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ABSTRACT
Online multi-participant virtual-world systems have at-
tracted significant interest from the Internet community
but are hindered by their inability to efficiently support
interactivity for a large number of participants. Current
solutions divide a large virtual-world into a few mutually
exclusive zones, with each zone controlled by a different
server, and/or limit the number of participants per server
or per virtual-world. Peer-to-Peer (P2P) systems are known
to provide excellent scalability in a networked environment
(one peer is introduced to the system by each participant),
however current P2P applications can only provide file
sharing and other forms of relatively simple data communi-
cations. In this paper, we present a generic 3D virtual-world
application that runs on a P2P network with no central
administration or server. Two issues are addressed by
this paper to enable such a spatial application on a P2P
network. First, we demonstrate how to index and query a
3D space on a dynamic distributed network. Second, we
show how to build such a complex application from the
ground level of a P2P routing algorithm. Our work leads to
new directions for the development of online virtual-worlds
that we believe can be used for many government, industry,
and public domain applications.
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1. INTRODUCTION
A virtual-world is a representation of objects, along with

their relationships in a 3D space (e.g., a virtual-city is a set
of roads, buildings, cars, and pedestrians on the same 3D
virtual-space). Users can participate in the virtual-world
by locating themselves within it, render a view of the rep-
resentation, and manipulate the objects. Users may them-
selves be represented in the virtual-world as objects. The use
of online virtual-worlds has great potential for government,
industry, and in general public domain applications. Re-
cent developments of 3D virtual-world gaming has attracted
many participants. Various terrain-modelling based applica-
tions on a highly distributed scale can be considered. Many
counties over a large geographic area can contribute to a
virtual-community with their local data and servers to form
a very large distributed virtual-world and processing envi-
ronment. This data can be harvested by virtual-tourists, sci-
entists, and government employees. Yet, online applications
such as multi-participant virtual-world-based games are hin-
dered by their inability to efficiently support a large number
of participants on a constant number of servers. Current
solutions divide a large virtual-world into mutually exclu-
sive zones, with each zone controlled by a different server,
and/or limit the number of participants per server or per



virtual-world. These solutions do not scale well because the
communication and computation complexity of the system
is not distributed and scaled in proportion to the number of
participants.

From another perspective, the recent emergence of
large file-sharing systems based on the Peer-to-Peer (P2P)
paradigm for distributed computing demonstrates how a
large number of participants can self-organize into a coher-
ent, global network [6]. In comparison to other applica-
tions, where a large number of participants is generally used
to mean thousands of users, P2P systems consistently sus-
tained millions of users. A large number of participants in
our case is generally used to mean orders of magnitude more
than many online applications. Recently, significant amount
of papers has focussed on various indices that can be used
for accessing complete data files on P2P networks for various
purposes. Examples of this work are [1, 4, 14, 16, 17, 18,
20, 21]. Some prototype P2P systems are already built on
top of new low-level P2P utilities that use these indices. For
example, the PAST [9] persistent storage system is built on
the Pastry [18] routing and indexing service. Such systems
aim to form the future of data storage and retrieval. Plat-
forms like JXTA are also emerging (www.jxta.org) where
people can implement simple P2P systems.

There are many advantages of P2P systems from an on-
line virtual-world application point of view. First, for each
participant a new host joins the system. Second, the band-
width and processing power is not gathered on a few bot-
tleneck servers. Yet, it is not an obvious task to accommo-
date a virtual-world (or any other spatial) application on
a P2P system. Many participants will enter and leave the
application along with their hosts. Maintaining a complex
virtual-world on such a dynamic environment in a trans-
parent manner is very difficult. Also, current P2P indices
cannot provide the necessary functionality to perform many
types of queries on 3D data that users would otherwise ex-
pect from any regular client-server based system (such as
range queries that are crucial for spatial applications). Ex-
isting indices are geared towards finding complete objects,
like files, given a unique key, i.e., a file name. Finally, it is
not obvious how to engineer such a 3D application on a P2P
network from the base level of a P2P routing algorithm and
using basic constructs such as sockets.

