]. They also consider clustering coefficient,
expansion, bi-section width, and path overlap, concluding that
the de Bruijn network [4], [2], [9], [19] has properties that are
superior to the topology of both CAN and Chord protocols.
The de Bruijn graph is used in the D2B content-addressable
network [5] and in Koorde [11]. The de Bruijn network is
a.c.o. and the CAN and Chord networks are not.

There are recently well established approaches to construct-
ing a.c.o. (or near) P2P networks, mostly using protocols that
are based on randomization. The Symphony protocol [14]
starts with all peers in a simple cycle and then builds random
connections with a probability distribution that spreads the
connections over the peers. Using a constant degree d, Sym-
phony routes with an O(1

d
log2 n) average number of hops,

which is sub-optimal but quite efficient. More recently, Manku
et. al. [15] provide rigorous analysis of an elegant algorithm,
called NoN-GREEDY, that uses a 2-hop lookahead (i.e., using
the neighbor of a neighbor) to gain asymptotically optimal
routing in small world networks. Their technique shows how
a sub-optimal lookup algorithm that executes over an optimal
network, e.g., a Randomized-Chord [23] or a skip-graph [1],
can be modified to an optimal one. They do not learn new
connections and so the lookahead is required for each request
routed.

The Randomized-Chord is based on a class of random-
ized algorithms that use lookup-parasitic random sampling
of destinations. All nodes along a request’s path sample the
destination of the request (e.g., using ping) and modify their
routing tables appropriately. In the case of Chord, fingers are
modified to point to peers that are closer to the target in terms
of network delay. This is the only other significant traffic based
approach that we know, that addresses resource heterogeneity.

Heterogeneity is important to consider. The study by Saroiu,
Gummadi et. al. [21] gives detailed measurements of peer
characteristics in the Napster and Gnutella [7], [16] networks.
They built crawlers to automatically sample peer character-
istics in live peer networks. Disappointingly, but not sur-
prisingly, the results show that the behavior of users in a
peer system may be categorized as client-like and server-like.
Approximately 26% of Gnutella users share no data, 7% of

Gnutella users offer more files than all of the other users
combined and on average 60-80% of Napster users share 80-
100% of the files. In general, about 22% of the participating
peers have upstream (from peer) bottleneck bandwidths of
100Kbps or less, which makes them unsuitable to provide
content and data services. The median session (connected)
time is approximately 60 minutes, corresponding to be the
time taken to connect and download a small number of files.
Further studies of P2P networks were reported in [6], [18].

A. Our contribution

We propose a class of P2P protocols, called FLOC (Fast
Learning Of Connections) protocols, that learn new connec-
tions in a P2P network based on the flow of requests. Unlike
the lookup-parasitic random sampling technique, we do not
require all peers along a lookup path to sample the destination
and we do not require an existing P2P protocol. Rather, we
start with an extremely simple ring network and then show
how new connections can be quickly formed, based on local
decisions between neighbors, and converge to a.c.o. network.
Unlike the NoN-GREEDY technique, our protocol forms new
connections and discards unused connections. Thus, our work
is unique and compares favorably to existing protocols. We
can also cope with the heterogeneity in a P2P network.

B. Organization of the paper

In Section II we define the FLOC protocols. In Section III
we provide simulation results. In Section IV we make some
concluding remarks.

Throughout the paper we assume that our hash function H

is perfect (no collisions), in the sense that it does not map
different keys onto the same location. Uniformly at random is
abbreviated as u.a.r. We also use [x]n to mean x mod n.

II. CONNECTION LEARNING PROTOCOL

In this section we first present a basic P2P cycle network and
a greedy routing algorithm. We then describe a homogeneous,
FLOC0, protocol and a heterogeneous FLOC1 protocol.

A. Cycle network

Consider a relatively simple but largely inefficient P2P
network, based on a cycle, C, embedded on L. Let ci refer
to the unique peer u for which H(u) = ci and C =
{c0, c1, . . . , cn−1} be the ordered locations, ci < ci+1 (i <

n − 1), of peers in the cycle at some time instant. Then peer
ci is connected to peers {c[i+1]n , c[i−1]n}. The degree of C is
4 (two outgoing and two incoming connections for each peer).

Note that the protocol for constructing C, as peers join
and leave the network, is particularly simple. It is essentially
identical to the Chord protocol, with the important exception
that only successors and predecessors need be maintained. The
successor of ci is c[i+1]n and the predecessor is c[i−1]n .

The fundamental operation carried out by a P2P network is
to route from any peer, u, to the peer, v, that is responsible
for the element x. Let peer ci be responsible for x if for all
other j 6= i there is no cj that is nearer in L to x than ci.

