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ABSTRACT
We introduce a new type of spatial query, Optimal Accessible Lo-
cation (OAL) query. When a set of paths is provided the query finds
the best location from a set of locations that has the optimal accessi-
bility from these paths. OAL queries have many applications such
as the selection of the optimal location for a mobile facility such
as a food truck or selection of a venue for an event. We exploit
geometric properties and develop pruning techniques to eliminate
unrelated path segments as well as locations. Our experimental re-
sults demonstrate that we provide a readily deployable solution for
real-life applications.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Spatial database, facility localization, trip query processing

1. INTRODUCTION
Finding an optimal accessible location is necessary when a fixed

location may not be convenient, for example, for mobile services
such as a mobile food truck businesses. Therefore, dynamic selec-
tion of an optimal location considering on-the-fly customers is re-
quired. We introduce an important class of spatial query, an optimal
accessible location (OAL) query. When a set of paths is provided
the query finds the best location from a set of locations that has the
optimal accessibility from these paths. In an OAL query, each path
is represented as a set of line segments and the distance between a
location and a path is the minimum distance from the location to
any segment of the path. We refer to a location such as a car park as
a point of interest (POI). To the best of our knowledge, we are the
first to propose the OAL query and to develop an efficient approach
for evaluating OAL queries.

A naive approach to solving the OAL query would first calculate
the distances for a single POI to all segments of a path and then re-
trieve the minimum distance. Similarly, the distances for all paths
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from that POI are calculated, and afterwards the aggregate distance
(AD) of that POI is obtained. Then the AD of each POI is com-
puted, and the POI with the minimum AD is the desired POI. This
brute force method incurs high computation costs.

We exploit the fact that due to geometric constraints the OAL
cannot be in some parts of the search space. To achieve this, we
index the POIs with a tree-based data structure and map each path
to this tree. We divide the total search space into smaller regions.
We execute the query considering the POIs that falls inside each
region and the nearby path segments. As a result, we do not build
indices for segments that cannot provide a solution such as the re-
gions without a POI or any nearby paths. In addition, geometric
properties are also used to prune POIs within a region. We also
estimate lower distance bounds of POIs from all paths to prune ad-
ditional POIs.

2. RELATED WORK
The optimal facility location problem is to find out the best loca-

tion for a facility from a set of locations. Max-inf optimal facility
location problems maximize the "influence" of a facility, where in-
fluence is typically defined as the total weight of its reverse nearest
neighbors (RNN). Cabello et al. [1] introduced the nearest location
circle (NLC) to find the region with the maximum influence. Xia
et al. [6] used a branch and bound method to find top-k influential
facilities in a set of existing facilities within a continuous region
Q. Zhang et al. [9] proposed the min-dist optimal-location prob-
lem. Given a set of existing sites, a set of weighted objects, and a
spatial region Q, the query returns a location in Q which, if a new
site is built there, minimizes the average distance from each object
to its closest site. Xiao et al. [7] further studied the min-dist prob-
lem in road networks. Lin et al. [3] proposed a solution to find out
the optimal site from a given set of sites S which has the maxi-
mum accessibility to amenities. The accessibility cost of a site to
an amenity of a certain type is the shortest distance from that site
to any amenity of that type. The GNN query finds the POI (meet-
ing point) from a set of POIs that minimizes the aggregate distance
to a group of users, located at stationary point locations [4]. Khan
et al. considered privacy in GNN queries [2]. The Group Nearest
Neighbor (GNN) query can be considered as a special case in an
OAL query, where each path is just a point.

These studies consider objects located in points. The objects in
our problem are complex paths and each path is a set of line seg-
ments. Therefore, the above mentioned solutions are not applicable
and novel techniques to solve the OAL query is required.

Given a set of paths, Shang et al. [5] considered finding the fa-
cility that is the nearest facility to the maximum number of paths.
We search for the location that has the minimum aggregate dis-
tance to the given paths. Thus the function to be optimized in [5] is



significantly different than ours. They pre-process the set of paths
to efficiently process a query assuming that the paths are available
beforehand and a list of candidate locations is provided as query
input. We consider that the data of candidate locations are available
beforehand and the set of paths are received as query input.