1.1 Our Contribution
In this paper, we present a P2P solution for enabling on-

line virtual-worlds that admit a large number of participants
without placing excessive burden on any particular host in
the system. In the context of file sharing, P2P systems use
an index that maps files to peers on the network. Similarly,
the basis of a virtual-world is an efficient index of the objects
in the world and an efficient querying system to provide for
complex queries on this world. We propose an index for
distributing the objects over the peers in a P2P network.
If each peer is a participant in the virtual-world then each
peer is providing some fraction of the total work required to
maintain and process the objects. This relieves the admin-
istrators from having to provide central hosts with enough
capacity to serve an ever growing number of participants.
Ideally, no administration is required in our case.

First, we introduce and analyze an index that is based
on octrees and distributed hashing for enabling more pow-
erful accesses on 3D spatial data over P2P networks. Our

work, like some of the previous related work, relies on creat-
ing a globally known mapping between the node addresses
of a P2P network and the data that will be available in
this network. To avoid all-to-all communications, the map-
ping function has to be known by all the peers of the net-
work. Second, we outline a layered architecture, which we
call Open P2P Network (OPeN) architecture, for the design
and implementation of complex P2P applications such as
our 3D virtual-world application. The OPeN architecture
provides an explicit object-oriented solution that delegates
data processing over a P2P network, rather than forcing all
processing of data to be centralized. Also, P2P applications
are separated from the P2P routing protocol. Applications
can be developed by using various simple core services. The
OPeN architecture ensures that applications adhere to the
P2P paradigm so that they are intrinsically decentralized
and autonomous.

2. DISTRIBUTION OF THE VIRTUAL-
WORLD

We use peers in a P2P network to store objects of the
virtual-world. Each peer is assigned the responsibility for
some regions of the virtual-world and any objects that are
within that region. The regions are defined using a recursive
octree subdivision of the space and objects are placed into
the smallest regions which contain them entirely. Basically,
we distribute an octree over a P2P network in a manner that
ensures load balancing between peers.

2.1 Distributed Hashing
Hashing is becoming increasingly popular for map-

ping and accessing distributed data over large networks
(e.g., [11]). Although there are many methods for a dis-
tributed system to implement a distributed hash algo-
rithm [14], we use a method that has recently become widely
known as the Chord method [20]. Our work is built upon
the Chord method although we believe that other key-based
methods can also be used. The Chord method, and hence
our work, can accommodate a large number of dynamic
nodes in a distributed environment. In the simplest sense,
the Chord method can be viewed as a routing protocol to
find a file given its name in a P2P network.

Distributed hashing uses a hash function to map arbitrary
data strings, i.e., keys, onto a logical space. Some spaces
are multi-dimensional and some spaces are one-dimensional,
e.g., as used in Chord. In both cases, each peer is responsi-
ble for maintaining some subset of the logical space. Also,
each peer’s Internet address is hashed onto this space, called
the peer’s location, and then the peer is responsible for some
subset of the logical space that is nearest to that location
(defined by an ordered relation). Plus, each peer records the
IP addresses (note that port numbers are also needed but
omitted for the simplicity of this discussion) of some of the
peers in the logical space. This connectivity holds the P2P
system together. For a d-dimensional space this whole de-
sign can form a d-dimensional torus (assuming peers know
only about their closest neighbors and we use modulo arith-
metic). So, in one dimension, the P2P network is simply a
circle. Fig. 1 depicts the Chord design that uses a circle and
also shows other details from the Chord method.

Each peer in the Chord maintains a table of up to t other
peers, where t is logarithmically proportional to the number
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Figure 1: The Chord method.

of locations. Each entry in the table represents an interval
that is larger than the interval of the previous entry (usually
twice as large). In the example in Fig. 1, the entries in the
table for two peers are shown as arrows from the peers. Each
interval is associated with a successor peer (the owner of
the corresponding entry). These are depicted using directed
broken lines although only a subset relevant to this example
are actually displayed. These table entries are then used
to jump from one peer to another, towards the peer that
maintains the data file that the user is looking for. After
completing all the tables for all the peers in the network,
one can see that the circled area in the figure shows the
name-space/locations for which peer 10.28.1.5 is responsible
for. Similarly, each peer takes over the responsibility of a
region in this space. Any file with a name that falls into a
region will be owned by a designated peer. Note that the
formation of the division of space and the table entries for
each peer do not require an all-to-all communication.

