
Mining City-Wide Encounters in Real-Time

Anthony Quattrone, Lars Kulik and Egemen Tanin
Department of Computing and Information Systems

The University of Melbourne
quattronea, lkulik, etanin@unimelb.edu.au

ABSTRACT
Recent advancements in data mining coupled with the ubiq-
uity of mobile devices has led to the possibility of mining for
events in real-time. We introduce the problem of mining for
an individual’s encounters. As people travel, they may have
encounters with one another. We are interested in detecting
the encounters of traveling individuals at the exact moment
in which each of them occur. A simple solution is to use a
nearest neighbor search to return potential encounters, this
results in slow query response times. To mine for encoun-
ters in real-time, we introduce a new algorithm that is effi-
cient in capturing encounters by exploiting the observation
that just the neighbors in a defined proximity needs to be
maintained. Our evaluation demonstrates that our proposed
method mines for encounters for millions of individuals in a
city area within milliseconds.

CCS Concepts
•Information systems → Spatial-temporal systems;
Data mining;

Keywords
Spatial Databases; Data Mining

1. BACKGROUND
The occurrence of encounters between two or more people

occurs when they are within proximity to one another. Many
individuals keep their smartphones present with them at all
times or at least within the same room [3]. This provides
an approximate location of where the individual is located.
With spatial data captured from mobile devices, it is possible
to mine for potential encounters by checking for individuals
that are in proximity to each other via performing queries
on the spatial data. Many devices now send continuous po-
sitioning estimates, allowing for the detection of encounters
in real-time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996995

Proximity is a constraint required for individuals to be
having an encounter. We exploit this property by maintain-
ing an index that stores points that are close to each other
in a given area. Our novel approach is based on using a
dynamic grid that maintains and stores the cells where in-
dividuals have not moved from for a specified time period.
An efficient scan can be executed to map people’s locations
to the grid cells. People that are in the same grid cell are
identified as potential candidates for encounters. To evalu-
ate our approach, we developed a simulator that creates an
environment of people traveling in an inner city area, where
they may have an encounter with each other.

To the best of our knowledge, this is the first work that
focuses specifically on encounters. We demonstrate our novel
algorithm to mine for encounters in real-time. Our algo-
rithm can find potential encounters within milliseconds for
two million people in Melbourne’s inner city. It is signifi-
cantly more suitable for real-time mining than conventional
nearest-neighbor search techniques, which run orders of mag-
nitude slower.

Traditionally, location data is indexed with tree-based data
structures. The TPR tree is an extension of an R-Tree de-
signed to handle queries in the time dimension. It takes into
account current and future positions of moving object data
[14]. For a large set of neighbor investigations, even a mi-
nor change in the size of the area under investigation will
lead to large execution times, making this approach ineffi-
cient for our problem. To overcome the high cost in node
splitting exhibited in TPR trees, the use of dynamic B trees
[7, 8] has been explored. The Bx tree maintains a directory
in each node containing the id, velocity, mapping and the
last update time of an object [10]. The Bx tree requires an
object move in fixed velocity and cannot be directly applied
to our problem.

Certain Quadtrees [4, 5] can be used to index moving ob-
jects as demonstrated in [11]. By using loose quadcells, an
object can move and not need to be reinserted provided the
new location is still within the quadcell. There are no defined
bounds where a person may move in a city area. These ap-
proaches also do not consider any tolerance constraints nor
the fact that we are interested in ANN query types rather
than k-NN.

Our problem can be represented as the All Nearest Neigh-
bor (ANN) problem that states for all N points, find the k
nearest neighbors. Efficient solutions for the ANN problem
have been proposed with the basic premise being to exploit
redundancy [2, 12, 13]. Initial ANN approaches assume that
the points are static, which means that the data structures

in most cases need to be recalculated when the positions of
the points change. There has not been much attention fo-
cused on continuous ANN. One approach recently proposed
in [1] presents an algorithm that uses cell tower radius as a
proxy to reduce the search space. This is still not an accept-
able solution to our problem due to the overlapping of the
coverage areas of cell towers and the fact that these areas
are relatively large in comparison to a central area in the
city.

Our algorithm makes use of constraints in both the time
and space domains to reduce computation. As a result, there
are far less points that need to be stored in the index and
the number of combinations that need to be processed.

2. MINING FOR ENCOUNTERS
A potential encounter can occur when people are in close

proximity. It is assumed people are within proximity when
the distance between them is within ε distance. We define the
constraint nearest neighbor (c-NN) query to return objects
in proximity at a given location.

