
A Location Based Aggregation Algorithm for Selective
Aggregate Queries in Sensor Networks

Muhammad Umer Lars Kulik Egemen Tanin

National ICT Australia
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
{mumer,lars,egemen}@csse.unimelb.edu.au

ABSTRACT
In-network data aggregation algorithms are based on the
premise that the energy requirements for data collection in
sensor networks (SNs) can be significantly reduced by ag-
gregating and collecting individual sensor readings over an
efficient data collection path. In this work, we focus on se-
lective aggregate queries, i.e., queries that aggregate data
only from a subset of all network nodes. The task of optimal
data collection in such queries is an instance of the NP-hard
minimal Steiner tree problem. We present an aggregation al-
gorithm, called Pocket Driven Trajectories (PDT) that opti-
mizes the data collection path by approximating the global
Steiner tree with a minimal overhead using purely local spa-
tial knowledge. We show that selective aggregate queries can
lead to various node participation scenarios characterized
by spatial factors such as the distribution of participating
nodes over the network, i.e., clustered vs. dispersed, location
of clusters, inter-cluster dispersion, location of the sink with
respect to the participating nodes, and location and size
of communication holes. Our experiments compare the per-
formance of well-known in-network aggregation algorithms
against PDT in partial node participation scenarios. A glob-
ally approximated minimal Steiner tree serves as a bench-
mark for all of the aggregation algorithms. We show that
PDT (a) leads to considerable gains in selective aggregate
queries and (b) provides a close approximation of the mini-
mal Steiner tree.

1. INTRODUCTION
Data collection algorithms for sensor networks (SNs) exploit
the fact that a sensor node consumes less energy for informa-
tion processing than for communication. For aggregation op-
erations, decomposing the aggregate operator and partially
aggregating information at the node level such as computing
the sum or the average of sensor readings reduces the energy

consumption by reducing the amount of communication: in-
stead of transmitting the packets of each individual node
separately, a node first aggregates the incoming packets of
the nodes in communication range and then communicates
the aggregated information to the next node in the collection
path.

In classical database management systems, query predicates
limit the number of tuples that form the output relation.
Cougar and TinyDB sensor database models view the SN
as an ever growing relations of tuples that are distributed
across the sensor nodes [12, 22]. The query predicates in
these models thus limit the set of sensor nodes that con-
tribute to the answer of a query. We refer to the sensor
nodes that relay their readings to a query as the partic-
ipating nodes. An example selective query is “select the
humidity readings from all sensors where the temperature
is below 5◦ for a duration of 48 hours at every hour”.
All nodes fulfilling the where clause form the participating
node set for this query.

Major in-network aggregation schemes do not take an ex-
plicit position on the issue of query selectivity and it is im-
plicitly assumed that for each query all nodes respond to
an aggregation operation. It can be shown that the classical
tree-based and multipath-based techniques [10, 14] generate
close to an optimal number of messages for aggregation op-
erations for a total participation scenario in a lossless SN.
In this paper, we show that major in-network aggregation
schemes do not remain optimal when selectivity is intro-
duced into the aggregate queries.

For optimizing the selective aggregate queries, we perceive
two main directions in SN query processing: (a) preventing
that a query is sent to nodes that do not fall into the scope of
that query and, therefore, do need not to be aware of it, and
(b) minimizing the number of non-participating nodes in the
collection path. An example for the first category, (a), is the
concept of semantic routing trees [11] where optimization
between queries is the main focus. Our work falls under the
second category, (b).

Since communication is the most expensive operation in sen-
sor networks [17], the energy expenditure of an in-network
aggregation algorithm can be approximated as a function of

the total number of data transmissions in the network. If
it is possible for a node to aggregate all incoming messages
in one outgoing message, e.g., as in calculation of an Aver-
age, the energy expenditure can be further approximated as
a function of total nodes involved in data aggregation and
forwarding process.

We base our work on the premise that a participating node
has to transmit at least one message per sampling period of
an aggregate query and hence it is best to use this node and
clusters of such nodes as intermediate data aggregation and
forwarding points. Thus, we optimize the energy efficiency of
in-network aggregation by minimizing the number of nodes
that relay a message.

The main contribution of this work is a strategy that mini-
mizes the number of nodes used in data aggregation by dis-
covering constrained regions to grow sub-aggregation-trees
and combining these trees in an efficient manner to relay
the final result to the sink. This strategy is in contrast to
earlier tree-based approaches, such as TAG, where the ag-
gregation tree is created either in a random manner or using
local greedy parent selection policies [12].

Our algorithm, called Pocket Driven Trajectories (PDT) is
based on the insight that spatial correlation in sensor values
coupled with query selectivity give rise to a set of partici-
pating nodes formed by one or more geographically clustered
sets. We refer to these geographical clusters as pockets. The
PDT algorithm first discovers the set of pockets for a given
query and then aligns the aggregation tree to the spatially
optimal path connecting these pockets. This path maximizes
the use of participating nodes in the aggregation tree and
conversely minimizes the number of non-participating nodes.
The PDT algorithm is best suited to the selective aggregate
queries that regularly collect data from a relatively consis-
tent set of nodes over time. The initial set-up cost in such
queries can be amortized over the query lifetime.

The task to minimize the number of non-participating nodes
in the aggregation can be modelled as a Steiner tree problem,
which is known to be NP hard [15]. The number of nodes
used in the globally approximated Steiner tree for a given
set of participating nodes can be seen as a benchmark for in-
network aggregation schemes. There are already a number of
approximation algorithms to compute an approximation of
the Steiner tree efficiently [8, 15, 20]. These approximation
algorithms, however, require global knowledge of the com-
munication graph. This knowledge is often not available in a
SN. Thus, techniques which do not require the use of global
knowledge are needed. The PDT algorithm can be seen as
an approximation to the minimal Steiner tree that is solely
based on local information. Our experiments show that for
selective aggregate queries PDT gives better performance
results than major in-network aggregation schemes and is
close to a globally approximated minimal Steiner tree.