Without giving an explicit algorithm, consider the case
when peer 10.28.1.5 is trying to locate the object with key
prog1. Hence, we are looking for the peer address who has
prog1 so that we can contact that peer and get prog1 itself.
We will now use our table of peers to trace the location of
prog1. The querying peer 10.28.1.5 checks to see if he owns
prog1 and if not it scans through its table and finds the
name space interval to which the key prog1 maps. In this
case, prog1 is in the interval defined by the third and fourth
arrows, counting clockwise from 10.28.1.5, mapping to our
third and fourth entries in the peer table. We contact the
peer that is the successor peer for the third arrow. Note that
using the fourth arrow rather than the third arrow may miss
a peer that may exist between prog1 and the fourth arrow.
The request for prog1 is now forwarded to peer 128.56.32.1,
getting us closer to the destination. Now, 128.56.32.1 checks
whether it has prog1 and if not (which is the case here as
prog1 is between the second and third interval defined by the
arrows from peer 128.56.32.1), then it repeats the process
and hence forwards the request to peer 128.56.32.5 as the
broken arrow from the end of the second interval is directed
to it. This is the peer that knows who actually has the
prog1 itself. For this example, we assumed that objects are
not relocated with keys when they were first hashed (i.e.,
in cases where large data files are stored in the P2P system
that we do not want to move around). In general, it can be
proven that a request to locate an object/data file will be
forwarded O(log n) times with a high probability, where n is

the total number of peers in such an application of the Chord
method. The Chord method is shown to be very resilient to
peers leaving and coming to the system. In general, the
Chord [20] method has many other useful properties that
makes it a suitable routing algorithm for P2P systems that
are not mentioned in this paper.

2.2 Distribution of Objects and Queries
Objects need to be inserted/deleted/modified within the

virtual-world and queries are required to compute which ob-
jects are within a small region of the virtual-world. A query
can also be defined as a spatial object and the result of the
query consists of all the objects that intersect with the query.
Unfortunately, 3D objects do not have names like files and
hence a simple adaptation of the Chord method fails.

Using a simple multi-dimensional 3D logical space and
mapping regions of the 3D virtual-world to this space and
also hashing peer addresses to the same simple logical space
may seem favourable for this application. Each point in the
virtual-world is thereby assigned ownership to some peer,
or in reverse, each peer has a location in the virtual-world
and owns the region of space that is nearest to it. This
method may work well when the objects in the space are
uniformly distributed over the space. However we have to
realistically consider non-uniform distributions of objects for
a 3D virtual-world. So, when peers are distributed over
the space uniformly at random using a hash function, this
means that using a one-to-one mapping from the virtual-
world to the logical space can lead to some peers receiving
a greater number of objects than others when objects are
non-uniformly distributed.

To avoid load balancing problems arising from non-
uniform distributions of objects, and due to the fact that
objects in space do not have names that we can imme-
diately use for hashing, we distribute nodes of an octree
that subdivides the virtual-world onto the one-dimensional
Chord logical space. Any good hash function with a uni-
formly random distribution of keys to locations can be used
to take the center point of the region of the related tree
node, form a string out of its coordinates, and map it onto
the Chord (i.e., SHA-1 can be used as the base hash func-
tion, www.itl.nist.gov/fipspubs/fip180-1.htm). This means
that for any given node of the tree that represents some
region of the virtual-world, it will be assigned to a peer
selected uniformly at random. The assignment provides a
good load balancing that counters non-uniform object dis-
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Figure 2: The first two levels of an octree mapped onto the logical space; and 3 peers that are responsible for different subsets
of this space.

tributions assuming that the octree subdivisions continue
to a deep enough level for each dense region of the world.
Fig. 2 shows level 0 and level 1 of an octree and an example
mapping of the nodes onto a logical space of 2t identifiers.
Typically, t = 160 for many P2P applications. Each peer
(the squares) is responsible for the elements of the logical
space that come before it (inclusive) and the previous peer.

