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ABSTRACT

Traffic congestion is a serious problem that is only expected to get
worse in the future. Statistics shows that half of traffic congestion
is caused by temporary disruptions like accidents. These events
have dramatic impact on road network availability and cause huge
delays for commuters. Also, they are usually unexpected and hard
to manage by traffic authorities. State-of-the-art navigation sys-
tems started to provide real-time information about traffic condi-
tions to help users make better routing decisions. However, traffic
in the road network changes rapidly and the advice calculated now
may not be valid after few minutes. This is especially critical in the
presence of traffic incidents, where the impact of the incident could
cause traffic to propagate to nearby roads. Thus, it is important for
navigation systems to consider the evolution and future impact of
traffic events. In this work, we present a navigation system that
uses faster than realtime simulations to predict the evolution of
traffic events and help drivers proactively avoid congestion caused
by events. The system can subscribe to real-time traffic informa-
tion and forecast the traffic conditions using fast simulations. We
evaluate our approach through extensive experiments to test the
performance and accuracy of the simulator with real data obtained
from TomTom Traffic APIL. Also, we test the quality of navigation
advice in realistic settings and show that our solution is able to
help drivers avoid congested areas in cases where even real-time
update methods lead drivers to congested routes.
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1 INTRODUCTION

Traffic congestions can have a significant impact on economy and
environment of large cities. According to Texas A&M Transporta-
tion Institute, congestion cost America $160 billion in 2014 1. Due
to traffic congestion, American drivers traveled an extra 6.9 billion
hours, around 42 hours on average per commuter in 2014. These
estimates are only expected to get worse. For example, in Australia,
congestion cost was estimated to be 16 billion (AUD) in 2015 and
expected to jump up to 37 billion 2 (AUD) in 2030. Traffic incidents
(such as accidents, emergency maintenance or public events) are
responsible for more than 50% of delays caused by congestion [3, 6].
Such traffic incidents have a dramatic impact on road capacity and
availability. They also have an inconsistent impact that depends on
many spatial and temporal variables which makes them hard to be
embedded in any generic decision making method.

To combat traffic congestion, navigation systems started to pro-
vide information about the traffic conditions of the road network in
real-time. However, these navigation systems route drivers based
on current traffic conditions without taking into account future
evolution of an incident. Traffic in road networks can change
rapidly and the advice calculated now may not be valid after few
minutes for incidents such as car accidents. This is especially crit-
ical in the presence of non-recurrent incidents where the impact
of the incident introduces significant variation in the traffic con-
ditions around the incident. Thus, routing based on current traffic
conditions will risk leading drivers to unexpected congestion. To
overcome this shortcoming, navigation services need to consider
the future impact of traffic events. Knowing how events evolve in
traffic is key to bringing more realism and improving the naviga-
tion advice [7].

In this work, we propose a system to forecast and quantify the
future impact of traffic incidents using fast simulations to provide
real-time navigation advice. In our approach, we use real-time traf-
fic updates to estimate the current traffic flow and forecast the
future traffic by using a faster-than-real-time microscopic traffic
simulator, called SMARTS [8]. Using a snapshot of current traffic
state on the road network we can use traffic simulation models to
predict the future conditions. We retrieve traffic snapshots periodi-
cally and use the snapshots to validate and calibrate the simulation.
Route navigation advice generated by the simulator can be more
effective than historical route guidance or advice based on current
conditions because it considers the spatio-temporal evolution of
traffic.

To illustrate the benefit of foreseeing the evolution of traffic
events with our novel system, consider the following scenario: a
driver who needs to avoid a traffic incident on the way to work.
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The driver uses a navigation system, and the system based on cur-
rent traffic conditions advises the driver to take a short detour to
avoid the road with the incident. However, this detour is close to
the incident location and by the time the driver reaches an inter-
section adjacent to the incident, the driver might get stuck due to
the propagation of traffic congestion. In contrast, using a traffic
simulator we can forecast how traffic would evolve over time and
compute a better alternative route to successfully avoid the event.