The spatial impact of query selectivity leads to a number of
possible node participation scenarios. Factors such as inter
and intra-pocket dispersion, location of the sink, and pres-
ence of communication holes effect the performance of the

aggregation algorithm. An important contribution of this
paper is the performance testing of PDT and other aggrega-
tion algorithms using extensive simulations in a number of
node participation scenarios. We formulate multiple parame-
ters to capture the spatial properties of a node participation
scenario and use these as a basis for our analysis.

The remainder of the paper is organized as follows. Section 2
discusses key data aggregation approaches. In Section 3, we
present the PDT algorithm. Section 4 presents a detailed
experimental evaluation of our approach. Section 5 summa-
rizes our findings and discusses future work.

2. RELATED WORK
2.1 Tree-based aggregation
TinyDB [12] performs in-network query processing using
a generic aggregation service called TAG (Tiny AGgrega-
tion) [10]. TAG is one of the first tree-based in-network ag-
gregation schemes. To gather data within the SN, the sink is
appointed to be the root of a tree and broadcasts its identi-
fier and its level. All nodes that receive this message without
an assigned level, determine their own level as the level in
the received message incremented by one. The identifier in
the message determines the parent for the nodes receiving
the message. In a lossless network in which all nodes are se-
lected by a query, the resulting collection tree is close to an
optimal solution. Aggregation in TAG is implemented by a
merging function, an initializer, and an evaluator, and the
aggregation operator is applied at every internal node.

In order to further optimize the data aggregation process,
TinyDB introduces the concept of a semantic routing tree
(SRT) [11]. For a given query, only a few nodes typically have
to respond. An SRT is an index over a fixed attribute A, for
example, the temperature sensed by the network, where each
parent maintains the range of all values of its children for
the attribute A. When a query is received by a parent, it
forwards the query only when at least one child satisfies the
predicate. An SRT optimizes the query forwarding phase
of TAG and greatly reduces the number of broadcasts re-
quired to reach the nodes selected by the query. However,
the maintenance cost of SRT exceeds its benefit if it has to
be maintained for varying attribute values [12]. As pointed
out earlier, SRT does not focus on the data collection opti-
mization but on the broadcast of the query.

Tree-based aggregation schemes can be extended to adapt to
changing network conditions [3]: aggregation operators are
pushed down in an aggregation tree and adapt to chang-
ing conditions, such as a sub-tree that generates more read-
ings than a sibling. This approach incrementally improves
on the existing scheme. In our work, we build an aggrega-
tion scheme, after retrieving the initial readings from the
network, that specifically suits the conditions and readings
of the network for a participation scenario.

2.2 Multi-path aggregation
The main disadvantage of tree-based aggregation has been
pointed out by recent papers on multi-path aggregation algo-
rithms [2, 14]: trees are susceptible to link and node failures

in a SN. If a link or node fails that is close to the sink, the
aggregated information of an entire sub-tree might be lost.
Multi-path aggregation exploits the benefits of the wireless
broadcast advantage that all nodes in communication range
can hear a message and propagate the aggregates toward
the sink using multiple routes. Multi-path aggregation be-
comes, as a consequence, more robust for node failures or
communication losses. In return, a multi-path aggregation
algorithm has to deal with redundancy and deviations in
data aggregation [5].

Currently, for each aggregation operator, finding a
duplicate-insensitive algorithm that guarantees a desired
accuracy is the key challenge for multi-path routing al-
gorithms. The obvious approach to address this challenge
would be to include control information with each ag-
gregated message. The control information contains meta-
information such as the node identifier of the node that
participated in the creation of this aggregate. This meta-
information can be used by each forwarding node to sup-
press duplication. Such an approach would have the same
accuracy as an aggregation algorithm using a tree. The lim-
ited storage and processing capabilities of sensor nodes, how-
ever, render such a scheme impractical for large SNs. Thus,
all multi-path schemes integrate much cheaper probabilis-
tic Order and Duplicate Insensitive (ODI) methods of the
sketch theory [5, 14]. Thus, the major focus of current works
in multi-path aggregation is on development of better ODI
algorithms to reduce the approximation error.

In [14] multi-path aggregation algorithms are seen as en-
ergy efficient as tree-based ones. This is because of the fact
that each node has to transmit a message once as in any
tree-based aggregation algorithm. We show that for selec-
tive queries, however, the cost of multi-path aggregation
can be significantly higher than other schemes. For selective
queries this observation demands a localized use of multi-
path aggregation instead of applying the method to the en-
tire network. For example, the approach presented in [13],
as a hybrid aggregation scheme for combining the benefits
of the two major aggregation schemes, can form a more
efficient option than pure multi-path aggregation schemes.
In this approach, a multi-path-based aggregation scheme is
preferred to a simple tree-based aggregation scheme when
the in-network aggregation operator is close to the sink; for
deeper levels of aggregation tree, the operators work as if
they are on a TAG-like aggregation tree because the loss
of a sensor at deeper levels only marginally effects the final
result.

2.3 Clustered aggregation
Clustered in-network aggregation exploits the spatial cor-
relation of sensor readings to preserve energy [16, 21, 23].
Spatial correlation in sensed data refers to the fact that sen-
sor readings in close proximity are typically similar. Spatial
correlation is a frequent phenomenon, in particular for at-
tributes such as temperature or humidity [7]. If a selective
query has to retrieve an aggregate such as the average tem-
perature in a certain area, then nearby nodes typically have
similar readings and are geographically clustered. Hence,
only one node needs to respond to an aggregate query from

a cluster [21, 23] as in the Clustered AGgregation (CAG)
and the Geographic Adaptive Fidelity (GAF) approaches.
However, clustered in-network aggregation has a disadvan-
tage that, e.g., in CAG, the reported results can deviate from
the real sensor readings. In static clustering [16] the network
is statically partitioned into grid cells. For each grid cell one
node is appointed as a cluster head that acts as a gateway
but every node that has to respond to a query still reports
its readings. In each cell, data is routed via a local tree,
aggregated at the local gateway and then communicated to
the sink.

2.4 Other aggregation approaches
Recently, data collection schemes are characterized as spa-
tial or temporal suppression-based techniques in [19]. Spa-
tial suppression refers to the approaches such as clustered
aggregation and model-based suppression [4] that reduce
redundant transmissions by exploiting the spatial correla-
tion of sensor nodes. Temporal suppression refers to policies
that, regardless of query polling frequency, allow the retrans-
mission from a node only if its value is changed from last
transmission. In [19] a hybrid spatio-temporal suppression
scheme is introduced that prevents transmission from nodes
that qualify for either form of suppression. Suppression is an
orthogonal data flow optimization method to our direction
and can be used in tandem with our work.

