
Ride-sharing is About Agreeing on a Destination
A.K.M. Musta�zur Rahman

Khan

University of Melbourne

khank@student.unimelb.edu.au

Oscar Correa

University of Melbourne

oscarcg@student.unimelb.edu.au

Egemen Tanin

University of Melbourne

etanin@unimelb.edu.au

Lars Kulik

University of Melbourne

lkulik@unimelb.edu.au

Kotagiri Ramamohanarao

University of Melbourne

kotagiri@unimelb.edu.au

ABSTRACT
Ride-sharing is rapidly becoming an alternative form of transporta-

tion mainly due to its economic bene�ts. Existing research on ride-

sharing aims to optimally match trajectories between people with

pre-selected destinations. In this paper, we show better ride-sharing

arrangements are possible when users are presented with more

destinations and agree on a common destination. Given a set of

points of interest (POIs) and a set of users, our approach presents

destination POIs and computes ride-sharing plans. Each arrange-

ment for a subset of users that �t in a car can be presented as a

minimum Steiner tree (MST) problem. An optimal solution of the

overall problem minimizes the total length of all the MSTs. The

problem is a version of the set cover problem and is NP-hard. We

�rst develop a series of baseline methods which use a popular MST

algorithm. Then, we propose our method which uses constraints on

intermediary points where users can meet to share rides. These con-

straints reduce the time complexity signi�cantly and our method is

up to two orders of magnitude faster than the best baseline method.

Since our algorithm �nds the subsets of users and POIs for each

arrangement, we de�ne and solve a new type of MST problem as a

�rst step. Our experiments show that our method can provide a fast

and readily deployable solution for real world large city scenarios.

CCS CONCEPTS
• Applied computing → Transportation;

KEYWORDS
Ride-Sharing, Spatial Databases, Steiner Trees

ACM Reference format:
A.K.M. Musta�zur Rahman Khan, Oscar Correa, Egemen Tanin, Lars Kulik,

and Kotagiri Ramamohanarao. 2017. Ride-sharing is About Agreeing on a

Destination. In Proceedings of ACM SIGSPATIAL Conference, Redondo Beach,
California, USA, November 7–10, 2017 (SIGSPATIAL’17), 10 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL’17, Redondo Beach, California, USA
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Situated between the use of private cars and public transport, ride-

sharing combines their bene�ts, i.e., the �exibility of a private car

with the low cost of public transport. Real-time ride-sharing, which

matches drivers and passengers on the �y, requires passengers to

provide, among other information, pick-up points and destinations

[3–5]. We show that better ride-sharing arrangements are possible,

when users agree on common destinations among a set of choices,

rather than going to their pre-chosen destinations. For instance,

consider the case of four people u1, u2, u3 and u4 who are about

to choose among any of the three POIs p1, p2 and p3 nearby. The

locations of users and POIs are depicted in Figure 1. In the optimal

solution, u1 and u2 would meet at q1, leave one of their cars there

and share one car to go to p1; u3 would pick up u4 and go to p3.

Thick edges in Figure 1 represent the optimal travel plan. The total

travel distance for all cars is 1+1+1+0.5+1.5 = 5. There are many

other sub-optimal plans. If the users do not share rides, they will

likely go to their nearest POIs and the total travel distance would

be 2 + 1.5 + 1.5 + 1.5 = 6.5. Requesting to go to their nearest POIs

without �rst agreeing on common destinations chosen from a set of

options, e.g. u3 wishes to go to p2 and u4 wishes to go to p3 rather

than agreeing to go together to p3, will end up in sub-optimal plans.

In real-world example, a set of tourists may be interested in local

restaurants. Since they may want to experience di�ferent cuisines,

our solution would present restaurants to which they may agree to

ride-share by following the optimal computed routes. A mobile app

that presents di�erent options, divide users into groups that �t in a

car and compute optimal ride-sharing plans would be useful. Going

further, even existing platforms such as uberPool could use our

solution. Suppose tourists want to go to Manhattan, where parking

fares are very expensive and there are many close-by places to

visit. They might not have a speci�c touristic attraction in mind

to start with and a POI could be any of the non-visited attractions.

An uberPool driver can pick-up these tourists and drop them o�

in the most convenient attraction(s). We create a setting where

users can exchange information and agree on a destination and

thus producing further bene�ts for ride-sharing.

In this paper, we develop a fast dynamic programming method

to e�ciently choose the destination POIs, divide the set of users

into optimal subsets that �t in a car and compute the optimal travel

plan for them. The optimal travel plan can be described as a set of

MSTs, where the root of each tree is a POI and the leaves are users.

An MST is the minimum cost subgraph that spans a subset of nodes

in a graph. In our problem each subset is found by our algorithm,

SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA Rahman et al.

Figure 1: A simple road network. u1, u2, u3 and u4 are users
and p1, p2 and p3 are POIs

i.e., the subset of users who �t in a car and their corresponding POI,

whereas in the classical MST problem such a subset is given. We

de�ne a new type of MST problem for this that we solve e�ciently

by the inclusion of constraints on the possible meeting points of

users. We name this new problem “Variable Steiner Tree” (VST)

as the POI is not set beforehand, and our solution to this problem

VST-RS, where the su�x refers to “ride-sharing”.

Our problem has many variations. In this paper, we show how

VST-RS can be modi�ed to address two of them, i.e., when users do

not have a car and when they can meet at parking lots only, and

discuss other related problems that could be studied in the future.

The contributions of the paper can be summarized as follows:

• We generalize ride-sharing by allowing users to agree on com-

mon destinations from a set of possible options.

• We de�ne a new MST problem we call “Variable Steiner Tree.”

We solve it in a novel way by imposing constraints on candidate

meeting points thus signi�cantly reducing computation time.

• We extend VST-RS to solve realistic variations of the problem.

• Our extensive experiments demonstrate that VST-RS is fast and

can be deployed in real world applications.

2 RELATEDWORK
2.1 Activity-based Ride-sharing
Recently, in transportation science, Wang et al.’s [8] work considers

a choice set of POIs instead of �xed destinations which is similar

to our goal. Their work shows that this paradigm improves the

ride-sharing matching rate without presenting a viable algorithm

for it. Our work shows that this paradigm can be solved e�ciently

as a new Steiner tree problem and through dynamic programming.

2.2 Car Pooling
Car pooling is a service organised by large companies which get

employees pick up colleagues while driving to/from work [1]. Its

purpose is to minimize the travel cost, which is typically the dis-

tance travelled by all cars. The problem is NP-hard [1]. Several exact

and approximation algorithms were proposed to solve this problem.

