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Abstract Wireless sensor networks (WSNs) are rapidly emerging as the prominent
technology for monitoring physical phenomena. However, large scale WSNs are
known to suffer from coverage holes, i.e., large regions of deployment area where
no sensing coverage can be provided. Such holes are the result of hardware failures,
extensive costs for redeployment or the hostility of deployment areas. Coverage
holes can adversely affect the accurate representation of natural phenomena that
are monitored by a WSN. In this work, we propose to exploit the spatial correlation
of physical phenomena to make monitoring systems more resilient to coverage holes.
We show that a phenomenon can be interpolated inside a coverage hole with a high
level of accuracy from the available nodal data given a model of its spatial correla-
tion. However, due to energy limitations of sensor nodes it is imperative to perform
this interpolation in an energy efficient manner that minimizes communication
among nodes. In this paper, we present highly energy efficient methods for spatial
interpolation in WSNs. First, we build a correlation model of the phenomenon being
monitored in a distributed manner. Then, a purely localized and distributed spatial
interpolation scheme based on Kriging interpolates the phenomenon inside coverage
holes. We test the cost and accuracy of our scheme with extensive simulations and
show that it is significantly more energy efficient than global interpolations and
remarkably more accurate than simple averaging.
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1 Introduction

Continuous monitoring of physical phenomena has long been an important applica-
tion domain for sensing and telemetry systems. Historically, a wide range of satellite
based remote sensing and telemetry systems is available for continuous monitoring
in various domains [34]. These systems are best suited for low spatiotemporal
sampling resolution as they are known to suffer from cost and scalability issues
when required to sample with high spatiotemporal resolution. For high resolution
sampling, recent advances in hardware miniaturization and cost reduction have given
rise to a new class of environment monitoring systems called wireless sensor networks
(WSNs) [27]. WSNs comprise a large number of self-contained sensor nodes, each
smaller than a human palm, providing an unprecedented capability to sense and
monitor the physical world. Ranging from monitoring volcanic activity to micro-
climate in trees, WSNs have applications in numerous domains [35].

A WSN accomplishes a monitoring task by periodically sampling a physical
phenomenon using sensor nodes present at different locations. The cost of produc-
tion of such nodes is significantly less than the cost of traditional sensing devices.
Therefore, it is typically assumed that deployment areas can be completely covered
with a high density of nodes. However, experience with WSNs [1] and insights into
future applications [23, 28] reveal that situations may arise where the assumption
of exhaustive coverage does not hold. The resulting sparse network triggers gaps or
coverage holes in the sample space. We argue that for an accurate monitoring of a
physical phenomenon in such scenarios it is important to estimate the phenomenon
inside coverage holes. In this paper we investigate such situations and propose novel
interpolation methods to augment the reported data in presence of gaps.

1.1 Coverage holes in WSN

The existence of coverage holes in WSNs is commonplace and has motivated a
number of recent studies on their detection, effects and management [1, 15, 38].
Typically, coverage holes are assumed to result from hardware failures or commu-
nication breakdowns in one or more WSN nodes. However, there is an important
class of WSNs where coverage holes are an inherent characteristic of the deployment
due to either the scale or the hostility of monitored area. For example, for a
WSN that consists of sensor-enabled ocean buoys which serves as a hurricane or
tsunami monitoring system, it might not be possible to deploy sensors with a high
density as the network has to monitor a very large area [28]. Despite the lower
cost of production of WSN nodes, certain large deployments may still suffer from
resolution issues. Similarly, in applications such as NASA’s VolcanoWeb [23], it may
not be possible to deploy nodes at certain locations due to the hostile operating
environment.

Current research has predominantly focused on the identification of holes in
order to alert and restore the lost coverage of a WSN [15, 38]. However, the
replacement and restoration of nodes may not be sensible in hostile environments or
not possible due to prohibitive costs. Therefore, we take a fundamentally different
approach to handle the coverage issues in phenomena monitoring systems and view
coverage holes as a continuing reality for large WSNs. Our assertion is that coverage
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issues require phenomena monitoring regimes that cope with missing data through
other means than simply replacing or deploying more nodes. Thus, to improve the
monitoring accuracy under various situations, we need methods to interpolate the
missing readings based on the available data and application specific data models.

1.2 Spatial interpolation in WSN

Physical phenomena are characterized by spatial correlation, i.e., proximal sam-
pling locations have similar values and vary together. Since WSN nodes sample
a phenomenon at the points they are located at, spatial correlation in the data
generated by proximal nodes is natural. A number of recent works in the WSN
data acquisition domain propose to exploit this spatial correlation to perform energy
efficient data collection (e.g., [32]). In traditional monitoring domains, such as remote
sensing, estimation methods based on spatial correlation are commonly used to
interpolate various spatial phenomena [8]. In this work, we suggest to exploit the
spatial correlation in the WSN data to interpolate a phenomenon at locations that
are not covered by sensor nodes.