Tie-breakers are given to ci if i < j. Consider the general
recursive greedy function v = Route(u, x).

Route(u, x) returns v that is closest to x, starting at u.
1) Let Γu = {u1, u2, . . . , ud} ⊂ C be the neighbors of

node u (represented by their locations in L).
2) Let i be such that ui ∈ Γu is nearest to x. (Tie-

breakers based on whether ui < uj or not.)
3) If u is nearer to x than ui then v := u and stop, else

v := Route(ui, x).

In a P2P network, step 3 is carried out by routing the request
to peer ui. The algorithm converges to the peer that is nearest
to x but is shown to be sub-optimal, even in optimal networks
(because it is greedy). In this case, the diameter of the cycle
is
⌊

n
2

⌋

and so the cost is O(n), which is sub-optimal. We will
use the greedy algorithm and connections will be formed by
augmenting it.

B. Learning connections in the cycle

We consider how to assign more connections in the C

network so that the number of steps required by Route(u, x)
to find v is small, while also ensuring that each peer is not
overloaded with a large routing table. Existing connections in
C are called fundamental and they are not changed. Let C∗

be the network with added connections. Added connections
are transient, they may be deleted at any time (e.g., if a peer
leaves the network). In the absence of transient connections,
the performance of C∗ degrades to the performance of C;
before any learning takes place C∗ = C.

Generally, our class of learning protocols, which we refer
to as FLOC protocols, are traffic based: we form new con-
nections between peers through which requests are seen to be
regularly routed. All peers in the network apply FLOC locally
and obliviously to all other peers, which conforms to the P2P
paradigm. The homogeneous-network protocol, FLOC0, takes
two parameters, τin and τout, that represent time-in and time-
out parameters respectively; FLOC0 is followed by every
peer.

FLOC0(τin, τout) protocol.
1) Peer u enters the network. Fundamental connections

to successor and predecessor in the cycle are made
and there are no existing transient connections from
or to u.

2) Let a request that arrives at peer u, from neighboring
peer v and going to v′ 6= u, be called a (v, v′) request.
Note that v and v′ are not necessarily the source and
destination of the request. If the number of (v, v′)
requests observed by u in a time interval τin is greater
than 1 then instruct v to form a transient edge from
v to v′.

3) If peer u is instructed to form a transient edge to u′

then it does so: d+(u) and d−(u′) both increase by
one. Each transient edge is pruned if it times out in
τout time, i.e., if there is a period of time τout for
which no request traverses the transient edge.

Fig. 1 illustrates the FLOC0 protocol. Note that the existing
connections may themselves be transient connections that were
formed earlier. The protocol allows new connections to be
formed as needed and prunes transient connections that are
not used; clearly, there are many factors that determine when
and where this occurs.

Connection is formed.

Existing connections.

request

PSfrag replacements

v

v′ u

(v, v′)

Fig. 1. Forming a connection from v to v
′.

The rate of (v, v′)-requests determines whether a new
connection is formed or not. Similarly the rate of requests
across a connection determines if the connection is pruned or
not. Assume that requests are generated at an average rate of
λR at each peer and that the destination of each request is
distributed u.a.r. over the peers. Then the total request rate
is nλR. On average each request traverses kavg connections
before reaching its destination. If each connection is equally
likely to be used then each connection receives requests at a
rate

λconnection =
nλRkavg

2n + Π
,

where Π is the number of transient edges and by definition
|E| = 2n fundamental edges. The rate of requests that flow
from v to u and then from u to v′ is then

λ(v,v′) =
λconnection − λR

d+(u)
.

For a cycle with Π = 0, d+(u) = 2 and kavg > 4, then new
connections are formed (i.e., Π increases) when

τin ≥
8

λR(kavg − 2)
= Ω

(1

λRkavg

)

Since λconnection decreases as Π increases and as kavg de-
creases, over time Π reaches a steady state. We show this
steady state by simulation in Section III. The τout parameter is
required to prune connections that were needed at early stages
of learning. Without pruning, useless edges would remain and
cause the value of d+ to be unnecessarily large.

The heterogeneous-network protocol, FLOC1, requires
an additional factor which we call fudge, f . The
FLOC1(τin, τout, f) protocol is an extension to the FLOC0

protocol. The difference is that when a new connection is to
be formed, e.g., from v to peer v′, then instead of blindly
forming the connection to peer v′, a connection is formed
either to v′ or to a neighbor of v′ (only considering cycle
neighbors) that is no more than f hops from v′. The actual

peer to connect to is based on the peer with minimum network
delay. If a connection is already established from v to a chosen
neighboring peer of v′ then the new connection is established
to v′ regardless of its delay (so that the learning is progressive).
Neighbors of v′ which have equal delay are chosen randomly.
The FLOC0 is a special case of FLOC1 with f = 0. In a
heterogeneous network, FLOC1 attempts to form connections
only to peers that offer a small network delay.