Recently, Oslen [7] considered a version of car pooling called "pri-

vate park and ride" problem where the users meet at intermediary

points and then share rides to a common destination. The author

showed that the private park and ride problem is APX-complete

even when the cost of all edges is 1. The author discussed about

the complexity of the problem but proposed no algorithm to solve

it. The car pooling problem appears to be similar to ours but in

fact it is quite di�erent. In car pooling there is a single �xed desti-

nation which is agreed on ahead of time, whereas in our problem

there are multiple destinations and they are known ad-hoc, which

makes heavy-weight optimization infeasible in our setting. In car

pooling, the participants are commonly divided into servers and

clients [1]. Servers start from their location, pick up clients and

reach the destination. In our problem, a server may leave its car at

an intermediary point and share a ride with other servers.

2.3 Minimum Steiner Trees
A minimum Steiner tree (MST

1
) is a connected sub-graph that spans

a subset of nodes in a graph with the minimum cost.

In our case, when a group of users �t in a single car, their optimal

routing to a given location is an MST. Since a car has limited seats,

in the overall optimal travel plan for all users one has to divide

them into groups so that each group can �t into a car. Therefore,

the optimal travel plan consists of multiple MSTs. To determine

the optimal travel plan we compute the travel cost of all possible

groups and then select the groups so that all users are selected and

the total cost is minimized. In addition, POIs have to be chosen

during the execution of the algorithm and are not predetermined.

The MST problem is NP-hard. Dreyfus et al. [2] developed a

fast solution which has been the best for the last four decades [6].

Recently, algorithms were proposed to improve the computation

speed by decreasing the dependency on the number of terminals

with the cost of increasing dependency on the number of nodes in

the network. In our scenario, the number of nodes in the network is

much larger than the number of terminals (users). Hence, Dreyfus

et al.’s continues to perform better in our scenario. We refer to this

algorithm regularly as we use it to build the baseline methods.

3 PROBLEM DEFINITION
Let U and P be the set of users and POIs, respectively. Let z be the

same number of seats in each passenger car in our simplest setting.

Our query �nds interconnecting routes from all members of U to

one or more elements of P that minimizes the total cost of the edges

on the routes. For the sake of simplicity we consider the users and

POIs are located at the nodes of the road network.

Given a network G = (V ,E) and a set of nodes D ⊆ V , Cost(D)
denotes the cost, i.e., the sum of the edge costs, of the MST that

spans at least
2 D. We call the problem of �nding the optimal routing

for a group of users U
′

to the optimal POI assuming the users can

�t in a car as “Variable Steiner Tree” problem. It can be de�ned as:

Given: An undirected network G = (V ,E), locations of users

L ⊆ V and locations of POIs P ⊆ V .

Find: A POI p ∈ P and the corresponding MST such thatCost(L∪

{p}) = minp′ ∈P Cost(L ∪ {p
′

}).

LetOptCost(U
′

) be the travel cost of usersU
′

to the optimal POI.

For the overall problem, we need to divide all users into groups

so that they can �t into multiple cars. Since more than z users

cannot share a car, the maximum size of a group is z. Let U =

U
′

1
∪U

′

2
∪U

′

3
... ∪U

′

t , where |U
′

i | ≤ z and U
′

i ∩U
′

j = ϕ and 1 ≤ i ≤

1
We abbreviate this problem as MST. Readers should not be confused with the minimum

spanning tree problem.

2
Additional nodes, called Steiner nodes, are also spanned

Ride-sharing is About Agreeing on a Destination SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA

t , 1 ≤ j ≤ t , i , j. We need to �nd out the optimal division of U

and the corresponding MSTs so that

t∑
i=1

OptCost(U
′

i) is minimized.

Solving this problem requires solving the set cover problem. In

the set cover problem, there is a universal set and multiple subsets

with associated costs. A solution is a collection of subsets so that

their union is equal to the universal set and the total cost is mini-

mized. In our problem the universal set is the set of users and the

subsets are all possible subsets of less or equal to z users. The cost

of a subset is the travel cost of the users in this subset to the optimal

POI according to the optimal travel plan. The set cover problem is

known to be NP-hard, hence our problem is also NP-hard.

4 SOLUTIONS
4.1 A Brute Force Approach
Dreyfus et al. [2] proposed an algorithm to compute an MST over

a network. An MST spans a subset of nodes D in a graph and, in

order to minimize its cost, additional nodes are also spanned. These

additional nodes are called Steiner nodes and they correspond to

the meeting points within our ride-sharing model. At the beginning,

Dreyfus et al.’s algorithm builds Steiner subtrees for every combi-

nation of 2 users and one Steiner node, and stores the best Steiner

node with its corresponding combination. Then, the same process is

performed for every combination of 3 users based on the results for

2 users and so on, until the number of users for each combination is

|D | −1. In our scenario, the last node is the location of a POI and the

remaining nodes (|D | −1) are users’ locations. Then, an MST is com-

puted connecting the users to the POI. When computing an MST

connecting the users to another POI, most of the computation done

for the �rst POI can be reused. We can compute an optimal travel

plan for a given set of users by computing the MSTs connecting

di�erent POIs and �nding the MST with minimum length.

As a solution of our overall problem where all users cannot �t

into a car, we can solve a version of the set cover problem to �nd

the optimal division of the users into subsets so that the total cost

is minimized. The cost of a subset is the cost of the MST which

connects the users in the subset to a POI. We can search all subset

combinations to �nd an optimal solution of the overall problem.

The set cover problem is an NP-hard problem and thus this solution

will incur prohibitive computation cost even if the cost of each

subset is given. This solution will not scale even for a small number

of users and POIs.

We later give a more pragmatic baseline solution using existing

best MST practices. We show that even such approximate and

seemingly e�cient solution is much slower than ours in section 5.

4.2 Our Solution: VST-RS
At the core of our approach, there is the need to restrict the MST

search to a reduced set of nodes, by �rst being able to divide a

large city into smaller parts for an approximate overall solution

and then, by �nding optimal solutions within each part of the city.

Our approach is based on two key observations for this. First, when

people ride-share, the closer they are and the longer the route they

share, the better trade-o� we get from ride-sharing. Thus, people’s

locations is a sensible heuristic to divide the whole set of users as

people who are far away will most likely not ride-share. Second, the

whole road network is not of concern when computing the optimal

travel plan for such sharers. By the inclusion of novel constraints

on the meeting points, the search space can be further shrunk.

At high level, VST-RS has two steps. In the �rst step, based on

users’ locations, for a very large city, we divide users into groups of

at most S users so that the computation time for each group is fast.

(Later, we experimentally show that even a small value of S gives

good ride-sharing arrangements.) We divide the users into groups

starting with their nearest POIs. For computing the nearest POI to

a user we �nd the corresponding Voronoi cell
3

for the user. If there

are more than S users in a Voronoi cell we divide the users into

multiple groups using the distances between the users. If there are

less than S users in a Voronoi cell, we combine users from multiple

Voronoi cells into a group. It is worth mentioning that this initial

division does not force the users to ride-share to these POIs. We

use the POI concept to create pockets in a large city with S users

each.