In order to search for people that are within proximity to
one another quickly, a grid structure can be constructed and
used as a spatial index. In a grid, the distance between two
objects can be approximated as the distance between the two
grid cells, where the objects are located. Constructing a grid
removes the need to calculate the exact distances between all
possible pairs of points. In other words, people in proximity
can be found by considering all the people that are in the
same cells or surrounding cells if the grid is constructed and
interpreted carefully.

We propose TimeGrid, a spatial index that takes into ac-
count time as well as space. Since in many cases it may be
only of interest to capture encounters that last a certain
amount of time, the minimum time an encounter has to last
before it is reported is defined as τ . The underlying data
structure is required to maintain a list of people that fall
within the grid cell for τ seconds. Given the cells are set to
have a side of size ε/

√
2, a person that is in the same grid

cell for τ seconds with another person indicates a potential
encounter.

Let P be a finite set of people and L be the set of locations
where a person can be located as well as an encounter may
occur, a person pa ∈ P at a location lm ∈ L is returned by
the function Loct(pa) defined as follows:

Loct(pa) = lm where t ∈ T , pa ∈ P , lm ∈ L

Each person pa ∈ P is positioned at a location li ∈ L, all
locations are within R2. The space itself can be partitioned
into a grid which can then in turn be used to index each
person in the set P . We define a grid overlaid with each cell
to be of size δ = ε/

√
2 in each dimension. Thus, locations

within a grid cell would be within a maximum of ε distance
from one another. The grid over the entire space is defined
as G with each cell having a side of δ. Each person in P
is indexed to determine which grid cell they reside in and
represented in a set.

The function CellIDt(pa) where pa ∈ P returns the index
of a cell a person is in, defined as

CellIDt(pa) =
(⌊x
δ

⌋
,
⌊y
δ

⌋)
, (x, y) = Loct(pa)

The set PG represents all the cell locations people are lo-
cated in at a given time. It is assumed that all people in set

P can then be mapped to a grid cell in the set PG at time
t ∈ T as follows:

PGt = {CellIDt(p) | p ∈ P}

To efficiently check inside cells, we can create an index
inside each cell for some really dense city streets. For the sake
of simplicity, we divide each cell into four quadrants in this
paper as an example. Since our main approach only requires
to check active cells. Subdividing a cell into quadrants allows
for efficient checking of surrounding active cells that are part
of the space.

Each quadrant within the cell has a side of ε/2
√

2. In a
manner the same as a QuadTree, quadrant assignment is
labeled based on the cardinal directions (NE,NW,SE,SW).
For example, in the case where a person is in the top left
corner of the cell, this would be labeled as NE.

We use virtual boundaries made up of quadrant cells to
ensure all people within ε distance are considered. Consider
a person pa ∈ P in the NE corner of one cell, a person pb
in the SW corner of the adjacent top right cell would satisfy
the property Dist(Loc(pa),Loc(pb)) ≤ ε.

The function CloseQuadsPt(c) where c ∈ PGt returns
the set of people in surrounding cells by checking quadrants
that are within ε distance of one another. Hence, the people
in proximity to the person pa ∈ P can be determined by
finding all the people within the same cell as pa ∈ P and
within surrounding quadrants within ε distance.

Initially each person is assigned to a grid cell. At each
interval of τ a scan is performed to determine if a person is
still in the same grid cell or has changed cell locations. With
τ being set, only the cells where one or more individuals
have stayed longer than a certain amount of time needs to be
checked. Such cells are marked as active cells. These cells can
be determined by taking the intersection the cells identified
at different times, this results in the TimeGrid TG as follows:

TG = PGtnow ∩ PGtnow−τ

Proximity results are in the TimeGrid output TG. A cell in
the proximity result must satisfy one of the two following
conditions. First, the cell contains at least one person. Sec-
ond, a surrounding cell contains at least one or more people.
The spatial index is refreshed at increments of τ seconds.

To mine for potential encounters, active cells are required
to be checked. People within the active cells are within prox-
imity to one another. It is also possible that a person in an
active cell is in proximity to people in another active ad-
jacent cell. We can determine who is inside the cell. The
function CellPt(c) where c ∈ TG returns the list of people
inside a cell is as follows:

CellPt(c) = {p | CellIDt(p) ≡ c, p ∈ P}

Suppose a person pa ∈ P is indexed in a cell c ∈ TG and no
other person can be found in the adjacent cells, then only
the people inside c would be in proximity to pa. Thus, the
following relationship can be satisfied as follows:

c-NNt(pa) = {p ∈ CellPt(c) | c = CellIDt(pa)}

Consider CellPt(c) to be the set of people inside an ac-
tive cell and CloseQuadsPt(c) where c = CellIDt(pa) and
pb ∈ CloseQuadsPt(c) to be the set of people in surrounding
quadrants that are within ε distance. With these defined,
c-NNt(pa) where pa ∈ P in a cell c ∈ TG can be defined

using TimeGrid as follows:

c-NNt(pa) =


CellPt(c) ∪ pb |

c = CellID(pa),

pb ∈ CloseQuadsPt(c),

Dist(Loc(pa),Loc(pb)) ≤ ε


The distance between people found in quadrants needs to be
verified to ensure they are within ε distance as points can
be on the outer edge of a quadrant that slightly exceed ε.
The set of encounters Et can be derived using TimeGrid is
as follows:

Et = {P(c-NNt(p)) | p ∈ P}

The powerset (P) of all the people in proximity is derived
resulting in every possible combination of encounters.

3. EXPERIMENTAL EVALUATION
This section presents our evaluation comparing TimeGrid

with different adapted approaches that make use of spatial
indexes for the purpose of detecting encounters. Positioning
and movement data of people was generated by a simula-
tor and passed to the mining algorithms in real-time. The
simulator uses real geospatial data provided by Open Street
Map (OSM). People are initially distributed in a uniform
manner within the tested area when the simulation begins.
Parameters tested are summarized in Table 1. The only in-
puts available to the mining algorithms were the locations
of people at a given time. This is typical of what would be
available by a service collecting location data in real-time.
The city we selected to simulate encounters was Melbourne,
Australia. The population density is high in the inner city
areas and is low in surrounding areas which is similar to
many big cities around the world.

TimeGrid demonstrated that it significantly outperforms
competing approaches in every use case we tested. It can
scan for encounters in under a second even in situations
where millions of people were considered and every possible
encounter location was tested. We first compare TimeGrid
against certain nearest neighbor algorithms that use static
indexes [6, 9] as can be seen in Figure 1.

Mining for encounters can be done using indexing of mov-
ing objects. We found that velocity based approaches did
not work well for our problem at all. For example, when in-
dexing moving objects with TPR tree, we found that scan
duration grows substantially as the time period of the sim-
ulation increases. Figure 3 plots the time elapsed since the
TPR tree was built with the scan duration. It can be seen
that the scan duration grows significantly as time increases.
The trend resulted from the fact that when a person moves,
the amount of places the person could possibly visit increases
as time elapses. TPR trees tend to perform better for queries
where the the common velocity vector is fixed in a limited
direction. For example, which airplanes are going to land on
the runway in the next ten minutes. We also attempted a
Bx tree, however we found that this approach cannot be ap-
plied to our problem due to the requirement of fixed velocity
vectors.

A continuous approach to answering k-NN queries for
moving objects proposed in [15] was also tested. In attempt-
ing to apply this method, the evaluation time took much
longer than any other method we used mainly due to cases
where the closest neighbor is far away. When looking for

Geohash NN RTree NN QuadTree NN TimeGrid NN

0 500,000 1,000,000 1,500,000 2,000,000
No. of People

0

5,000

10,000

15,000

20,000

25,000

A
vg

Sc
an

D
ur

at
io

n
(m

s)

Figure 1: Avg Scan Duration by Number of People
A: 30km2, τ : 1s, ε: 5m, ν: 5km/h

Parameter Values Tested
of People 1k, 10k, 50k, 100k, 250k, 500k, 750k, 1M, 2M
ε 5m, 10m, 15m
τ 1s, 5s, 10s, 30s
Speed ν 0km/h, 5km/h, 10km/h, 30km/h, 60km/h
Area A 30km2, 100km2, 200km2

Table 1: Parameters Tested

k neighbors, grid cells would incrementally expand until it
finds at least one neighbor. It would take significant time to
find even just one neighbor in cases where the closest neigh-
bor is far away. In our experiments, this situation occurred
many times. In one preliminary test, when considering just a
thousand people with 50 fixed encounter locations, this ap-
proach took an average of 14 seconds to find encounters. As
more people and encounter locations were considered, the
approach could not scale.

Increasing the size of the search space has the effect of
lowering how densely packed people are within the tested
area. It can be clearly seen in Figure 2a that increasing the
search space improves the scan performance as people will
be more sparsely distributed.

Varying the speed did not appear to make a major differ-
ence in performance as seen in Figure 2b. While traveling
from one grid cell to another quicker may reduce how many
active cells are indexed, there is a large number of people in
the city that do not move and stay in the same position for
long periods of time.

In theory, increasing the size of ε causes the TimeGrid to
take longer to scan for encounters, this is due to having to
check for more combinations in the powerset. This is evident
in Figure 2c. Larger values of ε would result in people being
too far away to have an encounter.

