
Location Privacy for Group Meetups

A.K.M. Mustafizur
Rahman Khan

University of Melbourne
Victoria, Australia

khank@student.unimelb.edu.au

Lars Kulik
University of Melbourne

Victoria, Australia
lkulik@ unimelb.edu.au

Egemen Tanin
University of Melbourne

Victoria, Australia
etanin@ unimelb.edu.au

ABSTRACT
A Group Nearest Neighbor (GNN) query finds a point of interest
(POI) that minimizes the aggregate distance for a group of users.
In current systems, users have to reveal their exact, often sensi-
tive locations to issue a GNN query. This calls for private GNN
queries. However, existing methods for private GNN queries either
are computationally too expensive for mobile phones or cannot re-
sist sophisticated attacks. Our approach can efficiently and effec-
tively process an important variant of private GNN queries: queries
that minimize the maximum distance for any user in the group. To
achieve high efficiency we develop a distributed multi-party private
protocol to compute the maximum function. Our method exploits
geometric constraints to prune POIs and avoids unnecessary data
disclosure. In contrast to current state of the art multi-party private
protocols, our proposed protocol does not rely on cryptography and
has a fast runtime. Importantly, a user does not have to provide a
location directly, even in imprecise form.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Location Privacy, location based services, spatial data

1. INTRODUCTION
Group Nearest Neighbor (GNN) queries enable a group of users

such as friends or family members to determine an optimal meet-
ing location such as a restaurant, picnic place and so forth. We
consider the case of a private GNN query where group members
issue a query to find out the point of interest (POI) which mini-
mizes their aggregate distance (AD), i.e., the maximum distance.
In a privacy preserving GNN query, a user’s location is kept private
from other members as well as from the LSP. If a user’s distances
to three POIs are known, the user’s location can be calculated by
two-dimensional trilateration. Therefore, the group is required to
compute the ADs of POIs without revealing the users’ locations or
individual distances to POIs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996966

In our scenario, neither the LSP nor the users trust each other. For
example, the LSP may collude with group members. In line with
existing research, we consider only passive attacks. In these attacks,
an attacker or a group of colluding attackers compute distances of
an individual user to multiple POIs using gained information during
the distance aggregation process. Then these distances are used in
2D trilateration to recover the exact location of that user. We do not
consider the attacks where all users collude to attack a single user.

In order to calculate the aggregate maximum distance of a POI
from a group of user, the users have to compute the maximum of
their distances without revealing their individual distances. Current
state of the art private multi-party computation protocols [10, 6,
8] that compute an aggregate such as the maximum are based on
cryptography and thus requires expensive computation. Moreover,
our problem requires aggregate maximum distance computation for
a large number of POIs, which may incur prohibitive computation
cost on mobile devices once cryptographic approaches are used.
Xiong et al. [9] proposed a non-cryptographic technique to find
the maximum value from multiple private values. The participants
form a ring and the update a current maximum value sequentially. If
the input of a participant is larger than the current maximum value,
the participant updates the current maximum value with value cho-
sen randomly between the current maximum value and her own in-
put. In this way the participants keep on updating the current max-
imum value and if there is no update in one complete round, the
process terminates. The current maximum value is declared as the
maximum. Although a participant cannot relate the value of current
maximum to her previous participant in the ring, if two participants
collude they can monitor the participants who are positioned in be-
tween them.

The novelty of our work is twofold. First, we propose a non-
cryptographic privacy preserving multi-party computation proto-
col to compute the maximum of private values. Using a non-
cryptographic approach, our protocol significantly outperforms ex-
isting approaches. A key feature of our proposed protocol is that
the maximum can be computed for different levels of imprecision.
Our proposed protocol can be readily applied in other non-spatial
privacy preserving applications such as privacy preserving auction
systems or anonymous sorting. Second, we develop a two stage
pruning strategy and algorithms to search the GNN efficiently while
preserving each group member’s privacy.