The second step considers each group (≤ S) and has two sub-

stages. In the �rst sub-stage, we compute the travel plan and cost

for each subgroup (≤ z) by solving our new proposed Steiner tree

problem where the whole set of terminals is not pre-de�ned. We use

constraints to �nd the meeting points. We also develop an e�cient

algorithm built on Dijkstra’s algorithm to compute the next possible

intermediary meeting points. As a result, the optimal travel plan

for each combination of z users that can �t in a car is computed by

considering only a very small part of the network and thus further

decreasing the computation time signi�cantly. Hence, at the core of
our contributions we �nd a faster MST algorithm for our setting.

Once the optimal travel plan for each combination of z users

was computed in the �rst sub-stage, the second sub-stage �nds the

optimal division of all users into subgroups so that each subgroup

�ts in a car and the total cost for the group of S users is minimized.

In short, we reduce the need for a large network inspection for

solving an MST problem by (i) realizing that di�erent parts of the

city can be solved independently, and (ii) for each part, MST search

can also be e�cient by choosing meeting points carefully.

In the rest of this section, we �rst derive the constraints on the

meeting points and describe the process of �nding them in section

4.2.1. Then, the computation of the optimal plan for each subgroup

is presented in section 4.2.2. These two sections correspond to the

�rst sub-stage. Section 4.2.3 shows the division of users into sub-

groups (second sub-stage,) concluding the second step of the overall

algorithm. In section 4.2.4, we detail the �rst step of the overall

algorithm to enable our work to run e�ciently and accurately.

4.2.1 Finding the Intermediary Meeting Points. In order to com-

pute the optimal travel plan for a subgroup of users, we need to

�nd the intermediary meeting points where users meet each other

and start sharing rides. We de�ne the following keywords and prop-

erties of the optimal travel plan which we use to detect candidate

intermediary meeting points of users.

Intermediary meeting point (IMP): An IMP for a set of users U
′

is

a node where all users in U
′

can meet. The users leave redundant

cars at an IMP and proceed to share rides to complete their trip.

3
In a Voronoi cell, the distance of a node, which belongs to this cell, to the center of

this cell is shorter than its distance to any of the other centers of the Voronoi cells.

SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA Rahman et al.

Figure 2: (a) An optimal travel plan, (b) a travel plan with reduced cost if distance between uj and p1 is less than distance
between uj andmi j (c) a travel plan with reduced cost if cost of travellingU

′

to p1 is less than the cost of travellingU
′

tom.

Next intermediary meeting point (NIMP): A NIMP for users U
′

is

a node where users in U
′

can meet other users not in U
′

.

Constraints on NIMPs: Firstly, for a single user.

Theorem 4.1. Let uj meet another user at nodemi j to share a ride
in the optimal travel plan. The distance betweenmi j and uj must be
smaller than the distance of the nearest POI from uj .

Proof. If the distance between uj and mi j is larger than the

distance between uj and the nearest POI from uj , uj can directly

go to this POI and the travel cost can be reduced. In Figure 2(a),

T represents an optimal travel plan. In the �gure, the nearest POI

from uj is p1. If the distance between uj andmi j is larger than the

distance betweenuj and p1,uj will go to p1 and the rest of the users

go to p as shown by the graph T
′

in Figure 2(b), and in this way

the travel cost can be reduced. But T is the optimal travel plan and

a travel plan with lower cost is not possible. Thus, in an optimal

travel plan the distance between uj and mi j is smaller than the

distance between uj and the nearest POI from uj . �

We can expand the idea of NIMP to consider multiple users.

NIMP of a set of users is a node where these users may meet others.

Theorem 4.2. LetCost(U
′

∪{m}) be the travel cost ofU
′

tom. Ifm
is a NIMP of set of usersU

′

,Cost(U
′

∪{m}) ≤ minp∈P Cost(U
′

∪{p}).

Proof. Suppose a set of users U
′

have met at an intermediary

meeting point m1 and then they travel to NIMP m to meet other

user(s). In the optimal travel plan T , the cost of U
′

to travel to m

must be smaller than the cost of U
′

to travel to any POI. Suppose

there is a POIp1 for whichCost(U
′

∪{p1}) < Cost(U
′

∪{m}). In this

case, the sub-tree which connects U
′

tom will be replaced by the

optimal route that connectsU
′

to p1 as shown in Figure 2(c) and the

new travel plan T ”
will cost less than T . But T is the optimal travel

plan. Thus, for any p ∈ P , Cost(U
′

∪ {p}) > Cost(U
′

∪ {m}). �

Constraints on IMPs: Let Xi be the set of NIMPs for user ui . At

�rst, we consider constraints on IMPs of a set of two users. If ui
meets other users atm in the optimal travel plan,m must be a NIMP

of ui and thusm ∈ Xi . Hence, if two users ui and uj meet at point

mi j ,mi j ∈ Mi j = Xi ∩ X j .

For any IMP mi j , dist(ui ,uj) ≥ dist(ui ,mi j) and dist(ui ,uj) ≥
dist(uj ,mi j). If dist(ui ,uj) < dist(ui ,mi j), ui can travel to uj and

share a ride from there and the travel cost can be reduced. Hence,

in an optimal travel plan dist(ui ,uj) ≥ dist(ui ,mi j). Similarly, we

can show that dist(ui ,uj) ≥ dist(uj ,mi j).

When two sets of users meet, we can compute constraints on

the IMPs. The IMP must be a NIMP for both sets. In the optimal

travel plan, if U
′

meet the users U
′′

at m, the cost of U
′

to travel to

m must be smaller than the cost of U
′

to travel to any u ∈ U
′′

.

Algorithm to compute NIMPs: It is based on Dijkstra’s shortest

path algorithm and is a function we name FindNIMP .

In Dijkstra’s algorithm, given a source o, a destination d and

a graph G, it incrementally searches for the shortest path from o
to d . During the search, the algorithm �nds all nodes of G whose

distances from o are smaller than dist(o,d). Thus, given a user’s

location FindNIMP �nds all nodes of G whose distances from the

user’s location are smaller than the distance from this location to

the nearest POI. For instance, in Figure 3, u1, u2, u3 and u4 are

users and p1, p2 and p3 are POIs. If we run FindNIMP taking u1 as

source and the POIs as destinations or boundary nodes, the NIMPs

of u1 are the nodes whose distances from u1 are smaller than 2

because p1, the nearest POI to u1, is located at 2 units. X1 includes

all NIMPs of u1, so X1 = {(2, 4), (3, 4), (3, 3), (4, 4)}. The cost of a

NIMP is its distance from u1. Similarly, we compute X2, X3 and X4,

NIMP sets of u2, u3 and u4. Thus, X2 = {(4, 4), (5, 4), (6, 4), (5, 3)},

X3 = {(6, 4), (6, 3), (6, 2), (7, 3)} and X4 = {(6, 3), (6, 2)}.