In R
3 space, a query can be efficiently executed by using

a variant of the octree concept. The objects are indexed
into the octree using some predefined subdivision rule. This
has the effect of exponentially reducing the average number
of intersection calculations per query. For example, using a
suitably defined representation, each descent to a new level
of the octree reduces the number of possible resulting ob-
jects by a factor of eight. After our mapping of tree nodes
to the logical Chord space, we can see that if a peer is re-
sponsible for a region of space, then it is responsible for
query computations that intersect that region of space, i.e.,
with the objects that are associated with that region. We
are now capable of answering any spatial query on a P2P
system (including range queries over objects that span a 3D
space).

In our octrees, each object is associated with the smallest
octree block that contains the object in its entirety. Sub-
division ceases whenever an octree block contains no ob-
jects. This is a three-dimensional variant of the MX-CIF
quadtree [2, 12, 19]. For each subdivision, there is a center
point, termed a control point, that the subdivision planes of
the underlying space intersect. Specifically, we hash these
control points so that the responsibility for an octree-block
is associated with a peer in the P2P system. For example,
H(“(5, 2, 7)”) is the location of the control point (5, 2, 7). We
allow the control points to be dynamically determined using
a globally known function to recursively subdivide space.
Hence, each peer is made responsible for some regions of
space using the control points that hash to that peer. A
control point is used in our algorithm like a bucket for stor-
age of objects and also performing intersection calculations
associated with that region. Given a control point, there is
a unique mapping to an octree block.

2.3 Distributed Spatial Algorithms
We further modify the octree concept with an alteration

that forces objects to be stored and query processing to start

at a level l ≥ fmin where fmin is said to be the fundamen-
tal minimum level, i.e., no objects can be stored at levels
0, 1, . . . , fmin − 1. We also use fmax as the fundamental
maximum level and this allows us to prevent objects from
falling lower than a level that is greater than fmax. Values
for fmax and fmin are constant and globally known. With
fmin = 0 our structure reverts to a simple octree. With
fmin = fmax our structure degenerates to a 3D mesh; com-
pletely collapsing the tree structure into a single level. The
use of fmin removes the single point of failure that would
have occurred had all tree operations begun at the peer that
stores the root control point. It also helps further balance
the load and avoid any potential overloading of peers that
would have otherwise stored control points at a level less
than fmin.

Nodes of the tree are distributed in a uniformly random
manner over the peers using the base hash function of the
Chord method. Hence, we distribute the tree operations,
insert, query, and delete, by branching and delegating con-
trol to the peers that are responsible for the control points
from the octree. Parts of an operation can work in parallel
on different branches of the distributed octree as they map
to different peers through different control points.

Each control point u has the following data structure as-
sociated with it:

D(u) = ({d1, d2, . . . , d8}, list).

Downward counts di ∈ N are used to indicate the number
of objects that do exist at or below child i. The list is a list
of objects that intersect the region R(u) and that could not
fall any further down the tree. The default values for D(u)
are:

{

8
z }| {

0, 0, . . . , 0}, empty

which means that there are no objects below u and no ob-
jects stored at u.

A peer calls InsertObject(object X) to insert an object
into the tree. We use Delegate(u)→Func() to mean that a
peer sends a control message that invokes Func() on another
peer that stores control point u. A Delegate() operation
is similar to creating a new thread of control. Procedure
InsertObject(), shown below, concurrently delegates proce-
dure DoInsert() over all control points at level fmin that



intersect with the object. Procedure DoInsert() delegates
recursively and also concurrently through the distributed
tree until the object is inserted. Note that D(u).field is
used to access/set field of/for D(u). In our presentation,
we make use of the following auxiliary procedures and no-
tation. Ints(X,Y ) computes the intersection of X with Y .
R(u) = (x1, y1, z1, x2, y2, z2) denotes the region defined (and
also controlled) by control point u =

`
x2+x1

2
, y2+y1

2
, z2+z1

2

´
.