3. OPTIMAL ACCESSIBLE LOCATIONS

3.1 Problem Definition
Let T = {t1, t2, . . . , tn} be a set of paths and P be the set of POIs.

A path ti is described as Ei = {ei1 ,ei2 , ...}, where Ei is the set of
edges/segments of the path. Let ei j be the closest segment of all
segments of ti to a point p. The distance from p to path ti is defined
as d(p, ti) = dist(p,ei j). Here dist(p,ei j) represents the Euclidean
distance of ei j from p. The amount of diversion if a person travel-
ling on ti goes to p is d(p, ti). The OAL query finds a data point q

from P, such that for any q
′ ∈ P−{q},

n
∑

i=1
d(q, ti)≤

n
∑

i=1
d(q

′
, ti). We

call q the Optimal Accessible Location (OAL). The customers pro-
vide their paths {t1, t2, . . . , tn} as query data and the location service
provider (LSP) returns the OAL q.

3.2 A Naive Approach
A naive approach considers all combinations of segments of all

paths and POIs. The distance of each path from each POI is calcu-
lated. To calculate distance between a path and a POI, one calcu-
lates and compares the distances of all segments of that path to the
POI. Then for each POI the aggregate distance (AD) to all paths is
calculated. The POI with the smallest AD is declared as the OAL.

A naive algorithm requires distance calculations for each com-
bination of POI and segment. Let |P|, |T | and |E| be the number
of POIs, number of paths and the number of segments per path.
Hence, the computational complexity is |P||T ||E|. For large values
of |P|, |T | and |E|, processing an OAL query by a brute force al-
gorithm incurs significantly high computational cost. To speed-up
this approach we can use a simple "early stop" pruning method. We
prune a POI if the summation of the distances from the POI to some
paths are larger than the smallest AD seen so far. In this case, we
avoid calculating distance of the remaining paths from that POI.

3.3 Lazy Divide and Prune (LDP) Approach
We assume that the POIs are indexed with a disjoint space parti-

tioning based data structure. Hence the whole search space, which
includes all POIs, is partitioned into multiple cells. After receiving
the paths as query data, we map them onto the partitioned search
space to locate precisely the regions that have a high probability of
containing the OAL. We search the cells for the OAL one by one
considering their probability of including the OAL. We use multi-
ple geometric constraints and a novel bounded search algorithm to
prune the POIs while searching a cell. The POI with the minimum
AD is declared as the OAL after searching all cells.

3.3.1 Indexing POIs
We assume that the POIs are indexed with a disjoint space par-

titioning based tree structure and a leaf contains at most one POI.
We use a quadtree because of its simplicity. We call the quadtree
built on POIs a "P-tree". We refer to a node of a tree by its corre-
sponding space/cell. If a cell contains more than one POI, the cell
is divided into four equal square sized non-overlapping cells. An
example of a P-tree is shown in Figure 1(a), where asterisk marks
represents POIs. The horizontal and vertical lines (both solid and
dashed) define the space partitioning of the P-tree.

Figure 1: Examples of (a) Mapping segments on a P-tree and (b)
Pruning POIs considering distance from a block’s boundary.

3.3.2 Mapping Paths and Dividing Search Space
After receiving the query data, which consists of multiple paths,

we map the paths to the P-tree built on the POIs in the indexing step.
The mapping helps to precisely locate the cells of the P-tree that
have a high probability of containing the OAL. A dense cell, which
contains many paths and POIs, has a high likelihood to include the
OAL. We start searching from the cells that have high probability.
In addition, the mapping facilitates the division of the problem to
smaller sub-problems. Each sub-problem considers the POIs in a
cell and the surrounding line segments only. Moreover, POIs and
line segments can be pruned considering their distances from the
boundary of a cell.