On the other hand, when a set of IMPs for a set of users is given,

FindNIMP �nds the NIMPs with other users. Suppose we have a

set of IMPs M and the corresponding costs for a set of usersU
′

. The

cost of an IMPm ∈ M is the total travel cost for all users to reach

m. The cost of users in U
′

to travel to a nodem
′

after meeting atm

is the summation of the cost ofm and dist(m,m
′

). In our example,

in Figure 3(a), if u1 meets other users, the IMP must be a node in

X1. Similarly, an IMP for u2 must be in X2. Thus, if u1 and u2 meet

at an IMP m, m ∈ X1 ∩ X2. Hence, the set of possible IMPs for u1
and u2 is M12 = X1 ∩ X2 = {(4, 4)}, as in Figure 3(b). The cost of

IMP (4,4) is its total distance from the two users and thus it is 2.

To compute the cost of the NIMPs, we create a virtual node I
which has an edge connected to each meeting point m ∈ M . The

cost of an edge is the cost of the connectedm. We use I as source

and POIs as destinations in FindNIMP . In our example, suppose

u1 and u2 have met at one of the nodes in M12 and they travel

further to meet other users. We create a virtual node I12 that is

connected to each node in M12 as shown in Figure 3(c). The cost of

an edge between m ∈ M12 and I12 is the total distance of m from

u1 and u2. These costs are in Table 1. Then, we run FindNIMP
with I12 as source and the POIs as boundaries to �nd NIMPs for the

combination of u1 and u2. The distance of m from I12 represents

Ride-sharing is About Agreeing on a Destination SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA

Figure 3: (a) NIMPs of the users (b) Intersections of each pair of sets of NIMPs (c) Computing NIMPs for each pair of users

the total travel cost of u1 and u2 to m when they ride-share. The

nearest POI from I12 is p1 whose distance is 3 from I12.

Algorithm 1 �nds the NIMP nodes

1: function FindNIMP(M, cost, B, G) . M : source nodes, cost :
source costs, B : boundary nodes, G : graph.

2: create node set Q
3: for each node m in M do
4: Q.insert(m, cost [m])
5: J [m] ←m
6: X ← ∅
7: while Q is not empty do
8: u ← Q.ExtractMin() . �nd the next node

9: X ← X ∪ {u }
10: if u ∈ B then
11: p ← u
12: minCost ← cost [u]
13: break . terminate if a boundary node is found

14: for each neighbor v of u that is still in Q do
15: if v not visited before then
16: cost [v] ← in�nity

17: temp ← cost [u]+length(u, v)
18: if cost [v] > temp then
19: cost [v] ← temp
20: J [v] ← J [u]
21: Q.insert(v, cost [v])
22: return X , cost, J , p,minCost . X : NIMPs, cost : NIMPs costs,

J : meeting points, p : nearest POI, minCost : cost of p .

23: end function

When any node p from P is found, the algorithm ends. Due to the

incremental property of FindNIMP , the cost of p is the minimum

for any member of P . The costs of all nodes found before p are not

larger than that of p. Let XU ′ be the set of these nodes. According

to Theorem 4.1, XU ′ is the set of NIMPs where U
′

can meet other

users from U −U
′

. Similarly, we can compute the NIMPs XU ′′ of

another set of users U
′′

, as the set of the possible points where U
′′

can meet other users from U −U
′′

. If U
′

∩U
′′

= ∅, XU ′ ∩ XU ′′ is

the set of nodes where U
′

and U
′′

can meet.

Algorithm 1 �nds NIMPs. Line 4 sets the cost of the nodes in M
to mimic the case where the nodes are connected to a virtual node,

which is the source. J [v] records the nodem ∈ M which connects

v with the virtual node in the shortest path. In other words, if the

users travel to v they will meet atm and share a car to v .

Table 1: IMPs and costs for
each pair of users

IMP set Node Total

cost

M12 = X1 ∩ X2 (4,4) 2

M13 = X1 ∩ X3 ∅ -

M14 = X1 ∩ X4 ∅ -

M23 = X2 ∩ X3 (6,4) 2

M24 = X2 ∩ X4 ∅ -

M34 = X3 ∩ X4 (6,3) 0.5

" (6,2.5) 0.5

" (6,2) 1.5

Table 2: NIMPs and costs
for each pair of two users

NIMP

set

Node Total

cost

X12 (4,4) 2

X13 ∅ -

X14 ∅ -

X23 (6,4) 2

X24 ∅ -

X34 (6,4) 1.5

" (6,3) 0.5

" (6,2.5) 0.5

" (6,2) 1.5

" (7,3) 1.5

" (7,2.5) 1.5

4.2.2 Optimal Plan for Each Possible Subgroup. Suppose the

number of seats in each car is three in the previous example. Thus,

the size of a valid subgroup must be less or equal to three.

In the �rst step, we consider each user individually. In Figure

3(a), the nearest POI from u1 is p1 and the distance is 2. Thus, the

optimal travel cost for u1 is OptCost1 = 2. If u1 does not ride-share

with others, she can go to p1 by travelling 2 units. According to

Theorem 1, u1 will not travel more than 2 units to meet another

user. The optimal travel cost for u2, u3 and u4 when they do not

ride-share are the distances from their nearest POIs. Therefore,

OptCost2 = 1.5, OptCost3 = 1.5 and OptCost4 = 1.5

In the second step, we consider each pair of users. For each pair

of users we �nd the IMPs where they can meet each other and

the NIMPs where they can meet other users. The set of IMPs for

each pair of users is shown in Table 1. The optimal POI for u1
and u2 when they ride-share is p1 and the travel cost is 3. Since

OptCost1 +OptCost2 = 2 + 1.5 > 3, u1 and u2 should ride-share if

possible and the cost of their travel plan is OptCost12 = 3.

According to Theorem 2, u1 and u2 will travel to m to meet

other users if the distance ofm from I12 is smaller than 3. Thus, the

NIMP set of u1 and u2 is X12 = {(4, 4)} and the cost is 2. Similarly,

we compute NIMP sets for each pair of users using FindNIMP .

Table 2 shows the NIMPs and their costs for each pair of users.

X23 = {(6, 4)}, X34 = {(6, 4), (6, 3), (7, 3), (6, 2.5), (7, 2.5), (6, 2)},

OptCost23 = 2.5 and OptCost34 = 2. Since M13 = M14 = M24 = ∅,

X13 = X14 = X24 = ∅, users do not ride-share in these cases, and the

SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA Rahman et al.

minimum cost of each pair of users to any POI is the total distance

from their nearest POIs. Thus,OptCost13 = Opt1+Opt3 = 2+1.5 =

3.5,OptCost14 = 2 + 1.5 = 3.5 and OptCost24 = 1.5 + 1.5 = 3.