2. RELATED WORK
Hashem et al. [3] first proposed a privacy preserving GNN query

processing technique. The users provide their imprecise locations
as regions instead of exact points to an LSP and thus preserve their
location privacy. The LSP returns a set of candidate POIs with re-
spect to the provided regions. The LSP calculates lower bounds on
the maximum distance of each POI from the users using their im-

precise locations. Then these values are passed to the users. The
users sequentially update the value (lower bound) for each POI.
Talouki et al. [2] have shown that Hashem et al’s [3] technique
is vulnerable to a Partial Collusion (PC) attack and a user’s loca-
tion can be recovered. Huang et al. used Garbled circuit, a cryp-
tographic technique, to preserve privacy in GNN queries [5]. Cre-
ating and evaluating a Garbled circuit when there were 10 users
and 2000 POIs took 20 seconds in a centralized model and 4 sec-
onds in a distributed model in a desktop computer in their experi-
ment. In [4], Huang et al. reported that Garbled circuit implemen-
tations on smartphones are about three orders of magnitude slower
than desktop computers and thus require unrealistic response time.
Talouki et al. [2, 1] and Khan et al. [7] proposed solutions to find
the POI that minimizes the aggregate total distance of the users and
are not applicable to our problem.

3. OUR SOLUTION
In our model, all users can communicate with the LSP and the

users can communicate with each other without the help of the LSP.
A user sends all group members’ identities and the desired POI type
to the LSP and inquires about the GNN. The LSP communicates
with the users using our Private Aggregate Maximum protocol to
compute and compare ADs and direct the GNN search.

3.1 Private Aggregate Maximum (PAM) Pro-
tocol

We propose the Private Aggregate Maximum protocol (PAM) to
calculate the maximum of inputs from multiple users when users
do not reveal their inputs. We use PAM to compute aggregate max-
imum distances of a group of users from points privately. The max-
imum value is calculated in a bit by bit fashion. Let {u1,u2, . . . ,un}
be a group of users. The distance from a user ui to a point is di,
which is kept private. The AD is computed as

D =
n

max
i=1

di.

Let the distances be Nb bit binary values. The protocol to solve this
problem is divided into two phases. The first phase is an initial-
ization step. Random values are exchanged between users which
are used in the second phase to hide distance values. In the second
phase, the users send transformed values to the LSP to compute
their aggregate distance while concealing their individual distances.

In the first phase, the users communicate with each other and
exchange values. Each user ui does:

1. Create an n×Nb matrix Bi whose elements are zero.
2. Randomly select φi rows of Bi and replace the values in these

rows by random values. Here 0≤ φi ≤ n and ui keeps φi pri-
vate.

3. Send the j-th row of Bi to user u j, where j = {1,2, . . . ,n}
and j 6= i.

4. Receive the i-th row of B j from u j , where j = {1,2, . . . ,n}
and j 6= i.

5. Set candidancy value Ci = 1. Ci is the availability of chance
of di being the maximum.

The values of un-selected rows are zero. Therefore, a user only need
to send the selected φi rows to the corresponding users. If a user
does not receive values from user u j, s/he sets the received values
from u j to zero. In this way the number of messages sent between
the users can be decreased. Ci means whether di is still a candidate
of being the maximum or not. Users update Ci in the second phase
if necessary. In the first phase, the users exchange random values
among them. Therefore, a user’s distance cannot be recovered by
other users even if all of them collude.

The second phase is performed once for computation of each bit
of the maximum value. This computation is done in an order from
the MSB to the LSB. In this phase, the users send values to the
coordinator. An LSP or any user or any third party can act as a
coordinator. Suppose that the most significant (m− 1) bits of the
maximum value has been computed and the m-th bit is to be com-
puted. Here 1≤ m≤ Nb. Each user ui does the following:

1. Set ∆i = ridi[m]Ci−
n
∑

k=1,k 6=i
Bi[k][m]. Here di[m] is the m-th

bit of di and ri is a random positive value.
2. Calculate ∆

′
i as the sum of the m-th elements of the row vec-

tors received from other users. ∆
′
i =

n
∑

j=1, j 6=i
B j[i][m].