We map the paths from the root to the leaves of the P-tree. If a
cell corresponding to a node contains POIs and many paths pass
through it, it has a high likelihood to include the OAL. If a cell is
intersected by more than α paths, we further map the paths on the
children cells. We call α a division threshold. If a cell is not inter-
sected by enough paths or does not include a POI we stop mapping
to the children of the cell. In this case, if the cell contains at least
one POI, we call the cell a q-block. If the cell is intersected by
any path, we call it a s-block. The mapping stops when there is no
cell remaining that is intersected by at least two paths and contains
more than one POI. A list, Q, is maintained to record the q-blocks’
information. The OAL will be searched in the recorded q-blocks.
Another list S is used to record s-blocks. The s-blocks collectively
contain all segments of all paths. Note a block must be a cell but
not all cells are blocks. A cell represents the space corresponding to
a node/leaf of a tree. A block is a cell where mapping of segments
terminates.

We illustrate the path mapping procedure with an example de-
picted in Figure 1(a). Three paths (i.e., red green and blue lines) in
the figure are mapped on the P-tree built on POIs. In this example, if
at least two paths (i.e., α = 2) intersect a cell which contains more
than one POI, the paths are mapped to children cells. abcd repre-
sents the root of the P-tree and the paths are mapped on children
cells, i.e., aelg, ebhl, lhc f and gl f d. Since aelg and ebhl do not
contain enough POIs, the path mapping stops in these cells. aelg
and ebhl are registered as s-blocks as they are intersected by seg-
ments. ebhl is listed as a q-block as it contains a POI. Since both
lhc f and gl f d are intersected by at least two paths and contains
many POIs, the paths are mapped to their children cells. Among
the children cells of lhc f and gl f d only i jkl is selected for further
mapping. In this way the paths are mapped on the P-tree. The map-
ping stops when there is no cell remaining that is intersected by at
least two paths and contains more than one POI. Thus none of the
children cells of i jkl is selected for further mapping and the path
mapping procedure terminates. The solid horizontal and vertical



lines in Figure 1(a) define the final space partitioning of the search
space. Each part with a solid line boundary represents a block.

3.3.3 Query Simplification and Pruning
We simplify the query by dividing it to smaller sub-problems. In

each sub-problem we consider a q-block registered in Q, and check
whether the q-block contains the OAL. We call the nearest point
of the OAL on a path a striking point. The base block of a POI is
the block which contains the POI. Let at a certain moment during
query processing the POI with minimum AD be CurrentBest and
the current minimum AD be ADCmin. When considering a q-block
we apply the following pruning techniques.

Pruning POIs Using Distance From the Boundary of a Block:
If a block is not intersected by all paths and it contains the OAL,
the OAL must be close to the boundary of the block. Suppose a
block contains α

′
paths out of |T | paths, where α

′
< |T |. Hence,

the block cannot contain more than α
′

striking points and at least
|T | −α

′
striking points are outside of it. If the OAL is inside the

block and x is the distance of the OAL to the boundary of the block,
the AD of the striking points outside the block to the OAL is at least
x(|T |−α

′
). Since x(|T |−α

′
) < ADCmin, the distance of the OAL

to the boundary of the block cannot be larger than ADCmin
|T |−α

′ . If the
distance of a POI to the boundary of its base block is larger than
ADCmin
|T |−α

′ , it can be pruned.
In Figure 1(b), block abcd is intersected by only one path out of

three paths and D is the current minimum AD. Hence, the max-
imum distance of the OAL from the boundary of abcd can be
x/(3− 1) = D/2. Let e f gh be a square inside abcd and its dis-
tance from the boundary of abcd be D/2. Hence, the OAL cannot
be in e f gh and all POIs inside e f gh can be pruned.

Pruning with Lower Bound on AD:
While considering a POI p as a candidate for OAL, we incre-
mentally search for possible striking points and estimate the lower
bound on AD of p. If the lower bound of AD of a POI is larger
than the current minimum AD, the POI cannot be the OAL. The
process is similar to nearest neighbor search in a tree. We incre-
mentally search the neighborhood for the nearest segment of each
path to a POI and estimate the lower bound on distances of the un-
found paths using the radius of the already searched space. First, we
calculate the minimum distances of the paths considering only the
segments that intersects the base block. The base block of p is the
block which contains it. After considering all segments of the base
block, we consider neighboring s-blocks in an increasing order of
distances from the base block.

