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ABSTRACT
In an active WSN where user queries are regularly processed,
a significant proportion of nodes relay and overhear data
generated by other nodes in the network. In this paper, we
propose to exploit this mode of data communication towards
a gradual buildup of global knowledge. We show that by
harnessing the multihop and multipath communication ad-
vantages, only a few user queries in a WSN can lead to an
accumulation of accurate global knowledge at node level.
This global knowledge can greatly improve numerous WSN
applications when used in data validation, event detection,
and query optimization.

1. INTRODUCTION
Localized information processing is a hallmark of wireless

sensor network (WSN) technology. It attempts to minimize
the frequency and size of data transmission among distant
nodes by preprocessing and data sharing among neighbor-
ing nodes. One of the foremost challenges in localized in-
formation processing in WSNs is the need for global knowl-
edge at node level. Consider, for instance, the requirement
in TinyDB [5] to maintain MIN and MAX aggregates at each
node for efficient query forwarding. Similarly, localization
of essential WSN operations such as event discovery, range
query optimization and data validation require global sta-
tistical knowledge at the node level [8].

In this paper, we propose opportunistic sampling ; a novel
sampling method for accumulating global knowledge at node
level. Opportunistic sampling is based on the key insight
that an operational WSN, actively being queried by its users,
already possesses a certain degree of data distributed in the
network. Since WSN communication is multihop and mul-
tipath (broadcast) in nature, data from a source to a sink
node is relayed and overheard by several intermediate nodes.
Due to this multihop, multipath (M2) communication ad-
vantage, each user query may leave a trace of collected data
among the communicating nodes. We propose that nodes
opportunistically sample this data or piggy-back augmented
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information as they respond to user queries. The data thus
collected can then be used to answer future global aggrega-
tion requirements at node level without further communica-
tion. Our experimentation shows that if the M2 advantage is
properly harnessed, nodes accumulate surprisingly accurate
global knowledge after responding to only a small number
of user queries.

1.1 Motivating Example
Figure 1 presents a simple example to motivate the case

for opportunistic sampling based on the M2 advantage. The
figure shows a WSN deployed as a grid where each node
can communicate with its all one hop neighbors. Assume
that in each case the sink node issues the following query:

SELECT Humidity
FROM Sensors
SAMPLE PERIOD 30 min
FOR 4 hrs

Figure 1 shows that in response to the above query, data
collection is performed using a multihop routing tree rooted
on the sink node. We propose that in addition to propaga-
tion of incoming data towards higher tree levels, each node
samples and saves this data for global statistics computa-
tion and future queries. The advantage of this opportunistic
sampling is magnified by the M2 advantage of underlying
routing structure. Due to the synchronization of listen peri-
ods among all nodes in the routing tree, internal nodes can
receive and sample the incoming data from a region much
larger than their individual transmission range.

Figure 1(a) highlights the region from which an arbitrary
node (node B in the figure) in the network overhears or
receives humidity data. We refer to this area as the M2
coverage of node B. It can be seen from Figures 1(b), 1(c)
and, 1(d) that different locations of the sink node results in
a different level of M2 coverage of node B. For node B, the
presence of sinks at the four shown locations leads to the
accumulation of humidity information from the entire net-
work. Hence, in this example, node B can report an accurate
global statistic, such as MIN, MAX or AVG, without issuing a
single query itself.

The above example shows the potential strength of M2
coverage based opportunistic sampling in a simple setting.
Computation of the extent of M2 coverage for a given node
can be viewed as a spatial modeling problem involving WSN
routing structure and locations of the given node and sinks.
In this paper, we focus on the modeling of M2 coverage
available in a typical WSN and use this model to show that
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Figure 1: A motivating example for opportunistic
sampling based on the M2 advantage. The dark cir-
cles represent the sinks. Solid edges represent the
flow of data towards the sinks while dashed edges
between two nodes show that the nodes can over-
hear each other.

only a small number of user queries lead to very high levels of
M2 coverage in a network. We also use this coverage model
to devise a localized M2 coverage estimation technique for
individual nodes.