In [9] the optimal data aggregation in SNs is identified as
a Steiner tree problem. Authors propose a data collection
scheme based on a global Steiner tree approximation [20].
The main disadvantage of their approach is the requirement
that each sensor node must have global knowledge in terms
of network connectivity and minimum-hop routes. In a SN
comprising of devices with only basic capabilities, the main-
tenance of a network scale graph at each node is not prac-
tical. Moreover, the existence of such a graph at each node
regardless of the query frequency and selectivity may re-
sult in unnecessary storage and communication overheads.
In our work, we use entirely local information that is easily
available to any node in the network. Moreover the PDT is
query specific so no permanent information has to be kept
or maintained.

3. A LOCATION BASED AGGREGATION
ALGORITHM

A data aggregation strategy may not be able to confine the
aggregation path only to the participating nodes but has
to include some non-participating nodes due to the limited
communication range of sensor nodes. In this context, the
problem to collect aggregates back to a sink by involving
minimum number of non-participating nodes can be seen as
an application of the minimum Steiner tree problem: given
a graph G = (V, E) and a set of terminal nodes T ⊂ V ,
we seek a minimum cost spanning tree that includes all ter-
minal nodes [18]. In our case, the terminal nodes are the
participating nodes. The minimum Steiner tree problem is
known to be NP-hard and has been widely discussed in the
literature [15].

In order to compare aggregation schemes with the optimal

1 2

3
4

5

(a) A selective participation
scenario with five pock-
ets. Black circle repre-
sents the sink.

5

3

2

1

4

(b) A complete graph as
an abstract representa-
tion of the scenario

5

3

2

1

4

(c) MST ′

1 2

3
4

5

(d) MST ′ as an aggregation
path

Figure 1: The computation of the PDT for a selective participation scenario

aggregation tree, the minimum Steiner tree, we outline a
popular global Steiner tree approximation algorithm devel-
oped by Kou, Markowsky, and Berman [8] (henceforth re-
ferred to as KMB). The KMB algorithm allows us to com-
pute a Steiner tree that has been shown to achieve a mean
efficiency that is not worse than 5% compared to the opti-
mal Steiner tree [6, 15]. For a graph G and a set of terminal
nodes T , the KMB algorithm first computes a complete dis-
tance graph G′ = (V ′, E′) for G such that V ′ = T and the
weight of each edge e′ in E′ is the cost of the minimum
cost path between the nodes of e′ in G. Then, the algorithm
computes a minimum spanning tree MST ′ of G′, translates
MST ′ to G by substituting every edge of MST ′ with the
corresponding path in G, and finally removes any possible
cycles resulting from the translation.

The KMB algorithm is not directly applicable to SNs be-
cause, the algorithm requires global knowledge of the node
connectivity for any node in the graph. Therefore, we de-
velop a localized aggregation scheme, called PDT (pocket
driven trajectories), that approximates the minimal Steiner
tree for a selective query. The experiments in Section 4 show
that the resulting aggregation tree is comparable to KMB’s
global approximation.

3.1 Algorithm overview
We assume that a SN with n nodes is represented by a con-
nected unit disk graph G = (V, E), where V is the set of
sensor nodes and E the set of communication links. Each
query Q issued by a sink S selects a subset T of V . The
PDT algorithm works as follows:

1. the sink broadcasts the query Q and establishes a tree
as in TAG;

2. during the first epoch the sink discovers a set of pock-
ets P = {p1 . . . pk} that partitions the set T ;

3. the sink computes a complete graph G′ = (V ′, E′),
where V ′ = P∪{S} and each edge weight is the Euclid-
ean distance in the SN;

4. the sink computes the minimum spanning tree MST ′

of G′;

5. the sink establishes an aggregation tree aligned to
MST ′;

6. the sink monitors and realigns the trajectory if the
pockets change over time.

One of the key steps in PDT algorithm is the localized dis-
covery of pockets by the sink. A pocket is a cluster of nodes
selected by a query that are proximal, i.e., within a certain
distance. Due to spatial correlation, pockets are common
while sensing physical phenomena. We refer to the time be-
tween the two sampling operations of a query as an epoch. In
the following, we describe a novel pocket discovery method,
location aggregation, that computes pockets with minimal
overhead.

Figure 1 illustrates possible pockets that are selected by a
query issued at a sink. The sink broadcasts the query and all
sensor nodes build a random query tree. In the first epoch,
participating leaf nodes start the aggregation phase by send-
ing the requested sensor readings to their parent nodes and
by piggybacking their location information as Euclidean co-
ordinates. Parent nodes recursively apply the query and lo-
cation aggregation operators and forward the partial aggre-
gates to their parent nodes. The query aggregation operation
proceeds as in classical schemes. The key step is the loca-
tion aggregation, performed in parallel to data aggregation.
The location aggregation operator merges locations to an
enclosing rectangle if the children nodes are proximal leaf
nodes, and forwards the non-proximal nodes as singletons.
If a participating node receives a rectangle, it merges the
rectangle with its own position into a larger rectangle, if
its position is proximal, and otherwise simply forwards the
existing rectangle and singleton locations with its own lo-
cation. Since the location information is piggybacked with
the desired data, we expect that the location aggregation
incurs a small overhead in terms of communication costs.
Moreover, the successive merging of close pockets keep the
volume of information small.