Let the base block of a POI p and all blocks within x
′

distance
of the base block represent the already searched space. Let the dis-
tance from p to the nearest segment of path ti that intersects the
searched space be dCmin(p, ti). If the distance of the boundary of
the base block is x from p, the distances of the segments and paths
that do not intersect the searched space from p must be at least
x+ x

′
. Hence, the lower bound of the distance of path ti from p

is min{dCmin(p, ti),x+ x
′}. If dCmin(p, ti) ≤ x+ x

′
, the distance of

path ti from p is dCmin(p, ti), since the distance of the segments that
do not intersect the searched space is at least x+ x

′
.

Suppose α
′
paths intersect the searched space and the set of these

paths is Tf . So the lower bound on AD of the paths that do not
intersect the searched space is ADLB(p,T − Tf ) = (|T | −α

′
)(x+

x
′
). The lower bound of AD of the paths in Tf is

ADLB(p,Tf ) = ∑
ti∈Tf

min{dCmin(p, ti),x+ x
′
} (1)

Hence the lower bound of AD of p,

ADLB(p,T ) = (|T |−α
′
)(x+ x

′
)+ ∑

ti∈Tf

min{dCmin(p, ti),x+ x
′
}.

(2)
If ADLB(p,T ) > ADCmin, p cannot have an AD lower than that

of the current best POI CurrentBest and thus cannot be the OAL. If
for all paths x+ x

′ ≥ dCmin(p, ti), the AD of p is

AD(p,T ) = ∑dCmin(p, ti) (3)

3.3.4 Reducing Indexing Cost With a Lazy Tree
If the number of segments of a certain path inside a s-block is

large, we employ an efficient method to find the nearest segment to
a POI. Our method simultaneously index the segments and search
for the nearest segment of a POI. We index the segments of each
intersecting path of a block with a tree in a lazy fashion. We call the
tree a lazy tree. A separate lazy tree is constructed for each inter-
secting path of each s-block. We find the nearest segment of a path
to a POI by searching the lazy tree. The lazy tree is updated during
a search by indexing line segments to a deeper level if necessary.
During a nearest segment search, first we find the closest node of
the lazy tree to the concerned POI. Let the maximum allowable
number of segments in a leaf of a lazy tree be β . If more than beta
segments are attached to it, we create children nodes by dividing
the node’s space into four equal non overlapping square sized cells.
Then we distribute the segments to children nodes. Next we find
the nearest cell to the concerned POI. We refer to this cell as a base
cell. We find the nearest segment to the POI inside the base cell. If
there is a neighboring cell closer than the current nearest segment to
the POI, we consider that neighboring cell. We split a neighboring
cell of a base cell if it satisfies the following two conditions:

1. The neighboring cell is intersected by more than β segments
of the concerned path.

2. The neighboring cell has not been created during this search.

3.3.5 Searching the OAL
We sort the q-blocks according to the number of intersecting

paths. Next we sort the q-blocks with equal number of intersect-
ing paths in an increasing order of size. We initialize the current
minimum AD ADCmin with a large value and CurrentBest with a
randomly selected POI. Then we consider the q-blocks one by one.
Let α

′
paths for total T paths intersect a q-block. As mentioned in

Section 3.3.3, we prune the POIs whose distance from the bound-
ary of the q-block is larger than ADCmin

|T |−α
′ . If there is any un-pruned

POI, we search for the nearest segment of each path to the POI and
estimates the lower bound on AD of the POI. First, we consider
the segments inside the base block. Next, we search the neighbour-
ing s-blocks. Let the distance of the boundary of the base block
from the POI p is x and x

′
is the distance of the farthest neighbour-

ing s-block from the base block considered so far. While consider-
ing a POI p as a candidate, we first search the base block (x