In the third step, we consider the combination of three users

starting from (u1, u2, u3). The possible plans for the users to reach

a POI p are the combinations where two of them meet �rst and

then the other joins them to go to p. We compute the possible

meeting points and their costs for all plans. Now, consider the

�rst plan: u2 and u3 meet at an IMP m1 ∈ M23 and then proceeds

to a NIMP m2 ∈ X23 to meet u1. On the other side u1 comes to

a NIMP m2 ∈ X1 to meet u2 and u3. Thus, the set of possible

meeting points where u1 can meet u2 and u3 is M
1 |23 = X1 ∩ X23.

In our example, M
1 |23 = ∅ which means that u1 will not meet

u2 and u3 in an optimal travel plan. Hence, the optimal travel

cost for the �rst plan is OptCost
1 |23 = OptCost1 + OptCost23 =

2 + 2.5 = 4.5. Similarly, M
2 |13 = X2 ∩ X13 = ∅, OptCost2 |13 =

OptCost2 +OptCost13 = 2 + 2.5 = 4.5, M
3 |12 = X3 ∩ X12 = ∅ and

OptCost
3 |12 = OptCost3 +OptCost12 = 1.5 + 3 = 4.5. Thus, the set

of IMPs for the three users is M123 = M
1 |23∪M2 |13∪M3 |12 = ∅ and

OptCost123 = min(OptCost
1 |23,OptCost2 |13,OptCost3 |12) = 4.5.

Since M123 = ∅, u1, u2 and u3 will not form a subgroup and go to a

single POI. Similarly, we computeM234 = {(6, 4)} and the cost of the

IMP is the total distance fromu2 and I34 which is 2.5. In this manner,

we compute M124 = ∅ and M134 = ∅. Next, we compute NIMPs for

each combination of three users. Since M123 = M124 = M134 = ∅,

these combinations are not valid to form a subgroup and thus

X123 = X124 = X134 = ∅. We create a virtual node I234 which is

connected to the node in M234 with an edge of cost 2.5. Then, we

run FindNIMP considering I234 as source and the POIs as bound-

ary. The nearest POI from I234 is p2 and its distance is 3. Thus, the

optimal POI for u2, u3 and u4 is p2 and the cost is OptCost234 = 3.

Algorithm to compute travel plan for each possible subgroup: We

use dynamic programming to compute the optimal travel plan to the

optimal POIs for all possible combinations where each combination

can �t in a car. Although this algorithm resembles Dreyfus et al.’s, it

has two crucial di�erences. First, the new constraints on the NIMPs

reduce signi�cantly the time complexity when computing the costs

of candidate meeting points. Most nodes are not even taken into

account. In Algorithm 2, the "for loop" in lines 17 through 22 only

iterates IMPs resulting from the intersection of NIMPs of subgroups

of users, whereas, in the original algorithm, every single node in

the network is taken into account. Second, our new Steiner problem

does not have a de�ned set of terminals, i.e., users and POIs. POIs

are chosen by the algorithm.

Algorithm 2 �nds the optimal travel plan and the optimal POIs

for each combination of users where the number of users in each

combination is less or equal to z. FindNIMP computes a list of

NIMPs X [comb] for users in comb where cost[comb] is a list of the

cost values of each node in X [comb]. For each node x in X [comb]
there is a node j ∈ M[comb] listed in J [comb]. If the users in comb
go to x they meet in j and then they ride-share to x .

In line 3, we compute the NIMPs for each user using FindNIMP .

The function also computes the nearest POI and its distance from

each user and records them inOptPOI [u] andOptCost[u]. Next, we

increase the number of users in each combination comb in the "for

Algorithm 2 computes optimal travel plans for all possible combi-

nations of less than z users

1: function ComputeCostEachCombination(U
′
, P, G) . U

′
: users,

P : POIs, G : graph.

2: for each user u ∈ U
′
do

3: X [u], cost [u], J [u], OptPOI [u], OptCost [u] ← Find-

NIMP(u, 0, P, G)

4: for j = 2 to z do
5: for each combination comb of j users from U

′
do

6: M [comb] ← ∅
7: OptCost [comb] ← inf

8: OptPOI [comb] ← null
9: for each v ∈ V do

10: cost [comb][v] ←in�nity

11: for each division of comb to comb1 and comb2 do
12: temp ← OptCost [comb1] +OptCost [comb2]
13: if OptCost [comb] > temp then
14: OptCost [comb] ← temp
15: bestSubдroupinд[comb] ← [comb1, comb2]
16: XX ← X [comb1] ∩ X [comb2]
17: for eachm ∈ XX do
18: M [comb] ← M [comb] ∪m
19: temp = cost [comb1][m] + cost [comb2][m]
20: if cost [comb][m] > temp then
21: cost [comb][m] ← temp
22: bestDiv[comb][m] ← [comb1, comb2]
23: X [comb], cost [comb], J [comb], p, temp ← Find-

NIMP(M [comb], cost [comb], P, G)

24: if OptCost [comb] > temp then
25: OptCost [comb] ← temp
26: OptPOI [comb] ← p
27: bestSubдroupinд[comb] ← [comb, null]
28: return OptCost, OptPOI, J , bestDiv, bestSubдroupinд .

OptCost : optimal travel cost, OptPOI : optimal POI for each combi-

nation, {J , bestDiv, bestSubдroupinд } : travel plan.

29: end function

loop" in line 4. Line 6 to 10 initializes some variables which are used

later. For each combination we consider each possible division into

two subgroups comb1 and comb2 in the "for loop" of line 11. If the

total cost decreases when comb1 and comb2 go to their respective

optimal POIs, we update OptCost and bestSubдroupinд in lines 12

to 15. We compute meeting points for each division by taking an

intersection of the NIMPs of comb1 and comb2 in line 16. The "for

loop" in line 17 iterates each node that is a NIMP of both comb1
and comb2. These are IMPs where comb1 and comb2 can meet. The

cost of the IMPs are computed and updated in lines 19-21. Line 22

records the best division of comb into comb1 and comb2 for each

node. We need this information to recover the optimal travel plan.

After computing the IMPs and their costs for comb, FindNIMP in

line 23 computes the NIMPs for comb. The function also computes

the optimal POI if all users in comb ride-share to a common POI and

the cost to the POI. If the cost is less than the previously computed

OptCost[comb], then OptCost , OptPOI and bestSubдroupinд are

updated in lines 24-27. Then, the "for loop" of line 5 considers the

next combination. If all combinations are considered, then the size

of the combination is increased. After considering all combinations

of z users, the algorithm terminates.