The accuracy of global statistics collected by opportunis-
tic sampling may be affected by rapid temporal variation in
a sensed phenomenon. If the query arrival rate is low com-
pared to the temporal variation in the phenomenon, nodes
will have fewer opportunities to sample information. The
sampled information may thus become stale by the time a
global statistic is required. However, the temporal variation
of a phenomenon can be determined at an application level
using past data. Nodes can thus measure the suitability of
sampled information in terms of its freshness and may either
proceed with using the information for computing a global
statistic or may issue a new query.

The potential of opportunistic sensing may be affected by
the nature of user queries. If queries involve aggregates, for
instance seeking average humidity instead of all humidity
values as in the above example, raw sensor readings are sup-
pressed by in-network aggregation during transmission. As a
result, the opportunistic information sampled at each node
may only suit a certain type of global statistic. In such cases,
we propose that each node piggy-backs some augmented in-
formation along with the partial query result it transmits.
For example, if the global statistic MAX is required, each node
can piggy-back augmented information in the form of partial
MAX aggregate based on incoming data and its own humidity
reading. Regardless of the type of query being processed, if
all nodes add to and sample augmented information, a large
proportion of nodes may accumulate enough local informa-
tion to accurately compute the required statistic.

An alternative of the above piggy-backing strategy could
be to exploit the partial query results computed by each
node. A number of techniques for sharing of partial query
results in future queries have been proposed in the literature
(e.g., [3]) that can be adopted in our opportunistic sampling
system. We leave the investigation of effectiveness of partial
query results in global statistics computation as a future
work.

Motivated by the need of global statistics for localized and
distributed information processing, a number of methods
for collecting and distributing such statistics have been pro-
posed in the WSN literature. DIMENSIONS [2] and other
distributed data indexing systems [7] aim to provide fast
in-network search of pre-computed aggregates. Such sys-
tems propose an in-network storage structure such that
WSN nodes possess global aggregates of multiple granular-

ity levels. As an orthogonal approach, the spatial gossiping
method aims to build and distribute a uniform level aggre-
gate throughout the entire network. In [8], Sarkar et al. pro-
pose the hierarchical spatial gossip (HSG) algorithm that
combines in-network storage and gossiping approaches to
accumulate multi-resolution aggregates at each node in the
network. A common thread among current global statistics
collection techniques is their specialized nature, i.e., these
approaches are purpose-built for a certain type of global
statistic and have to be triggered regularly, which incurs
significant costs.

The multipath nature of WSN communication has been
exploited before for a variety of goals including fault tolerant
in-network data aggregation [6] and spatial suppression in
data collection [4]. To the best of our knowledge, our work
is the first to exploit the coverage properties of multihop
routing for data collection.

2. COVERAGE MODEL
We assume a network of N nodes uniformly deployed in-

side a d× d square. Two nodes can communicate with each
other if the distance between their locations is less than R,
the transmission radius. Query forwarding and data collec-
tion is performed using a TinyDB-style random data collec-
tion tree [4].
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Figure 2: Estimating the M2 coverage.

M2 Coverage.
The M2 advantage virtually extends the sensing coverage

of each node much beyond its communication radius. Fig-
ure 2(a) shows an example where a query, Q1, is issued by
a node A. All nodes in the network synchronize their trans-
mission periods depending on their level in the query tree
formed by successive rebroadcasts of Q1. An arbitrary node,
represented as node B in this example, receives Q1 during
the third broadcast round and sets its listen and transmit
periods accordingly. Region 1 in Figure 2(a) represents node
B’s first level M2 coverage, i.e., the area within direct trans-
mission range of node B, from where it expects to receive
(or overhear) data once the network starts responding to
Q1. This coverage region is formed by the part of node B’s
transmission range that does not intersect with the query
wavefront that delivers Q1 to node B. All nodes falling in-
side the overlapping part of node B’s transmission range and
the query wavefront must have received Q1 before node B
and must have set their transmission time periods accord-
ingly. Thus, during its listen time-period, node B cannot
receive or overhear any data from these nodes.