L(u) denotes the level of control point u. C(u, i) represents
the i-th child of control point u, where i = 1, 2, . . . , 8.

I n s e r tOb j e c t ( ob j e c t X )
{

c on t r o l point l i s t G:={}
Subdiv ide (X, root, G)
for each u i n G do

Delegate (u)→DoInsert (X ,u)
}

DoInsert ( ob j e c t X ,
c on t r o l point u)

{
i f (X i s not within exa c t l y one R(C(u, i)) )
or ( L(u) = fmax ) then
s e t D(u) . list to i n c l ud e X

else

for i :=1 to 8 do

i f ( Ints(X, R(C(u, i))) i s not empty ) then
increment D(u) . di by 1
Delegate (C(u, i))→DoInsert (X ,C(u, i))

}

Procedure Subdivide(X, root, G) is called with initially
G = {} when inserting X (also used when deleting or start-
ing a query). This initial subdivision of an object (or query)
down to level fmin is performed by the recursive progress of
Subdivide(): The procedure modifies G by adding control
points to it. First, root is used to call this method where
L(root) = 0 and R(root) is a bounding box that bounds all
data and query objects. For this algorithm it is assumed
that all X’s will be contained within R(root). The list of
control points at level fmin, G, is computed locally and pro-
cessing is then delegated to the peers that store these control
points.

If DoInsert() is invoked on a control point that does not ex-
ist then the control point is implicitly allocated with default
parameters. Delegation is sent using the Chord method and
so ordinarily it takes O(log n) messages to reach its destina-
tion (n is the number of peers in the system). Since each
node of the tree has a fixed number of children, we allow each
node to maintain a cache of addresses for its children and
thereby reduce the delegation message complexity to O(1)
(as we will no longer need to use the traversal algorithm
of Chord for each child). This is true only when stepping
through the tree. The number of peers that are initially
contacted is a function of fmin and can consist of a large
number of addresses. Hence, we do not allow caching of the
fmin level peers’ addresses.

Subdiv ide ( ob j e c t X ,
c on t r o l point u ,
c on t r o l point l i s t G)

{
i f (L(u) = fmin ) then
add u to G
return

for each ch i l d v :=C(u, i) do

i f ( Ints(R(v), X) i s not empty ) then
Subdiv ide (X, v, G)

}

Procedures for DeleteObject() and DoDelete() are almost
identical to InsertObject() and DoInsert() and so an explicit
listing is not given here. The essential difference is that ob-
jects are removed from D(u).list instead of being added to
it and that D(u).di is decremented instead of being incre-
mented by 1.

Peers can receive a query from any node on the Internet
(i.e., a client may or may not be a peer in the system) via the
ReceiveClientsQuery() procedure. Similar to insertion (dele-
tion), this procedure takes in an object (named Q for query
in this case) and then it finds the control points at level fmin

and delegates the query to the relevant peers. The results
of a query can then be sent back to the client.

We use the term hit to indicate that an object intersects
a query. A query which covers multiple control points may
return the same object a multiple number of times because
some objects may have been copied into multiple control
points when forced down to a level at or below fmin. Thus
we have to eliminate such superfluous hits, i.e., same object
intersecting with the same query multiple times at different
peers concurrently.