At the end of first epoch, the sink receives the queried ag-
gregate and after applying location aggregation operation
discovers the pockets (p1 . . . pk) selected by the query. The
sink then computes a complete graph G′ as explained in
the overview of the PDT algorithm (see Figure 1(a), 1(b)).
The algorithm then creates a minimum spanning tree MST ′

for G′ at the sink. MST ′ is a pocket driven trajectory that
optimizes aggregation for the specific pocket layout (Fig-

ure 1(c)). The PDT information can be encoded as a series
of locations, each corresponding to either a sink location or
the center point of one of the pocket rectangles. During the
next epoch, the sink establishes the PDT by broadcasting
the PDT information to all its direct children. All partici-
pating nodes that receive the PDT information packet join
the trajectory by reassigning their parents to that node from
which they receive the PDT information. Non-participating
nodes decide to join the trajectory depending upon their
distance to the trajectory and only nodes that join the tra-
jectory forward the information packet. The successive for-
warding and parent switching leads to a new aggregation
tree aligned with the PDT (Figure 1(d)). This new tree is
afterwards used for data forwarding and aggregation. The
initial TAG tree is still maintained because in future epochs
previously non-participating nodes may participate. Future
participating nodes might have never heard the PDT in-
formation and thus have to use the original tree for data
aggregation.

3.2 Definitions
In this section we formalize the concepts of the PDT algo-
rithm.

3.2.1 Location information
The location operator in the PDT algorithm recursively ag-
gregates node locations. Locations that are proximal are ag-
gregated into rectangles and non-proximal node locations
are simply passed as atomic locations. More precisely, an
atomic location l is a point location that cannot be ag-
gregated by a location aggregation operator, whereas an
aggregated location a is a result of such an operation.
We define the location information at a node v as a set
λv = {l1, . . . , lk, a1, . . . , am}, i.e., a set of atomic and ag-
gregated locations. The aggregated location a for a single
atomic value l is {l}, i.e, if v is a leaf node, then λv = {lv}.
Atomic locations are represented as Euclidean coordinates
and aggregated locations are minimum bounding rectangles
enclosing proximal node locations.

3.2.2 Location aggregation
The aggregation operator takes in the location information
of a node (the set λv), computes the enclosing rectangle of
all atomic locations within a certain threshold (set to the
communication radius), and merges the computed set with
already aggregated locations reported by its children. For-
mally, the location aggregation operator L for the location
information set λv of node v is defined as follows:

L(λv) =M
“
E

`
l1, . . . , lk

´
∪M

`
a1, . . . , am

´”
,

where E is defined as

E : (l1, . . . , lk) 7→ λEv ,

i.e., E maps the set of atomic locations to a location infor-
mation set that consists of minimum bounding rectangles
of proximal atomic locations and the non-proximal atomic
locations. Nodes are proximal if their distance is below a
certain threshold value ε. Similarly,M is defined as

M(a1, . . . , am) 7→ λMv ,

i.e., M merges aggregated locations with each other and
with atomic locations. In order to ensure that the merged
locations remain connected, locations are only merged when
the distance between the farthest points on the closest sides
of the corresponding rectangles are proximal. An atomic lo-
cation is considered as a degenerate rectangle.

3.2.3 Computation of the PDT
The PDT P for a sink S is defined as a set of edges P(S) =
{(ai1 , ai2), . . . , (ain−1 , ain)} that is computed as

P(S) = MST (Clique(L(λS))),

where Clique creates a complete graph G′ of the final loca-
tion information set L(λS). Here, G′ = {V ′, E′} such that
V ′ = {p1, . . . , pn, S}, where p1 . . . pn are the center points of
each location aggregate in L(λS). The edge weights are the
Euclidean distances between points in V ′.

Furthermore, MST = {(ai1 , ai2), . . . , (ain−1 , ain)} such
that each tuple (aj , ak) is an edge in the minimum span-
ning tree of G′, where (aj , ak) are corresponding aggregates
for center points (pj , pk) in G′.

3.2.4 PDT join decision
The PDT join decision, J is a Boolean operator that deter-
mines whether or not a node should join the PDT. We use
the following greedy criterion to define the join decision for
a node v at location lv:

J (P(S)) =8><>:1,

(
d(lv, (ai, aj)) < ε, if (ai, aj) is a link in P(S)

or if v is a participating node

0, otherwise

where d is the distance of v and the line segment connecting
the center points of the aggregates (pockets) ai and aj .

Algorithm 1 outlines the formal specification of the PDT
setup algorithm.

3.3 Shortcomings and overheads
A query in a SN can consist of a large number of epochs.
Even if the change per epoch is small, the node participa-
tion can change significantly during the lifetime of a query.
The PDT algorithm is ideal if the change per epoch is rela-
tively small so that the pockets do not change significantly
in every step. Under those conditions, the PDT has to be
realigned only a few times during the lifetime of a query.
However, currently the PDT algorithm does not adapt to
change within a query. We leave the investigation of more
dynamic scenarios to future work.

The increase in packet size due to the aggregation of lo-
cation information increases the communication overhead.
The location information consists of aggregated pocket in-
formation and a list of atomic locations. Due to the spatial
correlation of physical phenomena, the number of atomic lo-
cations is typically small and singletons mostly occur at the
leaf level of the aggregation tree. The singletons are almost

Algorithm 1: PDT Setup for Node v

epochv ←∝
while epochv is not expired do

if query broadcast is received then
parentv ← broadcast sender
Reset epochv

Broadcast query packet

if data packet from child c is received then
λv ← λv ∪ λc

agglistv ← agglistv ∪ aggdatac

isparentv ← TRUE

if PDT information packet (P) is received then
if J (P) = 1 then

parentv ← PDT sender
Reset epochv

Forward PDT information packet

if (v is participating node) OR (isparentv = TRUE) then
if v is participating node then

λv ← λv ∪ {lv}
λv ← L(λv)
aggdatav ← aggregate(agglistv)
if v is not sink then

Send λv, aggdatav to parentv

else
cliquev ← Clique(λv)
P ←MST (cliquev)
Broadcast PDT information (P)
Forward aggregate to the application

completely merged at the lower levels of the tree into pock-
ets that traverse for the remainder of the tree in a compact
form as rectangles. Our experiments show that the location
information aggregation only slightly increases the commu-
nication messages.

The announcement of the PDT is the other major overhead
of the PDT algorithm. The number of extra messages gen-
erated during PDT information broadcast phase is equal to
the number of nodes that decide to join the PDT. The ini-
tial setup cost can be amortized over the query lifetime.
However, the initial cost cannot be amortized for snapshot
queries and hence we do not recommend the use of the PDT
algorithm for such queries.