3. Calculate δi = ∆i +∆
′
i and send δi to the coordinator.

The coordinator calculates the aggregate total value for the m-th
bit as

δ =
n

∑
i=1

δi.

If δ > 0, D[m] = 1, otherwise D[m] = 0. D[m] is the m-th bit of D.
The coordinator publishes D[m] to all users. Each user ui sets Ci to
0 if D[m]> di[m].

A random positive value ri is used to hide the information of the
number of candidates for the maximum. If ri is set to 1, δ is equal
to the number of candidates whose m-th bit is 1.

A user ui discloses only the j-th row of Bi to u j and δi to the co-
ordinator. The user keeps all other information private. When cal-
culating ADs to a set of points, users exchange an matrix of values
instead of just one value in each communication. PAM cannot pro-
tect a user if all other users collude. Therefore, the group size must
be at least three.

3.1.1 A run through example
Suppose there are four users u1, u2, u3 and u4 and their distance

from a point is 1101, 0111, 1011 and 1100 respectively. We use
PAM to compute the aggregate maximum distance of the point. In
the first phase:
1. The number of users is n = 4 and the number of bits in distance

value is Nb = 4. Each user ui creates a n×Nb = 4×4 matrix Bi
whose elements are zero.

2. u1 selects a random number between 0 and 4, say 2 as the value
of φ1. u1 randomly selects the second and fourth row of B1 and
replaces the values with random values. B1 becomes a matrix of
random values where the elements in the 1st and 3rd rows are
zero. Let the resultant value of B1 be

B1 =

∣∣∣∣∣∣∣∣
0 0 0 0
6 3 4 1
0 0 0 0
5 6 0 2

∣∣∣∣∣∣∣∣
Similarly suppose the random matrix created by u2 (selects the
1st and 2nd row), u3 (does not select any row) and u4 (selects
the 2nd row) are

B2 =

∣∣∣∣∣∣∣∣
3 7 6 2
2 3 −5 1
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣B3 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣B4 =

∣∣∣∣∣∣∣∣
0 0 0 0
7 2 1 −3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
3. u1 sends the 2nd and 4th row of B1 to u2 and u4. Similarly u2

sends the 1st row of B2 to u1 and u4 sends the 2nd row of B4 to
u2.

4. The row vectors (ignoring the all zero rows) received by u1, u2

and u4 are

B
′

1 =
∣∣3 7 6 2

∣∣B
′

2 =

∣∣∣∣6 3 4 1
7 2 1 −3

∣∣∣∣B
′

4 =
∣∣5 6 0 2

∣∣
u3 does not receive any value. Thus B

′

3 =
∣∣0 0 0 0

∣∣
5. Candidacy value is set to 1 and thus C1 =C2 =C3 =C4 = 1.

The computation of maximum starts from the MSB and thus
m=1. The coordinator and users run the 2nd phase of the PAM pro-
tocol.
1. u1 computes ∆1. u1 selects a random positive value for ri, say 6.

Here d1[1] = 1. Thus r1d1[m]C1 = 6×1×1= 6.
n
∑

k=1,k 6=1
B1[k][1]

is the total of all values except the first value in the first column

of B1. Thus
n
∑

k=1,k 6=1
B1[k][1] = 6+0+5 = 11 and ∆1 = 6−11 =

−5. Suppose the random values selected by u2, u3 and u4 are
r2 = 2, r3 = 8 and r4 = 9. Similarly, u2, u3 and u4 compute
∆2 = 2× 0× 1− 3 = −3, ∆3 = 8× 1× 1− 0 = 8 and ∆4 =
9×1×1−7 = 2.

2. u1 computes ∆
′

1 as a sum of the first values of the received
vectors. ∆

′

1 is the sum of the values of the first column of B
′

1.
Thus ∆

′

1 = 3. Similarly, u2, u3 and u4 compute ∆
′

2 = 6+7 = 13,
∆
′

3 = 0 and ∆
′

4 = 5.
3. u1 calculates δ1 = ∆1+∆

′

1 =−5+3=−2. Similarly, u2, u3 and
u4 compute δ2 =−3+13= 10, δ3 = 8+0= 0 and δ4 = 2+5=
7. Each user ui sends the computed value δi to the coordinator.