ReceiveCl ientsQuery ( query Q)
{

c on t r o l point l i s t G:={}
Subdiv ide (Q, root, G)
for each u i n G do

Delegate (u)→DoQuery (Q ,u)
}

DoQuery ( query Q ,
c on t r o l point u)

{
i n t e r s e c t ob j e c t s in D(u) . list with Q
send r e s u l t s to c l i e n t
for i :=1 to 8 do

i f ( Ints(R(C(u, i)), Q) i s not empty )
and (D(u) . di > 0 ) then

Delegate (C(u, i))→DoQuery (Q ,C(u, i))
}

2.4 Complexity Analysis
For queries, there are two main operations that affect the

performance of the system: (i) downloading objects from
peers to the clients and (ii) sending query and control mes-
sages between peers or from clients to peers to find the
hits. We consider computation overheads to be negligible
and hence network operations are assumed to be the main
source of delay. We let the function td(s) denote the time to
transmit some data of size s, and let the constant tm denote
the time to transmit a single control message.

For a client-server system that simultaneously receives q
queries with h hits per query, with each hit having some data
of size b bytes, the bottleneck will be the server connection.
The time for the client-server system to answer the queries
is:

Tcs(q) = tm + td(q.h.b) (1)

We assume that the initial query messages are too small
to form the bottleneck in comparison to the hits for this
analysis.



Let the maximum number of nodes in an octree of height
l be:

N(l) = 1
7
.
`
81+l − 1

´
(2)

If we consider the common case when c objects are dis-
tributed uniformly at random over n buckets, i.e., peers.
It can be shown that the average number of buckets that
will receive any objects is:

φ(n, c) = n − ((n − 1)c.n1−c) (3)

The intuition behind this formula is that the probability
that a bucket receives none of the c objects is ((n − 1)/n)c.

We assume that the octree is distributed over the P2P
network with each node of the tree placed uniformly at ran-
dom onto a peer. So, for example, if there are k.N(fmax)
octree nodes, where 0 < k ≤ 1 is the fraction of nodes ac-
tually used, then an average of φ(n, k.N(fmax)) peers will
store at least one node.

The time to complete q queries for the P2P network,
Tp2p(q), is the sum of the time to find the hits and the time
to download the hits. Whether the download bottleneck is
at the serving peers or at the client depends on a number of
factors. For q queries, if h hits per query and data sizes of b
is used again, then the load per peer that contains at least
one hit is:

q.h.b

φ(n, q.h)
=

q.h.b

n − ((n − 1)q.h.n1−(q.h)

= b for n � q.h

(4)

Note that for a very large number of peers in comparison to
the number of hits and queries, there will probably be no
more than a single hit per peer (which is of size b bytes) and
there may be many idle peers that do not serve any hits in
this case.

However the load at the client, which is receiving the load
of a single query, is (h.b). The client is receiving objects in
parallel from up to h peers. When the client’s download time
exceeds the peers’ upload time then the bottleneck for this
data transfer is at the client; otherwise, it is at the peers.
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Figure 3: A query starts from fmin and propagates to fmax.

The propagation of the query is shown in Fig. 3 and fol-
lowing the diagram we can obtain:

Tp2p(q) = ((2 + fmax − fmin + (α. log2 n)).tm)

+ max
n

td(h.b), td

` (q.h.b)

φ(n, q.h)

´o (5)

The first part of the formula represents the traversal of the
distributed tree. The second part represents the download
of the hits. The message at the bottom of the tree in Fig. 3
is, for our implementations, due to the last peer sending a
message to the peer that stores and is the origin of the data
for the hit. Hence, it can send extra information, such as
texture, about the object to the client. In reality, α = 0.5 is
observed for Chord [20]. This value shows the portion of the
number of links that will be traversed in a real-life situation
for a lookup in the circular Chord name space. In general,
we do not expect a spatial query that locates some objects
in a 3D space to take more time with our P2P index than
a regular central octree-based index. Yet, we will have the
advantage of distributing the downloads to multiple peers
(rather than a single server) and hence the system will scale
much better than a client-server system. We are currently
working on a simulation based environment to test our work.

2.5 Related Indexing Work
Recently, approaches targeting mainly range queries on

P2P networks have started to emerge [5, 7]. For example,
PePer [7] supports range queries on one dimension by di-
viding the space into regular intervals. A closely related
approach called MAAN [5] uses locality preserved hashing
to map a range of data space to Chord. This approach
uses either a direct mapping of the data domain (i.e., a line
segment for one dimensional data) to the Chord space or as-
sumes that the input data range and distribution are known
in advance to create a more balanced mapping.