4. EXPERIMENTAL EVALUATION
4.1 Evaluation parameters
In this section we compare the performance of the PDT al-
gorithm and other major in-network aggregation schemes
in a variety of SN settings. We first lay out the evaluation
parameters that we use to analyze the impact of spatial char-
acteristics of selective aggregate queries.

4.1.1 Spatial selectivity index
The nature and extent of spatial clustering of participat-
ing nodes may depend upon a number of factors, such as
the magnitude of spatial correlation, SN configuration, the
query predicate, and so forth. We introduce an integrated

measure, called spatial selectivity index, SSI, that describes
the extent of spatial clustering in a SN. SSI is based on two
key parameters, node scattering and pocket scattering.

The node scattering, NS, at time t (we will drop the argu-
ment t for the sake of simplicity) describes the distribution
of pockets for a query as the ratio of the total number of
pockets P relative to the number of participating nodes N :

NS = P/N

The pocket scattering, PS, characterizes the degree of disper-
sion for the pocket locations. We define the pocket centroid,
PC, of a pocket Pi as the sensor node that is closest to the
average location of all nodes belonging to Pi. We then define
the global pocket centroid, GPC, as the node that is closest
to the centroid of all pocket centroids P1, . . . , Pl partitioning
the nodes selected by the query:

GPC =
1

l
·

lX
i=1

PC(Pi)

Let HC(v, v′) denote the minimum number of hops for a
path connecting two nodes v and v′. Then, the pocket scat-
tering PS is defined as the average of hop counts connecting
the global pocket centroid with the pocket centroids of the
pockets P1, . . . , Pl:

PS =
1

l
·

lX
i=1

HC(PC(Pi), GPC)

We use the hop count between two nodes as a distance mea-
sure instead of their Euclidean distance. Since deployments
of SNs can exhibit holes and barriers, the hop count provides
a realistic approximation of the actual communication cost.
It should be noted that the use of hop count as a distance
measure is purely for evaluation purposes. The PDT algo-
rithm itself does not use the hop count measure due to the
practical limitations in making such information available
locally at each node.

The spatial selectivity index SSI is then defined as a measure
that describes the impact of node scattering as well as of
pocket scattering for a given scenario:

SSI = NS · PS

Lower SSI values characterize scenarios that are well pock-
eted and have a small pocket scatter, for example see Fig-
ure 3(a) and 3(b) in Section 4.3.1 that show two network
deployments with different SSI values.

4.1.2 Sink centroid distance
We formalize sink position in order to analyze the affect
of sink location on the performance of an aggregation al-
gorithm. The ideal position of a sink is the GPC. The sink
centroid distance, SCD, measures the hop count between the
sink and its ideal position. If S is the position of the sink,
the sink centroid distance SCD is defined as

SCD = HC(S, GPC)

4.1.3 Co-connectivity of a deployment
Although a rectangular deployment is common in simula-
tions, e.g., without any holes that alter connectivity, in this
paper, we also consider the impact of irregular deployments
on aggregation algorithms. Particularly, we measure the im-
pact of holes. To simplify our discussion, we only take the
total number of holes and their normalized size into account.
If |R| denotes the size of the deployment area R, then the
normalized size of a hole Hi is |Hi|/|R|. The co-connectivity
measure CC is then defined as the sum of the normalized
sizes of all holes:

CC =
X

i

|Hi|/|R|

We summarize the indices to measure the spatial features of
an aggregation query in Table 1.

Spatial Features Performance Index

How well-pocketed is a partici-
pation scenario?

Node Scatter (NS)

How scattered are the pockets? Pocket Scatter (PS)

Spatial Selectivity
Index (SSI)

How far is the sink from the
pockets?

Sink Centeroid Dis-
tance (SCD)

Where is the query issued?

How many holes are in the de-
ployment region?

Co-connectivity
(CC)

Table 1: Simulation parameters

4.2 Simulation setup and methodology
In addition to PDT, we implement comparable aggregation
algorithms discussed in Section 2. We implement all algo-
rithms in Network Simulator-2 (NS-2) [1]. To provide a
lower bound, we compute for each experiment an approx-
imation of the optimal aggregation tree using the KMB al-
gorithm. In our simulations, we collect the Average on a
deployment of 750 nodes, placed randomly in a 75m x 75m
grid. Each query collects data from a SN for 100 epochs.
We utilize the NS-2 wireless communication infrastructure
that simulates 914 MHz Lucent Wave LAN DSSS radio
interface using the two ray ground reflection propagation
model and IEEE 802.11 MAC layer (Chapters 16 & 18 of
the NS-2 Manual [1]). Communication is performed using
omni-directional antennas centered at each node, while the
communication radius is fixed at 5m. The message payload
is fixed at 72 bytes and we assume that every algorithm has
the same payload for data transfers. Furthermore, we assume
a lossless network with synchronized many-to-one aggrega-
tion, i.e., during in-network aggregation each internal node
is perfectly synchronized with its children and after aggre-
gation it always emits just one packet. Table 2 summarizes
these parameters.

We use total data transmission (in MBs) as an indication of
energy usage and hence as the basic metric of performance

Deployment Area: 75m × 75m

Number of Nodes: 750

Wireless Model: 914 MHz Lucent Wave LAN
DSSS radio interface

Propagation Model: Two ray ground reflection

MAC Layer: 802.11

Communication Radius: 5m

Packet Size: 72 Bytes

Number of Epochs: 100

Algorithms: TAG [10]

Static Clustering (SC) [16]

Multi-path (MP) [14]

PDT

Table 2: NS-2 parameters

comparison. The amount of data transmission can be re-
lated to the energy expenditure by a simple function such
as ε = σs + δsx, where ε is the total amount of energy spent
in sending a message with x bytes of content, and σs and
δs represent the per-message and per-byte communication
costs, respectively [19].

In order to systematically study the impact of varying par-
ticipation levels and selective participation measures as de-
fined in Section 4.1, we design our experiments according to
the following questions:

• What is the impact of query selectivity and level of
spatially correlated node participation on the perfor-
mance of aggregation algorithms?

• What is the impact of the position of pockets and their
dispersion in selective participation scenarios?

• What is the impact of the location of the sink on the
performance of an aggregation algorithm in low node
participation levels?