The coordinator computes δ =−2+10+8+7 = 23 > 0. Thus the
coordinator publishes the MSB of the aggregate value D[1] = 1. u2
updates C2 = 0 since d2[1]< D[1].

The coordinator and users run the 2nd phase of the PAM protocol
again to compute the 2nd bit (m= 2). Suppose, the selected random
values are r1 = 6,r2 = 5,r3 = 1,r4 = 3. Each user ui computes ∆i.
Thus ∆1 = 6×1×1− (3+0+6) =−3, ∆2 = 5×1×0−7 =−7,
∆3 = 0−0 = 0 and ∆4 = 3−2 = 1. Next, each user ui computes ∆

′
i.

Thus ∆
′

1 = 7, ∆
′

2 = 5, ∆
′

3 = 0 and ∆
′

4 = 6. Then each user compute
δi and sends to the coordinator. δ1 = 4,δ2 = −2,δ3 = 0 and δ4 =
7. The coordinator computes δ = 4− 2+ 0+ 7 = 9 > 0 and thus
D[2] = 1. u3 updates C3 = 0 since d3[2]< D[2].

In this way, the coordinator and the users collectively compute
D[3] = 0 and D[4] = 1 and thus obtain the aggregate maximum as
D = 1101.

3.2 Privacy Preserving Algorithms
An LSP divides the whole search space, which includes all POIs,

into grids and selects the center points of cells as probe points (PP).
Then the LSP prunes POIs and computes a candidate POI list. Fi-
nally, the LSP sends the location information of the un-pruned can-
didate POIs to the users and uses our proposed private GNN search-
ing algorithm to search the GNN.

The LSP employs a two stage pruning strategy to compute can-
didate POIs. In the first stage, the AD of the PPs are calculated
and compared using PAM. The lower and upper bound on ADs of
POIs in each cell is computed and the cells are pruned using these
bounds. At the second stage, the LSP generates some representative
points using the location distribution of the un-pruned POIs of 1st
stage. Then the LSP estimates the lower bounds on ADs of POIs
using the ADs of representative points and further prune POIs.

3.2.1 Computing Candidate POIs
In the first stage, the lower and upper bound of ADs of PPs are

calculated. The ADs are calculated in a bit by bit fashion start-
ing from the MSBs. Suppose the most significant m bits of the

value of AD of a PP q is calculated at a certain point of time. The
lower bound of AD of the PP is computed by filling the remain-
ing bits with 0. The upper bound on AD is computed by filling
the remaining bits by 1. For example, the first two bits of a four
bit value is 10. The lower and upper bound of the value is 1000
and 1011. Let Dmin(q) and Dmax(q) refer to the lower and upper
bound on AD of a point q. According to triangle inequality theo-
rem, if the distance of a POI p from q is d(p,q), the lower bound
on AD of p is Dmin(p) = Dmin(q)− d(p,q) and the upper bound
is Dmax(p) = Dmax(q)+ d(p,q). Let the length of a cell is l. The
maximum possible distance of the farthest POI from the center is
l/
√

2. Hence the lower bound on the AD of POIs in a cell whose
center is q is

DCellmin(q) = Dmin(q)− l/
√

2 (1)

The LSP computes the nearest POI to each PP. Let the distance
between a PP q and its nearest POI be dmin(q). The upper bound of
ADs of the POIs in a cell whose center is q is

DCellmax(q) = Dmax(q)+dmin(q) (2)