To predict incident impact, the literature has focused on ma-
chine learning techniques [1, 2, 7]. However, these techniques are
based on historical data and they can not adapt to new situations.
On the contrary, the simulation-based approach does not require
historical data and is more adaptive to particular road and traffic
situation. There has been a significant body of work on transporta-
tion simulations [4, 5, 9]. However, popular open-source and com-
mercial simulators are not designed for use in real-time navigation.
In this work, we use SMARTS [8] a distributed large-scale micro-
scopic traffic simulator that is able to scale up and perform fast
simulations allowing for short-term estimations to be done fast.
SMARTS performs simulation in a continuous spatial domain in
real-time. Using traffic simulation allow us to predict the immedi-
ate future state of the road network without the need for historical
data. Also, we can adapt and adjust simulation scenarios based on
real-time traffic data. This is a novel approach for navigation ser-
vices.

2 SYSTEM OVERVIEW

An overview of the system is presented in Figure 1. We propose a
client-server architecture, where the client runs on a modern mo-
bile phone or a navigation device. Using the client, the user can
send a routing request providing the source and destination. The
server is organized based on three main functions: (i) event mon-
itoring, (ii) traffic prediction based on simulation and (iii) naviga-
tion advice generation. The system uses real-time traffic informa-
tion provided by traffic authorities or third party API Also, the
system can receive traffic event reports from traffic authorities or
from an external event detection component.

The Event Monitor keeps track of active traffic events, and
manage the simulation during the lifetime of a traffic event. When
the system receives an event report, it stores the event informa-
tion in the active event memory and sends a simulation request to
the simulation center. When the traffic event is cleared, the Event
Monitor will send a request to the simulation center to terminate
the simulation.

Once the Simulation Center receives a simulation request, it
uses the most recent snapshot of the road network conditions and
the event information to run a simulation and stream the output
of the simulation to the graph store. The flow estimation compo-
nent determines the current traffic conditions of the road network
given current traffic data. The traffic prediction component fore-
cast the future traffic by using our microscopic traffic simulator
SMARTS [8]. The simulator employs multiple traffic models (such
as car-following and lane-changing), and the simulated vehicles
obey various road rules. The simulator is used to forecast and esti-
mate future travel time for roads.
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Figure 1: Overview of the System

The navigation advice component consists of the Routing Unit
and the Graph Store. This component will perform route planning
using the predicted travel times that are generated by the simulator.
When the server receives a routing request, the Routing Unit will
initiate a graph search and use the graph store to assign costs to
edges while searching for a route. The Graph Store is an indexed
data store with the goal of providing fast access to relevant travel
costs to be used during the search process. It uses the connectivity
of the road network as an indicator of locality.

3 TRAFFIC PREDICTION VIA SIMULATION

In this section, we describe how the system uses the SMARTS [8]
simulator to forecast traffic conditions in the road network and
generate navigation advice.

For every traffic event report, the system starts a simulation ses-
sion for the event area. A simulation session lasts until the event
is cleared. In each session, the system executes a repeated cycle
of flow estimation and simulation in a sliding window mode. For
example, assume the system receives an event report at 12:00 pm
and starts a simulation session. First, the system performs flow
estimation using the 11:55 am snapshot of the traffic in the area.
Then, the simulation will run and complete within 5 minutes. The
simulation generates the travel time for a 30 minute window into
the future (until 12:30 pm) and streams the estimated output to
the graph store. Each simulation session is run separately and we
can run multiple simulation sessions in parallel for different areas
based on incoming events reports.

The first step in the simulation process is to estimate the current
traffic flow. The estimate depends on the real-time traffic informa-
tion maintained by the system. We assume the data we receive
from a service provider is either a vehicle volume or speed per
road. We first calibrate traffic by filling up road links with random
vehicles. The number of vehicles inserted to a link is determined
by the average speed of vehicles on the link, which is extracted
from service provider data. The number of vehicles is computed
with Formula 1, in which N is the number of vehicles, [, 44, is the
length of the link, nj,,, is the number of lanes on the link, ¢ picre
is the average length of vehicles, v is the average speed of vehicles
and T is the safety headway in the car-following model.

ledge
lvehicle +oxT
Once the simulation is started, we maintain the rate that new
traffic enters to the simulation area from the border of the area.