• What is the impact of (communication) holes on data
collection?

4.3 Results
4.3.1 Impact of query selectivity
In two experiments, we investigate the impact of the query
selectivity on four different aggregation schemes: PDT, MP,
SC, and TAG. In the first experiment, Figure 2, we change
the selectivity of an aggregate query and hence the number
of nodes that participate in a query by 1% increments from
2% to 10% of the total nodes in the SN. The participating
nodes are spatially clustered (see the deployment snapshot
in Figure 2(a)). Figure 2(b) shows the mean value of the
number of bytes transmitted by each algorithm at each par-
ticipation level (the average of five runs is used to find the
mean value). Figure 2(c) shows results from a similar ex-
periment with participation levels ranging in discrete steps
from 10% to 60%.

(a) A spatial configuration for partial
node participation. Larger circles rep-
resent nodes that participate in a
query. Black circle represents the
sink.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10
Participation(%)

B
yt

es
 T

ra
ns

m
itt

ed
 (M

B
)

TAG PDTMP SC KMBX

(b) Detailed comparison of data trans-
missions for each algorithm in low
participation scenarios (the partici-
pation level ranges between 2%–10%)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60
Participation(%)

B
yt

es
 T

ra
ns

m
itt

ed
 (M

B
)

TAG PDTSC KMBX

(c) The overall trend for each algorithm
in terms of data transmissions (the
participation level ranges between
10%–60%)

Figure 2: The performance of aggregation techniques for varying levels of partial node participation

(a) A partial node participation scenario
with an SSI of 0.34. Black circle rep-
resents the sink.

(b) A partial node participation scenario
with an SSI of 0.57

0.5

0.6

0.7

0.8

0.9

1

1.1

0.34 0.38 0.57 0.66

Spatial Selectivity Index (SSI)

B
yt

es
 T

ra
ns

m
itt

ed
 (M

B
)

TAG SC

PDT KMB

(c) The impact of an increasing SSI on
the performance of aggregation algo-
rithms for a 10% node participation
level. Standard deviations are shown.

Figure 3: Various network configurations simulating an increase in the spatial selectivity index by increasing
the pocket dispersion for a 10% node participation level

Figure 2(b) shows that for low node participation levels,
PDT performs better than other aggregation schemes. For
participation levels from 2% to 10% PDT is, on average, 41%
more efficient than TAG and 37% more efficient than SC.
In addition, PDT is just 21% less efficient than the approx-
imated lower bound, where TAG and SC are 72% and 67%
less efficient, respectively. This experiment also reveals that
the energy consumption for MP in low participation scenar-
ios is significantly higher than all other aggregation algo-
rithms. MP requires at least 2.7 and 2.8 times as much data
transmission as TAG and SC, respectively and 3.8 times
more than PDT. Similarly, the trend in Figure 2(c) shows
that PDT remains energy efficient even for high participa-
tion levels but its advantage decreases as the participation
levels increase. At 10% participation, PDT requires 30% less
data transmissions than TAG and 31% less than SC; how-
ever at the participation level of 60% this lead reduces to
4% and 5% for TAG and SC, respectively. The decrease in
efficiency results from the fact that with the increase in node
participation the benefit of spatial correlations diminishes.
This effect can also be observed from the fact that at 60%

participation level PDT is just 3% less efficient than the
KMB lower bound. For high participation levels, MP is not
shown on the figure to simplify the presentation.

4.3.2 Impact of varying the spatial selectivity index
This section describes a set of experiments that assess the
performance of the PDT algorithm in various spatial lay-
outs, characterized by different SSI values (Section 4.1.1).
A low SSI value represents a low dispersion scenario. We
expect a better performance from PDT and other aggrega-
tion algorithms for selective queries with low SSI values. In
this experiment, we achieve the effect of increasing SSI val-
ues by expanding the dispersion of pockets in the network,
while the total number of pockets, the node participation
level, and the sink position remains constant. Figure 3(a)
and 3(b) show the deployment snapshots of two scenarios.

Figure 3(c) confirms the hypothesis that all algorithms per-
form better for lower SSI values (standard deviations are
also shown in this chart). As the dispersion of the partici-
pating nodes increases, all algorithms have to spend more

1

 2

3

4

1

(a) The spatial distribution of the network configuration and
the various positions of the sink

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1 8.6 13.8 20
Sink Centeroid Distance (SCD)

B
yt

es
 T

ra
ns

m
itt

ed
 (M

B
)

TAG SC PDT KMB

(b) The performance of the aggregation algorithms for dif-
ferent sink positions with an increasing distance to the
global centroid position for a 20% node participation
level

Figure 4: A network configuration with different sink positions for a 20% node participation level

energy. For the analyzed scenarios, TAG and SC transmit up
to 31% and 22% more data for the highest SSI value. PDT
also generates more data and shows an increase of 22% for
the highest SSI value, however it remains 15% energy effi-
cient than both TAG and SC.

4.3.3 Impact of the location of the sink
In this experiment we analyze the effect of sink position on
PDT and other aggregation schemes. Figure 4 shows the
performance of each algorithm in a deployment where the
same query is issued from different sink positions. The chart
shows that, for the given deployment, different sink positions
affect the overall cost only modestly: between initial and
final sink position data transmission rises by just 7% for
both SC and TAG, while it rises to only 4% for PDT. The
average change in cost from one scenario to next is 1%, 2%
and 3% for PDT, SC, and TAG respectively.

The result is not surprising for the SC and PDT algorithms.
In PDT the aggregation tree is mostly determined by the
pocket locations while the impact of sink location is limited
to the distance between the sink and the pockets closest to
it. Similarly, SC always uses fixed paths to aggregate data
inside each cluster and the impact of sink location is limited
to the final phase where cluster heads have to route the
aggregated data to the sink. The bulk of data transmission in
both cases occurs inside pockets (or clusters) and as a result
the impact of the position of sink is reduced. However, it is
important to note that the behavior of TAG fluctuates with
the sink location. Among the simulated scenarios, the second
sink position is the best for TAG. At this position, the sink
is located in a way that paths to distant pockets naturally
emerge from the closer pockets, resulting in an increased
number of participating nodes acting as intermediate nodes
in the tree. In other scenarios, the misalignment of the root

of the tree, sink, with the clusters increases the cost for TAG.