Node B’s M2 coverage increases as nodes in its first level



M2 coverage rebroadcast Q1 further into the network. Anal-
ogous to the case above, the second level M2 coverage for
node B will include the part of node B’s second level broad-
cast that does not overlap with the corresponding wavefront
for Q1. Depicted as region 2 in Figure 2(a), node B’s second
level M2 coverage is greater in area than its first level M2
coverage. Further re-broadcasts of Q1 increases node B’s M2
coverage in a similar manner.

Multi-sink M2 Coverage.
Figure 2(b) extends the above example by including a sec-

ond query, Q2, issued by node C. Node B can now overhear
or receive data from all nodes in the non-overlapping part of
its transmission range and the query wavefront that delivers
it query Q2. Consequently, the M2 coverage for node B is
further increased. The overall M2 coverage for node B can
now be computed by estimating the complement of joint in-
tersection of node B’s transmission range with wavefronts
Q1 and Q2. In general for K sinks, the exact M2 coverage
computation requires the area of joint intersection of K + 1
circles. Unfortunately, a model cannot be established based
on this computation as the close form representation of the
area defined by the intersection of K + 1 unequal circles in
general positions is not known [1]. We identify the joint in-
tersection of unequal circles as an interesting future problem,
however, to make the M2 coverage computation tractable we
propose an approximation technique in the section below.

3. DISCRETE COVERAGE APPROXIMA-
TION

Figure 3(a) presents an example to explain the main idea
behind discrete M2 coverage approximation. In this exam-
ple, a node B receives queries from sink nodes S1 and S2.
The two query wavefronts intersect node B’s transmission
range at points P1, P2 and P3, P4, respectively (Figure 3(a)).
Considering sink S1 alone, node B’s first level M2 coverage
can be estimated by the number of border nodes present on
the arc represented by the tuple (P1, P2). Accounting for the
M2 coverage extended through the border nodes automati-
cally includes that offered by any inner nodes.
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(a) A node with one
uncovered arc.
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(b) A node with two
uncovered arcs.

Figure 3: Discrete approximation for the M2 cover-
age.

Assuming a uniform network density, the number of nodes
can be approximated by the length of the arc (P1, P2). In-
troduction of a second sink, S2, increases the first level M2
coverage for node B by the addition of border nodes located
on the arc (P4, P3). As a result, the only uncovered part on
node B’s boundary remains to be the arc (P3, P1), referred
to here as node B’s uncovered arc.

Uncovered arcs occur as segments on the transmission bor-

der of a node i that fall inside the area of overlap of a set of
wavefronts intersecting node i’s transmission range. Given

Mi such arcs, the first level M2 coverage for node i, λ̂i1, can
then be approximated as follows:

λ̂i1 = 2πR−
Mi∑

m=1

Rθm − εi1 (1)

where R is the fixed radio transmission range, θm is the
angle (in radians) of arc m and, εi1 is an error constant.
Since the M2 coverage approximation relies on a circular
representation of query broadcast centered at a given node,
certain parts of the broadcasted region may lie outside the
deployment area. The error constant, εi1, is used to subtract
the area of such parts from the M2 coverage.

Computation of the overall M2 coverage for a given node
is greatly simplified by the above boundary nodes’ based ap-
proximation. As shown in Figure 3, all first level uncovered
arcs for a node i grow linearly with a factor R (the trans-
mission radius) during node i’s subsequent level broadcasts.
The second level M2 coverage of node B is a sum of first
level M2 coverage of all nodes located on the covered parts
of its transmission border. In general, the node coverage for
node i for level j, can be computed as:

λ̂ij = 2πRj −
Mi∑

m=1

Rjθm − εij (2)

The overall M2 coverage for node i can then be computed
as:

Λ̂i =

D∑
j=1

λ̂ij (3)

where D is a constant large enough to guarantee that broad-
cast reaches the entire deployment area.

Given the locations of a set of sink nodes, the above ap-
proximation model allows a WSN node to locally deter-
mine the extent of its M2 coverage. This computation forms
the basis of the opportunistic sampling system. Based on
this knowledge nodes can decide to respond to requests for
global statistics using local sampled information or inject
new queries in the network.

4. SIMULATIONS
This section presents a simulation based analysis of op-

portunistic sampling technique. We simulate a network of
2500 nodes, set in a grid of 1 meter resolution and study the
coverage, cost and accuracy of our proposed technique.