Each user calculates distance to each PP and keep the distance
private. For each PP each user performs the first phase of PAM
protocol. The LSP coordinates with the users and performs the 2nd
phase of PAM protocol to calculate the MSBs of ADs of all PPs.
Then the LSP uses the equation (1) and (2) to calculate upper bound
and lower bound of ADs of POIs in each cell. Let Dmax be the
minimum of DCellmax of all cells. Dmax is a upper bound on the
AD of the GNN. If a cell is found whose DCellmin is larger than
Dmax, the cell is pruned as it cannot contain the POI with minimum
AD. Next the LSP and users calculates the 2nd most significant bits
of ADs of each un-pruned PPs by following the 2nd phase of the
PAM protocol. The LSP updates the DCellmin and DCellmax of each
un-pruned cell using equation (1) and (2). Then the LSP updates
Dmax. The LSP prunes cells by applying the lower and upper bound
conditions on AD. In this way, the LSP and users jointly calculate
the ADs of PPs and update DCellmin and DCellmax of cells and
Dmax until only one cell is left.

In the second stage, the LSP randomly selects some POIs from
the un-pruned cells. Then it generates a representative point (RP)
from each selected POI by adding a random noise to the location of
the POI. If the location of a selected POI is (x,y), the LSP generates
a RP with location (x+εx,y+εy). Here εx and εy are random values
such that |εx|< εand |εy|< ε . Next the LSP and users collectively
compute the imprecise ADs of the RPs. The users perform the first
phase of PAM for the RPs. Then the LSP and the users collectively
perform the second phase of PAM Nb times to compute the ADs of
all RPs.

Let the nearest RP of a POI p be r. According to triangular in-
equality theorem, the lower bound on the AD of p is Dmin(p) =
Dmin(r)− d(r, p). The upper bound on the AD of p is Dmax(p) =
Dmax(r)+ d(r, p). The LSP computes the lower and upper bounds
on ADs of all POIs in the un-pruned cells. If Dmax(p) for any POI
p is smaller then the current upper bound on AD of the GNN Dmax,
Dmax is updated to Dmax(p). If the lower bound on AD of a POI is
larger than Dmax, the POI is pruned. In this way, after pruning the
POIs the LSP gets a final candidate list P.

3.2.2 Searching for the GNN in Candidate POIs
The LSP sends the candidate POI list P to the users. Each user

calculates distance to each POI and keep the result private. For each
POI each user performs the first phase of PAM protocol. Then the
LSP and users collectively calculate the 1st most significant bits
of the ADs of all POIs by executing the 2nd phase of PAM. If the

most significant bit of a value is larger than that of another value,
the first value must be larger than the second value. If the most
significant bit of AD of a POI is 0, the POIs whose AD have 1 as
the most significant bit cannot have the minimum AD and thus can
be pruned. Then the LSP and users calculate the 2nd most signifi-
cant bit of ADs of the remaining unpruned POIs using 2nd phase of
PAM. Similar to the case of the most significant bit, the unpromis-
ing POIs are pruned. In this way, ADs of POIs are calculated and
compared bit by bit until there is only one POI left or the least
significant bit is calculated. If there is only one POI left in the can-
didate list, the POI has the minimum AD. If the LSB is calculated,
all POIs in the candidate list have the minimum AD and thus all of
them are the GNN.

4. EXPERIMENTAL EVALUATION
We generated synthetic data sets using uniform distributions. We

varied the size of datasets between 1K to 64K point locations. In
our default scenario, we imagine 10 friends who want to select a
restaurant from nearby 16000 restaurants to have a dinner. After the
first stage pruning, the LSP selected 10% of the un-pruned POIs.
Then it added random displacement error noise of maximum 500m
to the location of the selected POIs to generate representative point
locations. We considered 100 private GNN queries for each set of
experiments, evaluated our method for each of these GNN queries
and determined the average experimental results. For each query
we generated new set of POIs’ locations and users’ locations. We
ran our experiments on a desktop computer with Intel Core i7-2600
3.40GHz processor and 8GB RAM.

Very few privacy preserving techniques are currently available
that minimize the maximum distance of users while executing
GNN queries. We do not consider Hashem et. al.’s [3] method and
Huang et. al.’s method [5] for comparison because of their limited
privacy protection and extremely high cost as discussed in Section
1. The computation time reported by Huang et. al [5] is three to
four orders of magnitude larger than the computation time of our
method. We measured computation time for both users and the LSP.
T-user refers to the computation time for a user and T-LSP denotes
the computation time for the LSP. We find that in almost all cases,
the computation time for the users and the LSP are within 1 ms.