Although simple approximation techniques such as the computation of an average
could be applied as spatial interpolation, such methods are often quite inaccurate.
For instance, spatial averaging methods, including simple and inverse distance
weighted averages, either disregard spatial correlation or assume uniform spatial
correlation. Such naive assumptions significantly affect the estimation accuracy in
many situations. Consider the contour plots shown in Fig. 1 that represent two
physical phenomena of opposing natures. The Sombrero surface [42] represents
a phenomenon where spatial correlation is uniform in all directions while the
Morrison surface [22] shows different correlation in different directions. Inverse

(a) (b)

Fig. 1 Contour plots for two mathematical surfaces show different forms of spatial change. See [42]
for further details on these surfaces (a, b)
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distance weighted average could be a good interpolator for phenomena that evolve
like a Sombrero surface. However, in most practical situations physical phenomena
evolve in a more erratic way than uniformly increasing or decreasing in magnitude.
Therefore, it is of paramount importance to incorporate the effect of various forms
of spatial correlation in the spatial interpolation process. This observation is well-
founded in the geostatistical domain where numerous studies show the strength of
spatial correlation based interpolation methods over ordinary or inverse distance
weighted averaging [42].

1.3 Our contributions

The power consumption of a sensor node is a function of its communication work-
load [27]. Thus, the sustainability and success of a WSN is tied to its communication
efficiency. This important feature transcends the design requirements of all WSN
specific techniques, such as routing, data acquisition and monitoring etc., and often
traditional counterparts of these techniques do not suit WSNs. In this context,
traditional interpolation methods, in particular those that extensively take advantage
of spatial correlations, are also not readily applicable to WSNs. These methods either
require global knowledge of the network [12, 30] or centralized data processing.
Due to WSNs’ dynamic nature and large scale it is prohibitively expensive to collect
and maintain global information such as node locations, connectivity and sensed
data. Similarly, centralized processing is highly energy inefficient as it could require
forwarding the samples over a long distance involving a large number of nodes in the
communication process.

In this paper, we present a distributed scheme to perform spatial interpolation in
a WSN locally, i.e., physically closer to a coverage hole using only the data available
at neighboring sensor nodes. In contrast to the existing methods, our interpolation
technique does not require centralized processing or access to global data about the
deployment. The proposed interpolation approach is a novel distributed formulation
of well known geostatistical techniques: variogram modeling and Kriging. The
proposed approach works in two steps. First, we build a correlation model of a
phenomenon and distribute the model in the network. In the second step, the nodes
neighboring a coverage hole collaborate and use the correlation model to interpolate
the phenomenon inside the hole. Our main contributions can be summarized as
follows:

– we propose a distributed data aggregation based approach for spatial correlation
modeling in WSNs that outperforms a centralized approach significantly;

– based on the spatial correlation model, we present a distributed and localized
formulation of Kriging based interpolation that eliminates the need for central-
ized processing and global data gathering;

– we perform extensive simulations to establish the strength of our interpolation
approach as compared to its global counterpart and a simple averaging based
solution.

Data aggregation and interpolation appear to have contradictory objectives; data
aggregation summarizes one or more aspects of a dataset while interpolation expands
it. Since we propose to apply both techniques, the contributions of this paper may
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appear to be conflicting. One may argue that if summarization during the first step
(data aggregation) leads to loss of information than the second step (interpolation)
may become invalid. However, it is important to note that data aggregation does not
always lead to a loss of information. Although some aggregation operators such as
average, result in information loss, certain aggregate operations, for instance MIN
or MAX, do not lose any information at all. Similarly, a correlation model uncovers
valuable information about a dataset and has the potential to enrich the interpolation
process. The scope of aggregated information, i.e., the spatial correlation model, in
our scheme is to guide the interpolation scheme towards accurate estimation. There-
fore, the aggregation and interpolation steps in our approach are complimentary, not
contradictory.

The basic idea of the proposed interpolation scheme was introduced in [36]. In
this paper, we build upon the basic ideas and introduce several new concepts for
their implementation in realistic WSN settings. Furthermore, we present concrete
algorithms and perform a thorough experimental analysis.

The rest of this paper is organized as follows: Section 2 introduces the geosta-
tistical techniques used in this work; Section 3 presents our distributed approach
towards correlation modeling in WSNs; Our distributed spatial interpolation scheme
is presented in Section 4; Section 5 presents an extensive experimental study;
Section 6 presents an analysis of simplifying assumptions made in this work;
Section 7 discusses related work, while conclusions and future work are presented
in Section 8.