4.1 M2 Coverage
We show that only a small number of user queries (or sink

nodes) lead to a high overall M2 coverage in a network. Fig-
ure 4(a) shows the approximate M2 coverage of each node
(as a fraction of network area) due to 10 randomly placed
sinks. This experiment shows that due to only a small num-
ber of sinks (0.4% of entire network), a large proportion of
nodes (42%) achieve near exhaustive (> 95%) M2 coverage.
To analyze this result thoroughly, in Figure 4(b) we report
the M2 coverage histogram as the number of sink nodes is
increased up to 5% of the network. The frequency axis shows
the number of nodes in a histogram bin while all values are
normalized to the total number of nodes in the network. This
experiment shows that for a number of sink nodes as low as



(a) Approximate M2 cover-
age with 10 randomly
placed sinks
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Figure 4: Approximate M2 coverage
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Figure 5: Opportunistic sampling for global statis-
tics collection.

2% of the entire network, 64% of the nodes cover more than
80% of the deployment area, while 87% of the nodes cover
more than half of the deployment area.

4.2 Global Statistics Collection
This section reports experimentation with opportunistic

sampling targeted at global statistics computation at node
level. We assume that users issue aggregate queries which
are processed using in-network aggregation. During query
processing nodes continuously collect, sample and transmit
augmented information in the form of MIN, MAX and AVG ag-
gregates of incoming data. In response to any request for a
global statistic by a user or an application (e.g., an event
detection application), a node first attempts to serve this
request locally, using its sampled information. It broadcasts
the request in the network only if its sampled information is
not sufficient to compute the answer.

The chart in Figure 5(a) shows the effect of increasing
number of sink nodes on estimation accuracy of MIN, MAX and
AVG statistics. In this chart, the sink node values are shown as
proportion of the network size, while accuracy is represented
as normalized root mean squared error (RMSE). The chart
shows that an increase in the number of active sink nodes
increases the mean M2 coverage for all nodes leading to a
better estimation. A relatively small number of active sink
nodes (2%) is enough to guarantee a mean error less than 2%
in MIN and AVG and less than 5% in MAX aggregates. This ex-
periment assumes a balance between query arrival rate and
temporal stability of the observed phenomenon. Therefore,
the error in global statistics can be solely attributed to lack
of coverage. We leave the investigation of errors introduced

by stale information as a future work.
The chart in Figure 5(b) shows the cost of computing

global statistics by opportunistic sampling (denoted as M2)
in comparison to a proactive data aggregation technique
using Tiny AGgregation(TAG) [4]. In our implementation
of TAG, a designated base station collects aggregate data
from the entire network employing in-network aggregation.
It then broadcasts the final aggregates to all nodes in the
network. A single run of this technique is quite efficient,
however, its efficiency degrades quickly if the temporal sta-
bility of the observed phenomenon is low. Temporal stabil-
ity refers to the ratio between the length of time for which
a value is expected to remain valid to the total monitoring
duration. For instance, in a WSN monitoring temperature
in a building where we expect the average temperature to
be changing one degree per hour, the temporal stability of
MIN, MAX and AVG aggregates for a 12 hour monitoring
cycle will be 1, resulting in re-computation of aggregates 12
times. If in the same network we expect 2% of nodes to be
actively collecting data every hour, aggregate computation
can be performed opportunistically with no extra cost. Fig-
ure 5(b) shows this trend for our simulated network.

5. CONCLUSIONS
We propose to exploit the multi-hop and multi-path (M2)

advantage of the WSN communication paradigm. Based
on the M2 advantage, we present an opportunistic sam-
pling approach where WSN nodes gather global statistics
by sampling incoming data during regular data collection.
We model the M2 advantage for multi-sink WSNs and show
that only a relatively small number of queries are enough to
guarantee accurate global statistics. In future, we plan to ex-
tend this work for a larger range of global aggregates while
building a realistic prototype for query processing. More-
over, we plan to study the impact of various query types
and temporal variations of an observed phenomenon on the
cost and accuracy of the opportunistic sampling method.
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