4.1 Effect of the Number of POIs
We studied the scalability of our method by varying the number

of POIs in the range of 1K to 64K. The number of users was 10 and
the location data had uniform distribution. Figure 1(a) shows that
the computation time for LSP increases linearly. The computation
time for users increases and becomes double when the number of
POIs increases from 1K to 64K. Even if there are 64K POIs the
computation time for the LSP is about 2.1 ms and for the users
about 0.7 ms. Even if a smartphone is three orders of magnitude
slower than a desktop computer [4], the computation of our method
will still take less than one second, making it practical. In a compat-
ible setup for only 2000 POIs, Huang et al. [5] reported 4 seconds
per user in a decentralized approach and 20 seconds in a centralized
approach using a desktop PC. These values translate to unrealistic
processing times on today’s smartphones.

4.2 Effect of the Number of Users
We studied the effect of the number of users by varying the num-

ber of users between 5 and 80. The number of POIs was 16K and
the location data had uniform distribution. In our method, a user
sends values to all other users and receives values from them. As a
result the processing time for the users increases when the number
of users increases (Seec Figure 1(b)). Even for 80 users, T-user is
about 1.25 ms. The number of users has no effect on the processing

time of the LSP. T-LSP remains around 0.6 ms.

Figure 1: a) Effect of the number of POIs on mean processing
time; b) Effect of the number of users on mean processing time.

5. CONCLUSION
We proposed a framework for privacy preserving GNN queries.

To calculate the maximum function privately we developed a dis-
tributed non-cryptographic multi-party private protocol which is
light weight in computation. A key feature of the protocol is that
the maximum can be computed with different levels of impreci-
sion. The protocol may have many applications in other domains,
such as privacy preserving auctions. Our method exploits geomet-
ric constraints to prune POIs and avoids unnecessary data disclo-
sure from an LSP. Our method is a practically applicable solution.
In the future, we intend to extend our work to road networks.

6. REFERENCES
[1] M. Ashouri-Talouki and A. Baraani-Dastjerdi.

Homomorphic encryption to preserve location privacy.
International Journal of Security and Its Applications,
6(4):183–189, 2012.

[2] M. Ashouri-Talouki, A. Baraani-Dastjerdi, and
A. Aydın Selçuk. Glp: A cryptographic approach for group
location privacy. Computer Communications,
35(12):1527–1533, 2012.

[3] T. Hashem, L. Kulik, and R. Zhang. Privacy preserving
group nearest neighbor queries. In international conference
on Extending Databse Technologies, pages 489–500, 2010.

[4] Y. Huang, P. Chapman, and D. Evans. Privacy preserving
applications on smartphones. In USENIX Workshop on Hot
Topics in Security, pages 4–10, 2011.

[5] Y. Huang and R. Vishwanathan. Privacy preserving group
nearest neighbour queries in location-based services using
cryptographic techniques. In IEEE GLOBECOM, pages 1–5,
2010.

[6] I. Ioannidis and A. Grama. An efficient protocol for yao’s
millionaires’ problem. In International Conference on
System Sciences, pages 6–12. IEEE, 2003.

[7] A. M. R. Khan, T. Hashem, E. Tanin, and L. Kulik. Location
oblivious privacy protection for group nearest neighbor
queries. In Geographic Information Science, pages 301–317.
Springer, 2014.

[8] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey
auctions without threshold trust. In Financial Cryptography,
pages 87–101. Springer, 2003.

[9] L. Xiong, S. Chitti, and L. Liu. Topk queries across multiple
private databases. In Distributed Computing SystemsICDCS
2005, pages 145–154. IEEE, 2005.

[10] A. C.-C. Yao. Protocols for secure computations. In FOCS,
volume 82, pages 160–164, 1982.