2 Preliminaries

In this section, we formalize important concepts in phenomena modeling and inter-
polation underlying our work.

2.1 Variogram modeling and Kriging

All spatial phenomena observe a certain continuity while evolving in space. Conse-
quently, a correlation between observations at nearby locations is expected. Kriging
is a spatial estimation method that exploits this correlation to interpolate unknown
values of a phenomenon in the vicinity of known values [17]. In its simplest form,
Kriging can be viewed as a weighted average method where the estimation of a
physical phenomenon at a location, say x, is a linear combination of the values at
locations around x. Considering the spatial correlation of physical phenomena, one
could argue that the weight of each value in this linear combination should be based
on an inverse geometric distance function. This approach however, is over-simplistic
as it assumes uniform spatial correlation, which is not the case in nature.

Kriging extends the simplistic inverse distance method by realistic spatial corre-
lation models. For estimating a phenomenon, it uses the statistical distance between
locations rather than their geometric distance. For this purpose however, it is first
required to define a metric for statistical distance. A typical measure of statistical
distance in spatial phenomena is the experimental variogram (EV, γ (h)) defined as a
function of samples of a phenomenon and distance between the corresponding sam-
pling locations [17]. Assume a random variable Z represents a spatial phenomenon
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and Z (x) represents a sample at location x then for a given distance h (referred to as
lag), the EV is defined as:

γ (h) = 1

2N(h)

∑

N(h)

[
Z (x) − Z (x + h)

]2 (1)

where, N(h) is the number of data pairs at distance h.1

The spatial correlation in a phenomenon can be observed by computing the EV
values for several lags using available samples. However, EV computation alone is
not sufficient for Kriging as it often requires correlation between locations where no
samples are available. For this purpose, a phenomenon’s spatial correlation model
is established by fitting a curve onto the computed EV values. The resultant spatial
correlation or variogram model is used to find the correlation between phenomenon
values at arbitrary locations.

2.2 Kriging computation

Once a variogram model is established for a given phenomenon, it can then be
used for spatial interpolation using Kriging. Assume that a spatial phenomenon Z
is represented by its realization Z (x1), Z (x2), . . . , Z (xN) at locations x1, x2, . . . , xN ,
then the Kriging interpolator of Z at a point x0 is given by [6]:

Ẑ (x0) =
N∑

i=1

λi Z (xi) (2)

where λi are the weights fulfilling the unbiasedness condition, i.e.,
∑N

i=1 λi = 1 and
the expected error is E[Ẑ (x0) − Z (x0)] = 0 [17]. Kriging is an optimal estimator in
the sense that it minimizes the estimation variance and is unbiased [6]. It can be
shown that optimal weights λi for the Kriging interpolator can be computed from the
following system of linear equations (SLE) [17]:

� = A−1b , (3)

where � is a vector comprising of Kriging weights λi and a Lagrange multiplier
(added for computational reasons), A is the spatial correlation matrix of sample
locations x1, x2, . . . , xN and b is a vector whose elements represent the spatial
correlation between x0 and each xi ∈ {x1, x2, . . . , xN}. All correlations are based
on an appropriate variogram model defined for the spatial phenomenon under
observation. The above Kriging interpolator can easily be extended to interpolate the
phenomenon in an area, say B instead of a point as in the case above. This requires
replacing the xi to x0 correlations from matrix b with the correlations between B and
each xi ∈ {x1, x2, . . . , xN} [17].

1In practice, a tolerance of ±t units in the lag is expected since real-world datasets are generally not
uniformly spaced.
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Confidence in Kriging Interpolation A major strength of Kriging interpolation is
that along with the interpolated value it can provide an estimate of error. The Kriging
variance can be established as [17]:

Var
(

Ẑ (x0) − Z (x0)
)

= (
A−1b

)T
b , (4)

where, (A−1b)T denotes the transpose of matrix A−1b . If the estimation error is
assumed to follow a normal distribution, the error interval can be calculated by using
the Kriging variance as follows [10]:

Error = ±t α
2 ,n−1

σ√
n

, (5)

where n is the number of samples, σ is the Kriging standard deviation and t α
2 ,n−1 is

the parameter obtained from t-Student distribution depending on confidence interval
(1 − α) and degrees of freedom (n − 1).