Ride-sharing is About Agreeing on a Destination SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA

Table 3: Division of a group of users into two sets

Division Total cost

u1, (u2, u3, u4) Opt1 +Opt234 = 2 + 3 = 5

u2, (u1, u3, u4) Opt2 +Opt134 = 1.5 + 4 = 5.5

u3, (u1, u2, u4) Opt3 +Opt124 = 1.5 + 4.5 = 6

u4, (u1, u2, u3) Opt4 +Opt123 = 1.5 + 4.5 = 6

(u1, u2), (u3, u4) Opt12 +Opt34 = 3 + 2 = 5

(u1, u3), (u2, u4) Opt13 +Opt24 = 3.5 + 3 = 6.5

(u1, u4), (u2, u3) Opt14 +Opt23 = 3.5 + 2.5 = 6

We recover the optimal travel plan in a recursive manner. Let p
beOptPOI [comb] for a given set of users comb. Letm be J [comb][p].
m records the node where all users in comb meet before going to

p. bestDiv[comb][m] records the optimal division of users into two

subsets comb1 and comb2 when comb1 and comb2 meet atm. Letm1

be J [comb1][m].m1 records the node where the users in comb1 meet

before going to m. bestDiv[comb1][m1] records the two subgroups

which meet atm1 and forms comb1. In this way, we �nd the meeting

points and divisions of users prior to coming to the meeting points.

Now, let OptPOI [comb] be null. In this case, the users in comb
form multiple subgroups and the optimal travel plan for each sub-

group needs to be recovered separately. bestSubдroupinд[comb]
records the best division of comb into two subgroups comb1 and

comb2. If OptPOI [comb1] is not null, we recover the optimal travel

plan for comb1 using the method described in the previous para-

graph. If OptPOI [comb1] is null, like the case of comb, we �nd the

best division of comb1 into two subgroups. This process continues

recursively until a combination is found for which OptPOI is not

null. In this way, we recover the optimal travel plan.

4.2.3 Dividing a Group of Users into Subgroups. In Section 4.2.2,

we computed optimal travel plans for all possible combinations of

users where each combination can �t in a car. Table 3 shows all

possible divisions of all users into two subgroups, where the �rst

and the �fth divisions minimize the cost and thus either of them

can be used to compute the optimal plan.

In this section we propose an algorithm to divide a group of users

into subgroups so that each subgroup can �t in a car and the total

travel cost is minimized. At �rst, we consider each combination

of z + 1 users. Since the users cannot �t into a car, we consider

all possible divisions of z + 1 users into two sets where the size

of each set is less or equal to z. For each division, we compute

the travel cost by adding the optimal travel cost of the two sets.

The travel cost of all possible sets of size less or equal to z have

been computed previously by Algorithm 2. The division with the

minimum cost is the optimal division and the cost is the optimal

cost for this particular combination of z + 1 users. Similarly, we

compute the optimal cost for each combination of z + 1 users. Next,

we consider all combinations of z + 2 users and divide them into

two sets where the size of each set is less or equal to z + 1. Similar

to the combination of z + 1 users, we compute the optimal cost of

all combinations of z + 2 users. In this way, we keep on increasing

the number of users until all users are included in a combination

and the optimal cost for all users in a group is computed.

Algorithm 3 computes the optimal division of the users into

subgroups. The "for loop" in line 2 iterates from z + 1 to S . The "for

loop" in line 3 iterates to compute the optimal cost for each combi-

nation given a particular size. The "for loop" in line 5 iterates the

possible divisions into two subgroups of the current combination

of users to �nd the optimal division. The optimal cost and optimal

division into subgroups are updated in lines 6-9. After computing

the optimal travel cost for a combination of users, the "for loop"

of line 3 considers the next combination. If all combinations of a

certain size are considered, the size is increased in the "for loop" of

line 2. When the size reaches to S the algorithm terminates.

Algorithm 3 computes optimal division of users into subgroups.

1: function ComputeOptimalDivision(U
′
, OptCost) . U

′
: users.

2: for j = z + 1 to S do
3: for each combination comb of j users from U

′
do

4: OptCost [comb] ← inf

5: for each division of comb to comb1 and comb2 do
6: temp ← OptCost [comb1] +OptCost [comb2]
7: if OptCost [comb] > temp then
8: OptCost [comb] ← temp
9: bestSubдroupinд[comb] ← [comb1, comb2]

10: return OptCost, bestSubдroupinд . OptCost : updated

optimal travel cost, bestSubдroupinд : optimal division.

11: end function

4.2.4 Dividing All Users into Groups . We divide all users into

groups so that the optimal travel plan for each group can be com-

puted using Algorithm 3. Suppose we choose S to be the maximum

size of a group. Intuitively, a larger S will produce fewer divisions

and a better approximation. However, the computation time of

Algorithm 3 is exponential to S .

We compute the Voronoi cell of POIs for each user. Then, we

randomly select a POI p1. Let U1 be the set of users whose nearest

POI is p1. We �nd the furthest user u1 ∈ U1. If the number of users

in U1 is smaller or equal to S , we start a new group Gr1 and assign

all users to it. If |U1 | > S , we �nd the nearest S − 1 users to u1 who

are members of U1 and complete Gr1. Next, we �nd the furthest

user u
′

1
from p1 from the remaining users in U1. Similar to u1, u

′

1

forms a group with the remaining users inU1. In this way, we divide

the users inU1 into groups. If a group is partially �lled, we check if

all users in a neighboring cell can �t into the group and we assign

these users to the group.

4.2.5 Complexity Analysis. Let Nu and N be the total number

of users and the number of nodes in the network. Let S and z be

the number of users in each group and the capacity of the cars. The

worst case computation time complexities of the �rst and second

steps are O(NuN
2) and O

(Nu
S
(SzN 2 + 3SN)

)
.

The time complexity of Dreyfus et al.’s algorithm is O(2NuN 2 +

3
NuN). In our algorithm, if S = Nu , i.e., there is just one group

which contains all users, and z is big enough, its time complex-

ity is comparable to Dreyfus et al.’s, i.e., it leads to combinatorial

explosion. However, we show experimentally that the cost of the

travel plan is stable when the group size is larger or equal to 8 and

the capacity of a car is 5. Thus, S = Nu does not hold when Nu is

big enough. Also, the inclusion of the constraints in our algorithm

yields to the term SzN 2
instead of 2

NuN 2
as in Dreyfus et al.’s.

SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA Rahman et al.

Consequently, in practice, our algortihm’s performance is much

better than the solutions based on Dreyfus et al.

4.3 Extensions
In real life, some users may not have a car and users might be

allowed to leave their cars at designated parking lots only.

The users who do not have a car must be picked up from their

locations. Suppose uw has a car and uwo does not. If uw and uwo
meet and share a ride, the IMP must be the location ofuwo . Distance

from uwo to any node other than her own location is in�nity since

she cannot travel. Two users who do not have car cannot meet by

their own. We modify FindNIMP so that the NIMP of a user who

does not have a car is her own location.

If a user is allowed to leave her car at a parking lot only, other

users must pick her up from that point. Thus, an intermediary

meeting point must be a parking lot. First, we modify the road

network by adding the parking lots as nodes where the connecting

roads link them to the neighboring nodes. Line 9 in FindNIMP ,

Algorithm 1, can exclude the nodes that are not parking lots.