III. SIMULATION AND RESULTS

In this section we describe our simulation parameters and
then provide a number of simulation results that show the
behavior of our FLOC protocols in both the homogeneous (or
topological) case and the heterogeneous case. We also show
the effect of dynamicity on our protocol.

A. Parameters

A population, P , of peers is defined at time 0. At any time
t = 0, 1, 2, . . . , the subset Pt ⊂ P contains those peers that
are in the P2P network. All other peers are considered to
be out. The minimum time step is ∆t and all time intervals
use integral multiples of this time step. An interval of time,
[0,∆t, 2∆t, . . . , (T − 1)∆t], is used to define the random
arrival and departure processes. The number of arrivals in an
interval is λNT∆t where λN is the mean arrival rate. The
number of departures in an interval is µNT∆t where µN is the
mean departure rate. The arrival process is defined by picking
arrival points u.a.r. in the interval and bucketing them in T

different buckets. Peers arrive at the end of a time step, and any
number of peers may arrive concurrently. A peer arriving at
time t changes from being out to being in Pt; the arriving peer
carries with it no information. Similarly, the departure process
is defined. Departures also take place at the end of each time
step. A peer that departs at time t is chosen u.a.r. from the set
Pt. Departures are carried out before arrivals so that arriving
peers do not instantly depart. If the size of Pt decreases to 0
then excess departures are ignored. If λN = µN then the size
of Pt roughly fluctuates around a mean constant (ignoring the
loss of departures if 0 size is reached). If λN > µN then Pt

grows steadily and if λN < µN then Pt shrinks steadily.
Without loss in generality, arrivals and departures are

considered to take place instantaneously. This includes the
connections and disconnections of fundamental connections.
Generality is maintained if the arrival or departure is seen
as offset in time, i.e., an arriving peer actually started ar-
riving some time before its actual arrival time, whereby the
appropriate connections are made, and similarly for departing
peers. An arriving peer picks a location u.a.r. from the set
{0, 1, . . . , L−1} and continues to do so until it finds a location
that is not already occupied by an existing peer.

Requests arrive randomly at each node and the number of
requests that arrive at each node in an interval is λRT∆t

where λR is the mean request arrival rate per node such
that requests arrive with a total mean rate of |Pt|λR. The
source and destination of a request are chosen u.a.r. When
a request arrives at a peer, the next peer is instantly computed

and the request is sent to that peer. A request traversing a
connection from u to v takes max{βu, βv}∆t time to traverse
the connection where βu is the “bottleneck” factor at peer
u caused by its network connection. A large factor implies a
small bit-rate connection. We consider two possible bottleneck
factors, {b1, b2}, small delay and large delay bottlenecks,
respectively. With probability p, u has βu = b2 and b1

otherwise.
In the simulations that follow, unless otherwise stated, we

have ∆t = 0.1, L = 109, |Pt| = 1000, λN = µN = 0,
λR = 0.001, βu = 1 for all peers, p = 0, b1 = 1, and
we simulate for a total time of 12T∆t where T = 6000.
This corresponds to a static homogeneous network of 1000
peers, where each peer makes about 3.6 requests per hour,
each request takes 0.1 seconds to traverse a connection and the
simulated time is 2 hours. Unless otherwise stated, the network
starts with no transient connections. We change a number of
these parameters to show how our FLOC protocol performs.
Parameters for the FLOC protocol are explicitly stated. Each
measurement point is an average of 8 independent trials.

B. Transient connection formation

Fig. 2 shows how the formation of transient connections
reaches a steady state. In this case, the parameters are as just
given in the previous section. We set τin 16.6, 33.3, and 66.7
minutes respectively. In all cases τout = tin. The mean d+

begins at 2, reaches a breakpoint and then recedes to a steady
state. This is because no new connections are being formed
and useless connections are being pruned. In this case, the
network of 1000 peers reaches a steady average d+ of 5 in
about 40 minutes.

20 40 60 80 100 120

5

0

13

12

11

10

9

8

7

6

4

PSfrag replacements

m
ea

n
d
+

pe
r

pe
er

time in minutes

τin = 16.7min
τin = 33.3min
τin = 66.7min

Fig. 2. The steady state out degree for various τin and 1000 peers.

Fig. 3 shows the same simulation, when |Pt| = 100, for
comparison. Note that the learning takes place at the same
rate independently of the size of the network. The difference
is in the steady state degree reached which is larger for larger
networks.