4.3.4 Spatial layout and communication holes
Real SN deployments cannot stay fully connected in a reg-
ular grid structure although many routing and in-network
aggregation algorithms are commonly tested on such basic
structures. Due to constrained communication capabilities,
a network might be disconnected at certain places leaving
gaps that we name as communication holes. In the context
of in-network aggregation, if a given network suffer from
communication gaps while still remaining connected via al-
ternate communication routes, it is of interest to understand
how the presence of holes effect the performance of an ag-
gregation algorithm.

To investigate the effect of communication holes we simu-
late three different SN configurations. The configurations
are shown in the deployment snapshots in Figure 5(a)–
Figure 5(c), where the bordered regions represent commu-
nication holes. In each of the deployments, we set up a 10%
pocketed participation scenario and Figure 5(d) shows the
performance of each algorithm in these spatial layouts. In
TAG, we see that a collection of communication holes can af-
fect the formation of the aggregation tree in one of two ways.
Firstly, the holes might break the most direct communica-
tion paths to pockets and hence the tree has to invariably
take a longer route. This effect can be observed from the high
cost of TAG in the first deployment (Figure 5(a)). However,
a second more interesting scenario is where the presence of
holes actually reduces the communication cost by restrict-
ing the tree into a set of corridors that naturally spans the
pockets. The cost of TAG is reduced by 35% between the
initial and final deployment.

SC is rather unaffected by the presence of holes where the

(a) A network configuration with deploy-
ment co-connectivity of 0.13 (five
holes relatively close to the border)

(b) A network configuration with deploy-
ment co-connectivity of 0.24 (six ran-
domly distributed holes)

(c) A network configuration with deploy-
ment co-connectivity of 0.40 (one
large hole in the middle of the net-
work)

0.5

0.7

0.9

1.1

1.3

1.5

0.13 0.24 0.4
Co-connectivity (CC)

B
yt

es
 T

ra
ns

m
itt

ed
 (M

B
) TAG SC PDT KMB

(d) The impact of different co-connectivities on the aggregation
algorithms for a 10% node participation level

Figure 5: Various network configurations simulating deployments with different types of communication holes
and a 10% node participation level

change in its cost between the initial and final deployments
is just 5%. PDT also performs almost unaffected by the pres-
ence of communication holes and shows a 10% reduction in
data transmissions. PDT might suffer in cases where there
is a communication gap between two neighboring pockets in
the trajectory.

4.4 Discussion
With extensive experiments, we presented the advantages
of the location based PDT algorithm for in-network aggre-
gation over well-known in-network aggregation algorithms
in different SN settings. Our results validate the hypoth-
esis that a variable node participation scenario affects the
performance of existing algorithms. In addition, the spatial
features of the scenario do also have an effect on the perfor-
mance of in-network aggregation.

The performance of an in-network aggregation strategy in
selective queries can be presented as a function of the num-
ber of nodes the aggregation paths utilize while aggregating

data from the participating nodes. The high cost of the tree-
based scheme in highly selective queries can be explained
by the random strategy used in the creation of the aggre-
gation tree where no query specific optimization is consid-
ered during the tree construction process. We observe that
for low node participation levels, the tree can improve its
performance when the query sink is aligned with the data
pockets in a way that paths to distant pockets naturally
emerge from the pockets that are close to the sink. Simi-
larly, a tree-based strategy shows considerable improvement
in performance if the communication channels in the net-
work are constrained by holes. However, in realistic settings,
such cases may be rare and may not justify building a ran-
dom tree for low participation scenarios. In contrast to such
special cases, PDT always identifies constrained regions to
grow sub-aggregation trees and an overall collection path in
an efficient manner. Since the data collection is optimized
to minimize the number of non-participating nodes en-route
to data sources, PDT shows an overall reduction in data
transmission even in high node participation scenarios. The

experiments also show that the cost of PDT rises with in-
creasing participation levels or decreasing spatial correlation
levels, however for long running queries with many epochs,
it is at least as good as the other aggregation schemes.

As an interesting result, we observe that static clustering
shows comparable results to the tree-based strategy even
though it is not configured as dynamically as the tree-based
strategy. Similar to the tree-based strategy, we also observe
that static clustering performs better if the location and size
of pockets correlate with that of the statically configured
clusters and the hence the data collection mechanism. Sta-
tic clustering algorithm proposes to define the cluster size
parameter depending upon the degree of spatial correlation
in the network [16]. A major challenge in static clustering
is determining the correct cluster size for queries with com-
plex, selective, predicates.

In our experiments where the node participation levels are
low, data transmission by multi-path aggregation algorithm
has greater costs than all the other schemes. This is an in-
teresting observation since in exhaustive participation sce-
narios multi-path achieves the same number of messages per
node as a tree [13]. Although the goal of multi-path aggre-
gation is to achieve accuracy in lossy environments rather
than increasing efficiency of the aggregation strategy, the
large cost of multi-path in low node participation scenarios
may require adopting a hybrid method such as [13].

One important feature of the PDT algorithm is that there
is a trade-off between the latency of data collection and the
aggregation path data transmission costs for a given query.
In order to minimize the number of non-participating nodes
in the aggregation process, PDT creates paths with possibly
higher latencies. Since in a sensor network saving energy is
the primary concern, reducing response time may not impact
many query types. Thus, the latency is not analyzed as a
separate parameter with our experiments.

Summary of Results

1. PDT performs significantly better than well-known
data aggregation algorithms for long running aggre-
gation queries that select 2% – 10% of the nodes that
are spatially correlated into pockets.

2. PDT shows better cost savings when the participation
levels are low and the pockets are far from the sink.

3. For selective queries, the performance of all algorithms
and the difference between PDT and the other aggre-
gation algorithms depends upon the spatial selective-
ness of a given query.

4. The performance of tree-based schemes in low node
participation scenarios is improved in cases where the
pockets are aligned in a manner that paths to pockets
that are afar from the sink emerge naturally from the
pockets closer to the sink. (Similarly, a tree performs
better when communication channels are constrained
by holes in a way that data collection paths naturally
span the data pockets.)