N= X Nane (1)
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During the simulation, the simulator periodically estimates the
speed of each road based on the simulated vehicles on the road at
a given time interval. For example, for a 5-minute interval, the sim-
ulator computes the average road speed every five minutes based
on all the vehicles that used the road during the past five minutes.
This estimate is exported at the end of the simulation for every
road to the graph store.

The navigation advice is generated by traversing the graph store
using a time-dependent graph search algorithm similar to Dijkstra
algorithm, called SPA. In SPA, we modify Dijkstra’s edge relax-
ation step to use the graph store to find the edge cost while ex-
ploring nodes. The algorithm maintains a group of nodes in a pri-
ority queue Q to be processed. These nodes are the frontier of paths
from the source node s that have been explored so far. The cost of
each frontier is the sum of each edge travel time from the source
node to the frontier. It is important here that each frontier in Q
maintains its own timeline. Therefore, we calculate the timestamp
used to query the graph store based on the cost of the frontier C[u]
and the query start time gt at each iteration. During edge relax-
ation, we extract the frontier u with the minimum cost and update
the timestamp to t = gt + C[u]. For every node v adjacent to u
that has not been settled, we query the graph store to find out the
cost w(u, v, t) of traversing edge (u, v) at the timestamp ¢. The new
cost from source is calculated using C[u] + w(u, v, t). If this value
is lower than the previous cost C[v], then we update the cost of
v to Clu] + w(u, v, t) and set u as the predecessor node of v. This
process is repeated until the destination node is extracted from the
queue.

4 EXPERIMENTAL STUDY

In this study, we provide a set of experiments to test the simulator
speed and prediction accuracy, as well as the quality of navigation
advice. Experiments in this section were executed on a desktop
computer with a 2.7 GHz Intel Core i5 processor and 16GB RAM.
The OS is macOS 10.12.4 and the code was implemented in Java
1.8.

4.1 Evaluation of the Simulator Speed

In this section we show that the simulator can run significantly
faster than real-time. We measure the simulator performance us-
ing the real-time factor, which is calculated by dividing prediction
interval over the length of the execution time. For example, if it
takes the simulator 5 minutes to simulate 20 minutes of traffic, the
real-time factor is 4. Table 1 shows the parameters for this exper-
iment (default in bold), for each setting we run the experiment 5
times and average the results. Note that the number of vehicles
remains constant during the simulation, a number of vehicles of
1000 implies that there will be 1000 vehicles at any time during the
simulation.

First, we evaluate the speed of the simulation for different pre-
diction intervals. We found that the real-time factor for simulating
1000 vehicles for 30 minutes is 51.7, for 60 minutes is 54.5 and for
90 minutes is 57.1. This means that the simulator can simulate 30
minutes of traffic in under one minute and about 70 seconds to sim-
ulate traffic for 60 minutes and less than 2 minutes to simulate for
90 minutes. Furthermore, we increase the number of the vehicles
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Table 1: Parameter settings for simulator speed experiment

l Parameter [ Range
Map { Melbourne CBD, Ringwood, Hawthorn}
Number of Vehicles | {1000, 5000, 10000}

Prediction Interval

{30 min, 60 min, 120 min}

to 5000, 10000. The real-time factor for simulating 5000 vehicles is
16.1 and for 10000 vehicles is 8.1. The results show that the simula-
tion is still capable of simulating 5000 vehicles in about 2.5 minutes
and 10000 vehicles in about 4 minutes. Next, we test the simula-
tor performance on larger road networks. We selected two other
suburbs with different road network layouts: Hawthorn (an inner
suburb of Melbourne) and Ringwood (an outer suburb). The size of
these areas are 2.4km?2, 18km? and 28km? for the Melbourne CBD,
Ringwood and Hawthorn respectively. Ringwood simulation has a
real-time factor of 42.9 and Hawthorn simulation is 37.6. The real-
time factor decreases slightly for bigger areas since the number of
roads that need to be processed increases. However, the simulator
is still fast enough to simulate 30 minutes of 1000 vehicles under
one minute.