In addition, various approaches (e.g., [3]) have been pro-
posed using the CAN (Content-Addressable Network) [17]
approach as a base. CAN is also a key-based lookup ser-
vice like Chord. Most of these approaches rely on the direct
continuous mapping of the data space onto the CAN. CAN
uses a multi-dimensional Cartesian space. For example, a
city can be mapped onto a two dimensional map and then
to a two dimensional name space with CAN. In general, such
continuous mappings can have load-balancing issues.

Other related work includes [13] which uses directed
acyclic graphs to create a range addressable topology
and [10] which uses range-partitioning with online balanc-
ing algorithms to get around load-balancing problems that
can occur in various mappings. In general, none of these
approaches consider the case of more complex data such as
3D spatial data and complex queries on this data.

Very recently, Mondal et. al in [15] describe their prelim-
inary work whose goal is to accommodate spatial data and
queries on this data for P2P networks. To the best of our
knowledge, this work and ours form the first pieces of work
on spatial data, for P2P networks. In comparison to [15],
we are using octrees while they are using R-trees.

In parallel to these efforts, recent work on sensor and ad
hoc networks have also contributed useful ideas to our prob-
lem domain. For example, [8] introduces an R-tree index in
sensor networks. Their work uses explicit cluster leaders for
maintaining connectivity while in our work we try to decen-
tralize this concept and maintain connectivity more implic-
itly. This conforms with the crucial decentralized nature of
P2P networks. They also mainly focus on performing near-
est neighbor queries in comparison to other general spatial
queries.



3. DEVELOPING A 3D VIRTUAL-WORLD
ON A P2P NETWORK

Fig. 4 shows a sample generic P2P virtual-world ap-
plication that uses our algorithms, built in our labs
(www.cs.mu.oz.au/p2p). There are two peers and hence two
application windows in this figure. Each peer designed and
inserted an object (on the top right corner of each applica-
tion window) to the virtual-world. The boundaries of the
virtual-world are shown on the bottom right corners of the
applications as an overview. Two small cubes can freely be
placed on this overview to define a query region on the whole
space (as shown in the figure). The objects in the query
regions are then returned to the large center canvases af-
ter the distributed search/query operations complete. Each
peer sees the same scene from a different view.

It is not obvious how even such a generic virtual-world ap-
plication can be implemented on a dynamic network. Hence,
we defined and used a layered architecture, called an Open
P2P Network (OPeN) architecture, for designing and im-
plementing complex applications such as virtual-worlds on
P2P networks. Applications are developed without a need
to consider P2P protocols and vice versa; P2P protocols are
interchangeable without changing the application semantics.
The OPeN architecture provides an explicit object-oriented
solution to delegate data processing over a P2P network,
rather than forcing all processing of data to be centralized
at the peer on which the application executes. Applica-
tions can be developed by using various common primitives.
This makes application development simpler. The OPeN
architecture ensures that applications adhere to the P2P
paradigm so that they are intrinsically decentralized and
autonomous.

The OPeN architecture consists of three layers; depicted
in Fig. 5 as the Application layer, Core Services layer, and
Connectivity layer. The Core Services layer ensures consis-
tency and easy development for a large range of applications.
The Connectivity layer enables P2P protocols to be devel-
oped transparently.

3.1 Application Layer
Applications define and allocate objects. More specifi-

cally, objects contain data and methods. The use of objects
allow applications to delegate processing to the peers that
store the objects and thus eliminates a crucial deficiency of
existing P2P applications that require all data to be first
copied to the peer that is executing the application. Ap-
plications can invoke methods of objects and objects can
execute autonomously to invoke methods of other objects,
i.e., objects can interact with each other. This is fundamen-
tally a distributed object architecture, where, in our case,
the spatial properties of the objects are used to locate the
objects in the P2P network.