Increasing the interval τ reduces the amount of times
the index needs to be updated, however possible encounters
could be missed. Changing how often the index was updated
had no real noticeable trend for affecting the scan time. This
is shown in Figure 2d.

Initially, people are placed at a random location and move
at the assigned speed of νkm/h. Our aim was to realisti-
cally simulate the movements in a city environment. We also
tested an extreme case of 2 million people not moving with
the parameters set as ν = 0km/h, A = 30km2, τ = 1s and
ε = 5m. TimeGrid ran in just over a second on average even
though movements over time were not being exploited. Thus,
TimeGrid still performs well whether people are moving or
not.

Our evaluation demonstrated how TimeGrid is better suited
for mining encounters. While other techniques may miss

quick encounters, our approach would capture them. We also
gave insights into why current velocity based techniques de-
signed to handle moving objects are not suitable for our
application domain. Overall, the TimeGrid algorithm per-
formed orders of magnitude better than conventional tech-
niques across all the use cases we tested. Samples were cap-
tured fast enough to detect encounters in real-time, even if
they last for just a second. We demonstrated that our ap-
proach is capable of mining encounters in real-time for a city
of two million people.

30 100 200
A (km2)

0

100

200

300

400

500

600

700

800

A
vg

Sc
an

D
ur

at
io

n
(m

s)

(a) A - People: 2M, τ : 1s, ε: 5m, ν: 5km/h

5 10 30 60
ν (km/h)

0
100
200
300
400
500
600
700
800
900

A
vg

Sc
an

D
ur

at
io

n
(m

s)

(b) ν - People: 2M, τ : 1s, ε: 5m, A: 30km2

5 10 15
ε (m)

0

500

1,000

1,500

2,000

2,500

A
vg

Sc
an

D
ur

at
io

n
(m

s)

(c) ε - People: 2M, τ : 1s, A: 30km2, ν: 5km/h

1 5 10 30
τ (s)

0

200

400

600

800

1,000

1,200

A
vg

Sc
an

D
ur

at
io

n
(m

s)

(d) τ - People: 2M, ε: 5m, A: 30km2, ν: 5km/h

Figure 2: Varying Parameters of the TimeGrid Algorithm

0 5 10 15 20
Time Elapsed (mins)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Sc
an

D
ur

at
io

n
(m

s)

Figure 3: TPR Tree Performance as Time Increases

4. REFERENCES
[1] G. Chatzimilioudis, D. Zeinalipour-Yazti, W.-C. Lee,

and M. D. Dikaiakos. Continuous all
k-nearest-neighbor querying in smartphone networks.
In MDM 2012.

[2] K. L. Clarkson. Fast algorithms for the all nearest
neighbors problem. In FOCS 1983.

[3] A. K. Dey, K. Wac, D. Ferreira, K. Tassini, J.-H.
Hong, and J. Ramos. Getting closer: An empirical
investigation of the proximity of user to their smart
phones. In Ubicomp 2011.

[4] A. Frank. Problems of realizing LIS: storage methods
for space related data: the fieldtree. In Institute for
Geodesy and Photogrammetry, Technical Report 71,
1983.

[5] A. U. Frank and R. Barrera. The fieldtree: a data
structure for geographic information systems. In SSD
1990.

[6] G. R. Hjaltason and H. Samet. Ranking in spatial
databases. In SSD 1995.

[7] C. S. Jensen, D. Lin, and B. C. Ooi. Query and
update efficient B+-tree based indexing of moving
objects. In VLDB 2004.

[8] C. S. Jensen, D. Tielsytye, and N. Tradilauskas.
Robust B+-tree-based indexing of moving objects. In
MDM 2006.

[9] J. Kuan and P. Lewis. Fast k nearest neighbour search
for R-tree family. In SIGMOD 1997.

[10] J. A. Orenstein. Spatial query processing in an
object-oriented database system. In SIGMOD 1986.

[11] H. Samet, J. Sankaranarayanan, and M. Auerbach.
Indexing methods for moving object databases: Games
and other applications. In SIGMOD 2013.

[12] J. Sankaranarayanan, H. Samet, and A. Varshney. A
fast all nearest neighbor algorithm for applications
involving large point-clouds. In Computers and
Graphics 31(2), 2007.

[13] P. M. Vaidya. An O(n logn) algorithm for the
all-nearest-neighbors problem. In Discrete &
Computational Geometry 4(2), 1989.

[14] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In SIGMOD 2000.

[15] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest
neighbor queries over moving objects. In ICDE 2005.