4.2 Evaluation of Simulation Accuracy

In this section, we evaluate the simulation prediction accuracy us-
ing real data obtained from TomTom Traffic API 3. We conduct
multiple tests on two major highways in Melbourne and measure
the accuracy of the prediction. The accuracy of the simulation is
the average accuracy of all simulated road links. During the simu-
lation, we collect the predicted speed o for each road link and com-
pute the accuracy following the definition in Formula 2, in which
vy is the actual speed of the link that is extracted from the real
data, and 0 is the average speed of vehicles during the simulation
for that specific link.

1-2% if|o-ol<o
accuracy = { or r " (2)
,

otherwise

In this test, we predict the traffic state for two major highways
in Melbourne: Eastern Freeway (10.2 km) and City Link road (9.2
km). We measure the accuracy while simulating for four prediction
intervals (2m, 30m, 60m, 90m). The traffic is calibrated only once
at the start. For example, we can get TomTom data at 8am and cal-
ibrate the simulation using the 8am data. Then compare simulated
traffic with the real data for 8.30 am. We ran the simulation during
the morning peak hours for 90 minutes in real time. The results for
the prediction accuracy are (86.2%, 71.6%, 73.5%, 79.1%) with stan-
dard deviation of (3.1, 20.5, 17.9, 25.9) for the intervals (2m, 30m,
60m, 90m) respectively. The results shows that the simulator can
achieve a high accuracy for near future interval (2m). The accuracy
for predicting distant future is lower but is still higher than 70%.
Overall the simulator achieves 77.5% on average for all prediction
intervals. We deem these four intervals an acceptable minimum to
maximum travel time in a city. Also, deviation increases when the
prediction interval increases. This is understandable as the traffic
can be affected by a number of random factors in the real world
during a longer period of time.

Shttp://developer.tomtom.com
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Figure 2: ATT values for the incident on Melbourne CBD lo-
cation

4.3 Evaluation of Navigation Advice

In this section, we run a simulation-based evaluation to test the
effectiveness of the navigation advice produced by our system. In
this experiment we create a traffic event, and test the ability of the
routing method to re-route a set of test vehicles away from the
event.

Metrics and baseline: We use the simulated Average Travel
Time (ATT) of test vehicles as the measure to evaluate the effective-
ness of our approach. We compare our approach against two base-
line methods: Fastest Path (FP) and Real-Time (RT) based methods.
Both methods use Dijkstra’s algorithm to compute routes and use
travel time as edge weight, but they differ in the way they esti-
mate the travel time. In the FP method, the travel time is calcu-
lated based on the maximum allowed speed of the road. This is a
basic approach and does not get traffic updates. The RT method
estimates and updates graph weights every five minutes based on
speed samples collected during the past five minutes. Note that the
FP approach represents the worst case scenario, since the weight is
static and is not affected by traffic. Also, to test whether blocking
the event location is enough to re-route from the event, we use a
variation of FP approach (FP2) that is aware of the speed drop at
the event location and re-route vehicles.

Simulation scenario: The simulation scenario is designed to
test the effectiveness of a given routing method in helping drivers
avoid traffic events. In this simulation scenario, the traffic event is
modeled using a set of parameters such as (location, impact and du-
ration). We create a set of 100 test vehicles whose initial routes go
through the event location, and use a given routing method to re-
route those vehicles. Then, we measure the simulated travel time
of test vehicles. We fix simulation time to one hour and the event
always starts at minute 5 and lasts for 30 minutes. During the sim-
ulation, the traffic event will be activated on a selected road, and
this will reduce the road speed according to the given event impact
parameter. The speed drop caused by the traffic event is visible to
all routing methods (except for FP) and when test vehicles are re-
leased into the road network, they will be re-routed using the rout-
ing method under test (FP, FP2 RT, SPA). During the simulation,
the travel times for vehicles are recorded and exported. We run
this scenario for the four routing methods under test, and use the
travel time of test vehicles to measure and compare the methods.
In this scenario, the simulation was performed on Melbourne CBD,
with the event starting at minute 5, test vehicles are released after
8 minutes, the event impact will reduces the road speed by 90% and
the number of vehicles is set to 1000 vehicles during peak time.
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Results: The result is shown in Figure 2. The figure shows that
FP2 has reduced the ATT to 761 seconds, which means blocking the
event location helps a part of the test vehicles but not all of them
as the high ATT indicates that some vehicles still experienced a
significant delay. Similarly, the RT method has ATT close to FP2
(725 seconds), which shows that using the RT method has a small
improvement over blocking the event location. Furthermore, the
figure shows that our method reduced ATT significantly to 391
seconds, which means our method reduced the travel time by 47%
on average when compared to the RT method. The RT method did
not perform well in this experiment because the propagation of
traffic event was faster than the update rate of the RT method. This
leads the congestion to spread to alternative routes used by the RT
method and blocked the vehicles re-routed via these alternative
routes.