Fig. 5 proposes a number of example complex applica-
tions in the Application layer. General classes of applica-
tions are shown in parentheses. For example, an air-traffic
controller system is a class of virtual-world. The software de-
sign may define air-traffic control towers as interactive peers
that run a P2P application used by air-traffic controller per-
sonnel; and aircraft as application objects. Aircraft are au-
tonomous, they can move through the virtual-world and can
interact with other entities in this world such as turbulence.
The processing load is distributed over the many control
tower hosts. Indexing and implementing moving objects on

a P2P network is our current research topic.

3.2 Core Services Layer
The Core Services (CS) layer provides a variety of flexi-

ble services that support applications. The example CSes
in Fig. 5 are Peer Management, Database, Virtual Machine,
Naming, and Security. CSes are built on top of a Base Core
Service, also shown in Fig. 5 and make use of a Base Ob-
ject. The Base CS and Object are used to ensure all CSes
are implemented with a consistent view of the underlying
P2P networking operations. The CSes shown in Fig. 5 are
not meant to be an exhaustive list. New CSes can be added
if it is found that existing CSes are inappropriate for the
required application support. We list these CSes as exam-
ples of key CSes that either cover a large variety of com-
plex applications or are essential to include for most ap-
plications. Applications can use the interfaces of the CSes
for easy development. Existing standards can be preserved,
i.e., ODBC. CSes can also utilize delegation to handle their
tasks. For example, a query can spread across many peers
without central control. In our case, we implemented a sim-
ple CS to insert/delete spatial objects to a 3D space. The
generic virtual-world application is built using this simple
interface. The service itself implements the distributed oc-
tree index but it uses the Chord method implementation at
the Connectivity layer to store objects on control points. A
query is a spatial object that can traverse the tree recur-
sively and visit control points (hence peers) to find inter-
secting spatial objects. The Chord method can be replaced
with the CAN method without changing the higher layers.

3.3 Connectivity layer
The Connectivity layer serves the purpose of separating

the P2P protocol from the rest of the architecture. Different
protocols (e.g., Chord) provide different qualities and it is
unlikely that a single protocol can efficiently provide all of
the qualities. The P2P Object Management sub-layer pro-
vides the basis for a complete object-oriented approach to
P2P applications. Objects are used to hide all of the un-
derlying activity. A Base Object is used to represent the
simplest kind of object that all of the underlying P2P pro-
tocols can manipulate. A Base Core Service is used to pro-
vide all CSes with a consistent approach to accessing the
P2P network. Remote Method Invocation is used for appli-
cations to interact with objects and for objects to interact
with other objects. This abstraction allows programmers to
make use of familiar object-oriented techniques. The sepa-
ration provided by the P2P Routing Protocol and P2P Ob-
ject Management sub-layers allows protocols to be changed
without requiring changes to occur at the higher layers. It
furthermore allows protocols to be bridged.

4. CONCLUSIONS AND FUTURE WORK
The use of online virtual-worlds has great potential for

government, industry, and in general public domain appli-
cations. Yet, online applications such as multi-participant
virtual-world-based games are hindered by their inability
to efficiently support a large number of participants on a
small number of servers. On the other hand, P2P networks
are becoming a common form of scalable online data ex-
change. But in P2P networks users cannot perform many
types of queries on complex data, such as 3D data, and it
is not obvious how to build a complex application such as



Figure 4: Screen shots of two peers, each viewing the same scene but from different view points. The sphere and cube are
different objects in the virtual-world inserted by different peers.
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3D virtual-world on a P2P network easily. In this paper, we
introduced and analyzed a distributed octree-based hashing
algorithm and index for enabling more powerful accesses on
3D spatial data over P2P networks. We also showed an ar-
chitecture for building complex 3D applications over such
dynamic networks. Basically, we displayed how a generic
scalable 3D virtual-world can be implemented without a
server. We believe our work can be applied to various multi-
dimensional spaces and using other methods than the Chord
method. We are currently experimenting with our methods
to observe their performance and usability. We also aim to
facilitate moving objects and frequent autonomous object
interactions with our work.
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