5 EXPERIMENTAL EVALUATION
As the brute force approach will not scale even for a small number

of users and POIs, we propose two baseline methods.

The �rst approximate solution divides all users into groups using

their locations and computes an optimal travel plan for each group

using Dreyfus et al.’s algorithm. The size of each group is deter-

mined by the computational limit of the hardware. Although this

baseline solution is better than the brute force approach, computing

the cost for each subset of users is still costly. When the network is

large, both time and memory consumption will be prohibitive. Our

experiments show that this method requires about 200 seconds for

32 users when the number of intersections in the network is 10,000

and the group size is 8. Thus, we need a better solution.

The second approximate solution divides the users into sub-

groups using a heuristic so that each subgroup can �t into a car

and go to a pre-chosen POI. Then, for each subgroup we compute

the MST using Dreyfus et al.’s algorithm. This solution avoids the

costly set cover problem and also minimizes the number of MST

computations. We draw a Voronoi diagram for the POIs, the users

in a Voronoi cell are grouped together. If the number of users is

large and cannot �t in a car, we divide the cell into subgroups so

that each subgroup can �t. We give priority to the farthest users to

a POI to ride-share as they will be able to share a longer route with

others and reduce the travel cost more compared to nearer users.

We refer to the �rst baseline method as Dreyfus-WC as a short

form of "Dreyfus with choice" of POI. The second baseline method

is referred as Dreyfus-WoC as a short form of "Dreyfus without

choice" of POI. In order to verify the e�ect of the constraint on the

IMPs on the computation time we present results when constraints

are not used in VST-RS. VST-WoConst represents these results.

We used and generated a real and synthetic road networks. We

use the road network of California
4

which has about 2 million nodes

and 3 million edges. In each run, we randomly selected part of the

network to consider di�erent types of cities. We generated a grid-

like road network where the length of each edge was set randomly

4
https://snap.stanford.edu/data/roadNet-CA.html.

Table 4: Experimental set-up

Parameter Range Default

Number of users 2 - 1024 128

Number of POIs 10- 640 160

Network size 1250 - 80,000 10,000

Figure 4: E�ect of group size on (a) travel cost of the com-
puted plan, (b) mean processing time of VST-RS.

using a uniform distribution between 0 and 1. The locations of users

and POIs had a uniform random distribution. We also considered

the special case when the POIs have a Zip�an distribution. In this

case, there was a grid-like city and the POIs were located at one

side of the city. Lengths of all edges were equal.

We varied the number of users from 2 to 1024. The number of

POIs were varied from 10 to 640. We varied the network size from

1250 to 80000 nodes. In the default setup, there are 128 users and 160

POIs. If the system computes ride-sharing arrangements every two

minutes, it will serve 3840 users per hour in the default case. If a POI

serves an area of 10 km
2
, 160 POIs serve a city of 1600 km

2
. Since

most passenger cars have comfortable seating arrangements for 4

passengers we take the default value of the number of users as 4.

The baseline uses Dreyfus’ MST algorithm and it could not compute

an MST when the network size was larger than 10K. Therefore,

the default value of the network size was set to 10K. We used the

synthetic network as default to have better control on the network.

The range of the parameters and their default values are shown in

Table 4. We computed the mean processing time for all methods.

For each experiment we processed 100 queries.

5.1 E�ect of Group Size
We divide all users into groups and for each group we compute

the optimal travel plan. Since we use heuristics to divide users into

groups, VST-RS gives an approximate answer of the overall set

cover problem. Intuitively, the larger and fewer the groups are, the

better the approximation is. We studied the e�ect of group size

on the cost of the computed travel plan by varying the number

of users in a group. Figure 4(a) shows that the travel cost of the

computed travel plan decreases at the beginning rapidly and then

becomes stable when the number of users in a group increases.

Since the users who are far away in space have little e�ect on the

travel plan, the e�ect of the group size diminishes gradually when

it increases. From Figure 4 we can say that the travel cost is stable

when the group size is larger or equal to 8. Figure 4(b) shows that

the mean processing time increases exponentially when the group

size increases. Considering both travel cost and processing time, 8 -

Ride-sharing is About Agreeing on a Destination SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA

Figure 5: (a) E�ect of number of users, and (b) E�ect of num-
ber of POIs, on the mean processing time.

Figure 6: E�ect of number of users on ride-sharing e�ciency
and the Dreyfus cost ratio when POIs have (a) uniform ran-
dom distribution (b) Zip�an distribution.

10 is a good choice as the maximum group size. Thus, the maximum

group size in VST-RS will be 8.

5.2 E�ect of the Number of Users
We varied the number of users from 2 to 1024. Figure 5(a) shows

that VST-RS is at least one order of magnitude faster than the other

methods. The gap increases when the number of users increases. In

our case, when the number of users increases, the distance between

the users of a same group decreases. As a result, FindNIMP requires

less e�ort to �nd the possible meeting points. Thus, the computation

time of VST-RS does not increase as fast as that of the baselines. VST-

WoCnst and Dreyfus-WC require prohibitive computation time, so

we do not study them any further.

Figure 6(a) shows the Dreyfus cost ratio and ride-sharing e�ciency
when the POIs are uniformly distributed. Dreyfus cost ratio is the

ratio between the costs of the travel plans computed by Drefus-WoC

and VST-RS. It highlights the bene�t on cost savings of having a

choice set of POIs rather than going to a pre-de�ned destination.

Ride-sharing e�ciency is the ratio between the total cost when the

users go to their nearest POIs individually, i.e., they do not ride-

share, and the total cost computed by VST-RS. This value indicates

the savings due to ride-sharing.

When there are only a few users, the users go to their nearest

POIs individually since the users are far away from each other and

they have to travel long distances to share rides. As a result, when

the number of users is less or equal to 8, both Dreyfus cost ratio and

ride-sharing e�ciency is one. As the number of users increases, the

locations of the users become close and the ride-sharing opportunity

increases. As a result, the ride-sharing e�ciency increases when the

number of users increases. The Dreyfus cost ratio was stable around

1.05 indicating that the travel cost of the travel plan computed by

the baseline was on average about 5% higher than that of VST-RS.

Figure 7: E�ect of number of POIs on the Dreyfus cost ra-
tio and ride-sharing e�ciency when POIs have (a) uniform
random distribution (b) Zip�an distribution.

However, this is true only if POIs are distributed uniformly and

there is a POI close to ride-sharers.

Figure 6(b) shows the Dreyfus cost ratio and ride-sharing e�-

ciency when the POIs are Zip�an distributed. Figure 6(b) shows

that the cost of the travel plan computed by VST-RS is much smaller

than that of the baseline method when the number of users is be-

tween 16 and 128. In this case, the number of users in most Voronoi

cells are one or two and the users of a neighboring cell can decrease

the cost a lot by sharing rides and the destination POI is far away

at the other side of the city. The overall ride-sharing e�ciency is

also higher in this scenario.