5 CONCLUSION

We presented a navigation system with a traffic simulator in its
core to help drivers avoid traffic events effectively. The system can
run faster than real-time to forecast the future traffic conditions
for traffic events. We presented an extensive experimental evalu-
ation to study the speed and accuracy of the simulator as well as
the quality of the navigation advice. The speed experiments shows
that the simulator can run 50 times faster than real-time which
means the simulator takes less than 1 minute to predict 30 min-
utes into the future for 1000 vehicles. In addition, the simulator can
achieve an average accuracy of 77.5% when compared with real-
data from TomTom traffic API for common city travel scenarios.
Furthermore, we tested the effectiveness of the navigation advice
using the simulator with a realistic scenario. Our method was able
to suggest alternative routes that avoid the evolution of the traffic
event and achieved up to 47.5% reduction in travel time on average.
For this experiment, we assume our estimate of traffic conditions
and event impact is accurate. In the future, we will study the effec-
tiveness our methods when this estimate degrades. Also, we will
focus on enhancing the flow estimation component to achieve bet-
ter accuracy.

REFERENCES

[1] Abdullah AIDwyish, Egemen Tanin, and Shanika Karunasekera. 2015. Location-
based Social Networking for Obtaining Personalised Driving Advice. In SIGSPA-
TIAL’15. ACM, 91:1-91:4.

Abdullah Aldwyish, Egemen Tanin, and Shanika Karunasekera. 2017. Follow

The Best: Crowdsourced Automated Travel Advice. In MobiQuitous’17. ACM.

[3] John C. Falcocchio and Herbert S. Levinson. 2015. Managing Nonrecurring Con-
gestion. Springer International Publishing, 197-211.

[4] Daniel Krajzewicz, Georg Hertkorn, Christian Rdssel, and Peter Wagner. 2002.
SUMO (Simulation of Urban MObility)-an open-source traffic simulation. In
MESM20002. 183-187.

[5] Kai Nagel and Marcus Rickert. 2001. Parallel implementation of the TRANSIMS
micro-simulation. Parallel Comput. 27, 12 (2001), 1611-1639.

[6] US Department of Transportation. 2017. Reducing Non-Recurring Congestion.
(2017). https://ops.fhwa.dot.gov/program_areas/reduce-non-cong.htm [Online;
accessed 25-May-2017].

[7] Bei Pan, Ugur Demiryurek, Chetan Gupta, and Cyrus Shahabi. 2015. Forecast-
ing spatiotemporal impact of traffic incidents for next-generation navigation
systems. KAIS 45, 1 (2015), 75-104.

[8] Kotagiri Ramamohanarao, Hairuo Xie, Lars Kulik, Shanika Karunasekera, Ege-
men Tanin, Rui Zhang, and Eman Bin Khunayn. 2016. SMARTS: Scalable Mi-
croscopic Adaptive Road Traffic Simulator. ACM TIST 8, 2 (2016), 26.

[9] Rashid A Waraich, David Charypar, Michael Balmer, and Kay W Axhausen. 2015.
Performance improvements for large-scale traffic simulation in MATSim. In
Computational Approaches for Urban Environments. Springer, 211-233.

[2


https://ops.fhwa.dot.gov/program_areas/reduce-non-cong.htm

	Abstract
	1 Introduction
	2 System Overview
	3 Traffic Prediction Via Simulation
	4 Experimental Study
	4.1 Evaluation of the Simulator Speed
	4.2 Evaluation of Simulation Accuracy
	4.3 Evaluation of Navigation Advice

	5 Conclusion
	References