C. Scalability

Fig. 4 shows the average number of hops per request and
the average out degree (on the same plot) as the network scales

40 60 80 100 120

3

200

9

8

7

6

5

4

2

PSfrag replacements

m
ea

n
d
+

pe
r

pe
er

time in minutes

τin = 16.7min
τin = 33.3min
τin = 66.7min

Fig. 3. The steady state out degree for various τin and 100 peers.

from 100 to almost 10000 peers. Each run is a static network of
a given size (peers do not dynamically join). We held τin =
τout = 16.7min and considered roughly the last half of all
completed requests (to avoid the learning period).

11

100 1000 10000

5

10

9

8

7

6

4

3

2

PSfrag replacements

m
ea

n
ho

p
co

un
t

an
d

m
ea

n
d
+

hop count
deviation

mean d+

number of peers

Fig. 4. Mean hop count and average out degree on the same plot versus
number of peers.

D. Optimality of transient connections

Fig. 5 shows the average number of hops per request
and the average out degree (on the same plot) for a static
network of 1000 peers and increasing values of τin. The
asymptotic minimum dashed line shows logd+ 1000 and the
mean hop count is converging with the asymptotic minimum.
Remarkably, for τin = 6400 seconds, the mean d+ rises to
slightly over 10 and the mean hop count drops to about 2.5.

E. Heterogeneous network

For a heterogeneous network, we used p = 0.5, b1 = 1,
and b2 = 10. This means that roughly half of the peers have
a network delay (e.g., their network connection) that is 10
times slower than the others. The delay parameters are in units
of ∆t. Fig. 6 shows the average and standard deviation of
delays incurred by requests as a function of network size. As
expected, the average delay is ∆t.(3b2+b1)

4 times the average
hops (as given in Fig. 4). The deviation in delay is large, but

This line converges to the
asymptotic minimum.

100

100001000100

10

1

PSfrag replacements

mean d+

mean hop count
asymptotic minimum

m
ea

n
ho

p
co

un
t

an
d

m
ea

n
d
+

τin (seconds)

Fig. 5. Mean hop count and average out degree on the same plot versus τin.

relatively constant and the growth in delay is optimal since it
is proportional to the average number of hops.

9

100 1000 10000

3

8

7

6

5

4

2

1

PSfrag replacements

m
ea

n
de

la
y

in
se

co
nd

s

delay
deviation

number of peers

Fig. 6. Mean delay versus number of peers.

However the delay is not minimum because so far we have
considered when the fudge factor f = 0. Fig. 7 shows how
the delay can be reduced by as much as 50% with an increase
in f . Furthermore, increasing f beyond 2 does not yield
significant additional reduction. From other results, not shown
in this paper for brevity, the decrease in average delay is not
accompanied by any noticeable increase in average hop length,
though a larger f is required when p approaches to one. Thus
the FLOC protocol does simultaneously take into account the
network resources while forming an a.c.o. network.

F. Effects of dynamicity

Fig. 8 shows the performance of learning in a dynamic
environment. We set λN = µN = λ such that the value
of λ provided a network of constant size with peer average
connection time being one hour. From Fig. 8, while dynamicity
dampens the initial overshoot of new connections formed,
when the breakpoint time is near the average connection
time, the dynamicity does not significantly impact the steady
state degree. Our auxiliary observations show that the mean
hop count is also not significantly affected. Actually, it is
widely known that dynamicity can induce randomness and that
randomness can have a positive affect on optimality.

100 1000 10000

2.6

4.2

4

3.8

3.6

3.4

3.2

3

2.8

2.4

2.2

PSfrag replacements

m
ea

n
de

la
y

in
se

co
nd

s

f = 1
f = 2
f = 3
f = 4
f = 5

number of peers

Fig. 7. Mean delay versus number of peers.

40 60 80 100 120

4.5

200

7.5

7

6.5

6

5.5

5

4

PSfrag replacements

m
ea

n
d
+

pe
r

pe
er

time in minutes

τin = 16.7min
τin = 33.3min
τin = 66.7min

Fig. 8. The steady state out degree for various τin and 1000 peers, when
peers stay for an average 60 minutes at a time.

IV. CONCLUSION

We provided the FLOC protocols for fast learning of opti-
mal connections in a P2P network. The homogeneous-network
FLOC0 protocol learns neighbors of neighbors, forming new
connections, in any P2P network. Unused connections (apart
from a fundamental cycle) are pruned. This learning process is
shown, by simulation, to rapidly converge to an a.c.o. network.
The heterogeneous-network FLOC1 protocol reduces network
delay by learning new connections in the vicinity of the
neighbor’s neighbor, i.e., to a peer that provides a low delay.
This is shown to reduce network delay by 50% when roughly
half the network consists of slow peers and the remaining are
fast peers.