′
= 0)

and then keep on increasing x
′

until the lower bound of AD of the
POI exceeds ADCmin or for all paths x+ x

′ ≥ dCmin(p, ti). Suppose
α
′

paths intersect the already searched space and the set of these
paths is Tf . We calculate the lower bound on AD of the POI us-
ing Equation (2). If the lower bound on AD of p is larger than
ADCmin, p is pruned. If for all paths x+x

′ ≥ dCmin(p, ti), the AD of
p is AD(p,T ) = ∑dCmin(p, ti). If AD(p,T )< ADCmin, ADCmin and
CurrentBest are updated to AD(p,T ) and p. After considering all
q-blocks, the CurrentBest is declared as the OAL.



Figure 2: Effect of (a) number of POIs, (b) length of path and (c) number of paths on the processing time

4. EXPERIMENTAL EVALUATION

4.1 Experimental Set-up
In our experiments we used the T-drive data[8] which contains

30 days of GPS trajectories of 6400 taxis in Beijing. We controlled
a range of parameters including the number of paths, the number
of POIs, the number of segments per path. We randomly selected
taxis and used their trajectories as paths. We extracted 531 locations
of restaurant in Beijing from OpenStreetMap. We generated artifi-
cial restaurant locations by adding Gaussian noise to the extracted
locations. We considered 100 queries for each set of experiments,
evaluated the proposed algorithms for each of these queries and de-
termined the average results. For each query we generated a new set
of POIs’ locations and selected a new set of paths. We set the divi-
sion threshold to the half of the number of paths (i.e., α = |T |/2).
We ran our experiments on a desktop computer with an Intel Core
i7-2600 3.40GHz processor and 8GB RAM.

4.2 Results and Discussion
We refer to the naive method and the lazy divide and prune

method as BF and LDP respectively. Effect of various parameters
are discussed below.

4.2.1 Number of POIs
To estimate the scalability of the algorithms to the number of

POIs, we ran experiments varying the number of POIs within the
range of 128-65536. The number of paths were 64 and number of
segments per path was 200. The query processing time of each al-
gorithm is presented in Figure 2(a). Figure 2(a) shows that LDP is
about two to three orders of magnitude faster than BF in all cases.
When there are 65536 POIs LDP takes only 0.25s indicating that
it can be practically useful. If several hundred queries, which can
be generated in a big city, are issued simultaneously, BF will be
unable to response in a reasonable time period.

4.2.2 Path Length
We varied the number of segments from 50 up to 1600. The num-

bers of POIs and paths were 16384 and 64 respectively. The average
length of the paths increased linearly from 18Km to 520Km with
the increase of number of segments from 50 to 1600. The process-
ing time of different algorithms are shown in Figure 2(b). LDP is
two to three orders of magnitude faster than baseline methods. If
the paths are longer, it is more likely that a better meeting place
can be found. As result, for longer paths, the AD of the OAL tends
to be smaller. Since pruning efficiency depends on the ADCmin, it
directly effects the processing time. Thus the processing time de-
creases with the increase of path length for LDP.

4.2.3 Number of Paths
We varied the number of paths from 2 to 2048. The numbers

of POIs and segments per path were 16384 and 200 respectively.
Figure 2(c) shows that, LDP outperforms the baseline algorithm.
LDP is one to two order of magnitude faster than baseline method.

5. CONCLUSION
We have introduced an important new query, the OAL query, and

provided an efficient solution for finding the best accessible loca-
tion for a group of paths. We have compared our solution against a
baseline technique that includes an early stop pruning condition to
make it more competitive. Although our solution also uses a tree,
we instead map all paths to a single tree and prune all path seg-
ments that cannot be part of the optimal solution by exploiting rel-
ative positioning of the paths and thus simplify the query. We also
develop an efficient technique to estimate lower distance bounds of
POIs from all paths to prune POIs. Our experimental result shows
that our methods outperforms the baseline method by two to three
orders of magnitude.
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