5.3 E�ect of the Number of POIs
We varied the number of POIs from 10 to 640. The distance from a

user to its nearest POI decreases if the number of POIs increases.

As a result, our algorithm searches small areas to �nd the possi-

ble meeting points of users. Thus, the processing time of VST-RS

decreases which is shown in Figure 5(b). The processing time of

the baseline method also decreases. When the number of POIs

increases the mean size of the Voronoi cells and the number of

users in each of them decrease. The computation time of the MST

algorithm is exponential to the number of users. Therefore, a small

group requires much less computation time than a large group.

Although the number of groups increases, due to smaller group

size the computation time of the baseline decreases.

Figure 7(a) shows the e�ect of number of POIs on the Dreyfus

cost ratio and ride-sharing e�ciency when the locations of POIs

have uniform random distribution. If the number of POIs increases,

the average distance from a user to its nearest POI decreases and

therefore the bene�t from ride-sharing (ride-sharing e�ciency)

decreases. When there are 128 users and 640 POIs, almost all of

the users go to their nearest POI independently without sharing

rides. Thus, in this case, the ride-sharing e�ciency is close to one.

Similarly, Dreyfus cost ratio is also close to one in this case. When

the number of POIs is much less than the number of users, i.e., for

10 and 20 POIs, each Voronoi cell has a good number of users and

there is enough ride-sharing opportunity in each cell. Thus, the

baseline method, which groups users based on Voronoi cells, can

compute good ride-sharing plans. For the remaining cases, i.e., 40

to 320 POIs, the travel plan computed by the baseline method has

about 4 ∼ 5% higher cost than that of VST-RS.

Figure 7(b) shows the e�ect of the number of POIs on the Drey-

fus cost ratio and ride-sharing e�ciency when the locations of

POIs have Zip�an distribution. This setup represents the scenario

SIGSPATIAL’17, November 7–10, 2017, Redondo Beach, California, USA Rahman et al.

Figure 8: (a) Mean processing time of methods for di�erent
network sizes, (b) Real vs Synthetic networks.

Figure 9: E�ect of the number of car owners on (a) mean
processing time, (b) travel cost.

where the POIs are located at one side of the city. The cost of the

travel plan computed by VST-RS is much smaller than that of the

baseline when the number of POIs is more than 40. In this case, the

number of users in most Voronoi cells are one or two and the users

of neighboring cells can decrease the cost a lot by sharing rides

since the destination POI is far away at the other side of the city.

5.4 E�ect of the Network Size
We varied the number of nodes in the synthetic network from 1250

to 80K. Figure 8(a) shows the mean processing time of VST-RS and

the baseline method. VST-RS outperformed the baseline method

by one order of magnitude. The baseline could not compute the

optimal POI when the number of nodes was 20K or above.

5.5 Real vs Synthetic Networks
Figure 8(b) shows that the Dreyfus cost ratio for real and synthetic

network was always close when the number of users increased

from 2 to 1024. The computation time for both real and synthetic

networks was also similar when we randomly select parts of the

real network. The parts selected from the real network were of the

same size as the synthetic counterparts.

5.6 Experiments on Extensions
The number of car owners was varied to study the e�ect of car

ownership ratio. At �rst we considered car ownership ratio 100%.

Then, we decreased it in three steps until 25%. If a user does not

have a car she must be picked up from her location and thus, she

has only one intermediary meeting point which is her location.

Therefore, our algorithm checks less number of possible meeting

points and the processing time decreases as shown in Figure 9(a).

Figure 9(b) shows that the total travel distance increases when the

number of car owners decreases.

Figure 10: E�ect of the number of parking lots on (a) travel
cost, (b) mean processing time.

We studied the e�ect of the number of parking lots by increasing

it from 625 to 10K. Figure 10(a) shows that when the number of

parking lots increases, the processing time increases. Since more

parking lot creates more options for intermediary meeting points,

our algorithm needs to consider more options and thus the process-

ing time increases. Figure 10(b) shows that the travel cost decreases

when the number of parking lot increases. When there are fewer

parking spots, the number of possible meeting points is less.

6 CONCLUSION
In this paper, we develop an enhanced ride-sharing system for a

city to help users �nding better ride-sharing arrangements based

on agreements on POIs rather than matching pre-computed trajec-

tories. We propose an e�cient dynamic programming algorithm

and a novel solution to a new Steiner tree problem.

Our experimental results show that our proposed method out-

performs the baseline method, which is based on Dreyfus et al.’s

MST algorithm, by two orders of magnitude. The processing time of

VST-RS is small enough to be deployable in a real world scenario. In

this paper, we also extended our proposed solution for two di�erent

variations of the problem, i.e., when users do not have a car and

must meet at designated parking lots only. In the future, we plan

to consider other variations of the problem such as, di�erent car

capacities to combine car travellers with van travellers, time con-

straints on travel periods, ride-sharing preferences based on spatial

and non-spatial attributes, and using multiple hops, i.e., users may

be dropped o� and then picked up by another car later on.

REFERENCES
[1] R. Baldacci, V. Maniezzo, and A. Mingozzi. An exact method for the car pooling

problem based on lagrangean column generation. Operations Research, 52(3):422–

439, 2004.

[2] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1972.

[3] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale real-time ridesharing

with service guarantee on road networks. VLDB, 7(14):2017–2028, 2014.

[4] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale dynamic taxi ridesharing

service. In ICDE, pages 410–421, 2013.

[5] S. Ma, Y. Zheng, and O. Wolfson. Real-time city-scale taxi ridesharing. Knowledge
and Data Engineering, IEEE Transactions on, 27(7):1782–1795, 2015.

[6] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner tree

problem. Lecture notes in computer science, pages 561–570, 2006.

[7] M. Olsen. On the complexity of computing optimal private park-and-ride plans.

In Computational Logistics, pages 73–82. 2013.

[8] Y. Wang, R. J. Kutadinata, and S. Winter. Activity-based ridesharing: increasing

�exibility by time geography. In Proceedings of the 24th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, GIS 2016,
Burlingame, California, USA, October 31 - November 3, 2016, pages 1:1–1:10, 2016.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Activity-based Ride-sharing
	2.2 Car Pooling
	2.3 Minimum Steiner Trees

	3 Problem Definition
	4 Solutions
	4.1 A Brute Force Approach
	4.2 Our Solution: VST-RS
	4.3 Extensions

	5 Experimental Evaluation
	5.1 Effect of Group Size
	5.2 Effect of the Number of Users
	5.3 Effect of the Number of POIs
	5.4 Effect of the Network Size
	5.5 Real vs Synthetic Networks
	5.6 Experiments on Extensions

	6 conclusion
	References