Compared to other recent proposals in the literature, our
protocol is unique because it combines optimal topological
behavior, simultaneously reduces network delay, and is based
on a simple cycle which is practical to implement. The
dynamic learning process is significantly challenging to study
and we are currently working on further analyzing our FLOC

protocol behavior.

REFERENCES

[1] J. Aspnes and G. Shah. Skip graphs. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 384–393.
Society for Industrial and Applied Mathematics, 2003.

[2] J.-C. Bermond and C. Peyrat. De Bruijn and Kautz networks: a
competitor for the hypercube. In J. P. Verjus and F. Andr’e, editors,
Hypercube and Distributed Computers, pages 279–294. North-Holland,
1989.

[3] D. Clark. Face-to-face with peer-to-peer networking. IEEE Computer,
34:18–21, January 2001.

[4] N. G. de Bruijn. A combinatorial problem. Koninklijke Netherlands:
Academie Van Wetenschappen, 49(20):758–764, 1946.

[5] P. Fraigniaud and P. Gauron. Brief announcement: an overview of the
content-addressable network D2B. In Proceedings of the Twenty-Second
Annual Symposium on Principles of Distributed Computing, pages 151–
151. ACM Press, 2003.

[6] N. S. Good and A. Krekelberg. Usability and privacy: a study of Kazaa
P2P file-sharing. In Proceedings of the Conference on Human Factors
in Computing Systems, pages 137–144. ACM Press, 2003.

[7] P. K. Gummadi, S. Saroiu, and S. D. Gribble. A measurement study of
Napster and Gnutella as examples of peer-to-peer file sharing systems.
SIGCOMM Comput. Commun. Rev., 32(1):82–82, 2002.

[8] A. Harwood. High Performance Interconnection Networks. PhD thesis,
Computer Science, Griffith University, 2002.

[9] M. Heydemann, J. Opatrny, and D. Sotteau. Broadcasting and spanning
trees in de Bruijn and Kautz networks. DAMATH: Discrete Applied
Mathematics and Combinatorial Operations Research and Computer
Science, 38:297–317, 1992.

[10] A. J. Hoffman and R. Singleton. On Moore graphs with diameters 2
and 3. IBM J. Res. Develop., 4:497–504, 1960.

[11] M. Kaashoek and D. Karger. Koorde: A simple degree-optimal dis-
tributed hash table. In Proceedings of the 2nd IPTPS, 2003.

[12] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis
of structured peer-to-peer systems: routing distances and fault resilience.
In Proceedings of the 2003 conference on applications, technologies,
architectures, and protocols for computer communications, pages 395–
406. ACM Press, 2003.

[13] G. S. Manku. Routing networks for distributed hash tables. In
Proceedings of the Twenty-Second Annual Symposium on Principles of
Distributed Computing, pages 133–142. ACM Press, 2003.

[14] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed
hashing in a small world. In Proceedings 4

th USENIX Symposium
on Internet Technologies and Systems, pages 127–140, 2003.

[15] G. S. Manku, M. Naor, and U. Wieder. Know thy neighbor’s neighbor:
the power of lookahead in randomized P2P networks. Accepted for
publication in Proceedings of the 36

th ACM Symposium on Theory of
Computing, 2004.

[16] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne. Finding good peers
in peer-to-peer networks. Technical Report HPL-2001-271, Hewlett-
Packard Labs, 2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of the ACM
SIGCOMM, pages 161–172, San Diego, CA, August 2001. ACM Press.

[18] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the Gnutella network.
IEEE Internet Computing, pages 50–57, Jan. 2002.

[19] J. Rol, P. Tvrdik, J. Trdlicka, and I. Vrto. Bisecting de Bruijn and Kautz
graphs. DAMATH: Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, 85:87–97, 1998.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of
the ACM Middleware, pages 329–350, Heidelberg, Germany, November
2001. ACM Press.

[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, CA, January
2002.

[22] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Transactions on Networks,
11(1):17–32, Feb. 2003.

[23] H. Zhang, A. Goel, and R. Govindan. Incrementally improving lookup
latency in distributed hash table systems. In Proceedings of the
2003 ACM SIGMETRICS international conference on measurement and
modeling of computer systems, pages 114–125. ACM Press, 2003.

[24] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing. Technical
Report UCB-CSD-01-1141, Department of Computer Science, Univer-
sity of California, Berkeley, April 2001.