5. In low node participation scenarios a tree and static
clustering have similar costs although static clustering
does not use as dynamic a strategy as the tree-based
algorithm.

6. The difference in cost between aggregation strategies
becomes less significant for high participation scenar-
ios and algorithms behave almost the same for ex-
haustive queries. PDT does not perform worse than
other algorithms even for high participation scenarios
despite its overheads.

7. In low node participation scenarios, multi-path aggre-
gation is significantly more expensive in terms of data
transmission costs than any other algorithm.

5. CONCLUSIONS AND FUTURE WORK
Selective queries are required for effective monitoring of
physical phenomena using SNs. In this paper, we introduce
the PDT algorithm, an in-network data collection method
for long running selective aggregation queries. With exten-
sive simulations, we show that PDT is more energy efficient
than other major in-network aggregation schemes under var-
ious scenarios and is close to a well-known approximation of
the global optimum, i.e., the Steiner tree. PDT algorithm
discovers pockets of participating nodes using purely local
information and approximates a minimum Steiner tree for
data collection from these pockets. We show that this can
lead to significant energy savings in different node partic-
ipation scenarios. We define spatial parameters to charac-
terize a specific network deployment and present how our
work compares to different well-known data aggregation al-
gorithms under various sensor deployments using these pa-
rameters.

There are several research directions that we plan to follow
as our future work. For a given query, an initial participation
scenario might change over time. For example, a change in
the physical conditions for the sensed phenomena can lead to
changes in values being sensed by the network. For a selec-
tive query this change can have an impact on multiple fronts,
i.e., by increasing or decreasing the node participation levels,
by changing the distribution of participating nodes such as
the emergence of new pockets or breakdown of old pockets.
Thus, it is important to study a variety of trends of change
and introduce new improved strategies for aggregation to
continuously adapt to these changes. We plan to extend the
PDT algorithm to be able to continuously adapt to change.
A possible strategy in this regard is to perform the loca-
tion aggregation during some sampling periods and detect
the amount of deviation from the original PDT. The PDT
can then be refreshed as soon as this deviation reaches to a
certain threshold value.

We also plan to investigate the impact of the length of a
query on the PDT algorithm in comparison to other aggre-
gation algorithms. In addition, we plan to study the latency
incurred by the PDT algorithm by increasing the data collec-
tion path while decreasing the energy consumption. Further-
more, we plan to improve our PDT algorithm by a guided
query multicast phase as opposed to the query broadcast re-

ported with this paper. One idea is to combine the SRT con-
cept from TinyDB to optimize the query forwarding phase.
Finally, our work can be viewed as a method to discover re-
stricted regions inside which a query-tree maximizes the use
of the participating nodes. Once such pockets are discovered
there can be many aggregation schemes that can be used in
these pockets. This paper reports only the application of a
random tree-based aggregation algorithm within a pocket,
however, we plan to investigate the efficiency of other meth-
ods for aggregation inside a pocket including various sup-
pression strategies.

6. REFERENCES
[1] The network simulator NS-2 documentation,

http://www.isi.edu/nsnam/ns/ns-
documentation.html.

[2] M. Bawa, A. Gionis, H. Garcia-Molina, and
R. Motwani. The price of validity in dynamic
networks. In Proceedings of the SIGMOD, pages
515–526, 2004.

[3] B. J. Bonfils and P. Bonnet. Adaptive and
decentralized operator placement for in-network query
processing. In Proceedings of IPSN, pages 47–62, 2003.

[4] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong.
Approximate data collection in sensor networks using
probabilistic models. In Proceedings of ICDE, page 48,
2006.

[5] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In Proceedings of ICDE, pages 449–460,
2004.

[6] M. Doar and I. M. Leslie. How bad is naive multicast
routing? In Proceedings of INFOCOM, pages 82–89,
1993.

[7] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary.
Efficient gathering of correlated data in sensor
networks. In Proceedings of MobiHoc, pages 402–413,
2005.

[8] L. Kou, G. Markowsky, and L. Berman. A fast
algorithm for Steiner trees. Acta Informatica,
15:141–145, 1981.

[9] B. Krishnamachari, D. Estrin, and S. B. Wicker. The
impact of data aggregation in wireless sensor networks.
In Proceedings of ICDCSW, pages 575–578, 2002.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation service for
ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In Proceedings of
SIGMOD, pages 491–502, 2003.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[13] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries
and deltas: efficient and robust aggregation in sensor
network streams. In Proceedings of SIGMOD, pages
287–298, 2005.

[14] S. Nath, P. B. Gibbons, S. Seshan, and Z. R.
Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In Proceedings of SenSys, pages
250–262, 2004.

[15] C. A. S. Oliveira and P. M. Pardalos. A survey of
combinatorial optimization problems in multicast
routing. Comput. Oper. Res., 32(8):1953–1981, 2005.

[16] S. Pattem, B. Krishnamachari, and R. Govindan. The
impact of spatial correlation on routing with
compression in wireless sensor networks. In
Proceedings of IPSN, pages 28–35, 2004.

[17] G. J. Pottie and W. J. Kaiser. Wireless integrated
network sensors. Communications of the ACM,
43(5):51–58, 2000.

[18] G. Robins and A. Zelikovsky. Improved Steiner tree
approximation in graphs. In Proceedings of SODA,
pages 770–779, 2000.

[19] A. Silberstein, R. Braynard, and J. Yang. Constraint
chaining: on energy-efficient continuous monitoring in
sensor networks. In Proceedings of SIGMOD, pages
157–168, 2006.

[20] H. Takahashi and A. Matsuyama. An approximate
solution for the Steiner problem in graphs. Math
Japonica, 24:573–577, 1980.

[21] Y. Xu, J. Heidemann, and D. Estrin.
Geography-informed energy conservation for ad hoc
routing. In Proceedings of MobiCom, pages 70–84,
2001.

[22] Y. Yao and J. Gehrke. Query processing for sensor
networks. In Proceedings of the Conference on
Innovative Data Systems, pages 233–244, 2003.

[23] S. Yoon and C. Shahabi. Exploiting spatial correlation
towards an energy efficient clustered aggregation
technique (CAG). In IEEE International Conference
on Communications, pages 82–98, 2005.