2.3 Choosing an appropriate variogram model

The variogram model for a phenomenon can be established by choosing a model that
best fits its EV values. However, in practice this choice is limited by an important
feature of the Kriging SLE, i.e., a unique solution of the Kriging SLE is only possible
if the Kriging matrix (matrix A in Eq. 3) is non-singular and positive definite [17].
Since the Kriging matrix is built using a variogram model, the above consideration
limits one to choose a positive definite model. Therefore, it is not possible to use
an arbitrary curve fitted onto the EV values as a variogram model as such a model
cannot guarantee positive definiteness of the resulting Kriging matrix. Hence, in
practice only some well known functions are used as variogram models. Some typical
choices of variogram models are:

– Spherical Model:

γ (h) =
{

n + s × (1.5 h
a − 0.5

( h
a

)3
) for h ≤ a

n + s otherwise
(6)

– Gaussian Model: γ (h) = n + s ×
(

1 − exp
(
− 3h2

a2

))

– Exponential Model: γ (h) = n + s × (
1 − exp

(− 3h
a

))

where h is the distance between two points and n, s, a are nugget, sill and range
of the EV, respectively; the nugget is the height of the jump of the variogram at
the discontinuity at the origin, the sill is the limit of the variogram (tending to
infinitely large distances) and the range is the distance for which the difference of
the variogram from the sill is minimal.

The above described variogram models parameterize nugget, sill and range in
a specific way and hence represent a certain pattern of spatial continuity [17].
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Fig. 2 EV and variogram
models for the DEM dataset
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For instance, the spherical model represents linear continuity at small distances
but flattens out at larger distances. Similarly, the Gaussian model reaches its sill
asymptotically and shows a parabolic behavior near the origins hence best suits
extremely continuous phenomena. In above variogram models, nugget plays an
important role as a large nugget effect represents lack of spatial correlation and
hence reduces Kriging procedure to a simple averaging of the available data. For
a given phenomenon, one of the above models is adopted based on how closely it
matches the actual spatial correlation (observed from its EV values).

Figure 2 shows the omni-directional EV and spherical, Gaussian and exponential
variogram models computed for Digital Elevation Model (DEM) dataset [37]. This
dataset consists of samples located on a grid of 50 m resolution covering a 10 km2

area of the state of Colorado, USA. As evident in Fig. 2, the DEM dataset exhibits
a high degree of spatial correlation and hence we adopt the Gaussian model in our
later experimentation with this dataset.

3 In-network variogram modeling

Variogram modeling is a fundamental step in the interpolation of a phenomenon
based on its spatial correlation. Since the primary aim of our work is to distribute
the interpolation task among WSN nodes, it is essential to construct and disseminate
a variogram model to all nodes in the network. In a WSN, a simple approach for
variogram modeling could construct the EV of a phenomenon by propagating the
data from each WSN node to a base station and compute the EV centrally. However,
such a global approach is guaranteed to suffer from excessive communication costs.
We aim to replace the need for centralized processing and reduce communication
costs by distributing the task of EV construction in the network. For this purpose, we
model the construction of a phenomenon’s EV as an aggregation query and propose
a distributed solution that is based on in-network aggregation.

In-network aggregation schemes [21] for WSNs are motivated by two major
factors. First, the nature of communication in a WSN is multihop, i.e., data from a
node cannot be directly transmitted to the base station and hence follows a path
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through other nodes in the network. Second, a node consumes significantly less
energy for information processing than for communication. Therefore, in-network
aggregation does not transmit the data of each individual node separately. Instead, a
node first aggregates the incoming data from the nodes in its communication range
and transmits only the aggregated information. Typically, in-network aggregation
establishes a data collection tree rooted at the base station spanning all nodes in
the network. An aggregation operator (such as AVERAGE) is then decomposed and
nodes are synchronized such that each internal node waits for incoming data from
its child nodes. Internal nodes perform partial aggregation on the incoming data and
communicate only the answer to their parent nodes. An iterative use of this scheme
by each internal node results in computation of correct aggregates and reduces the
communication cost significantly.

One of the fundamental challenges faced by the in-network aggregation paradigm
is the decomposition of aggregation operators. A typical tree-based in-network
aggregation scheme can compute local aggregation operators, such as SUM or
AVERAGE. However, exact computation of global aggregation operators, such as
MEDIAN, requires to gather all the data at a central point. Therefore, in-network
aggregation algorithms rely on localized approximation methods for such operators
(e.g., [31]). We face a similar challenge while modeling the EV construction as an in-
network aggregation problem. To explain this challenge further, we first formulate
an aggregate query that constructs an EV in a WSN.

3.1 An aggregation query for experimental variogram construction

Our aim is to solve the EV construction problem in a distributed manner using an in-
network aggregation plan. Following the WSN database query models, we address
the EV construction as an aggregation query:

SELECT lags.distance, AVG(POWER(s1.value-s2.value,2))
FROM sensors AS s1, sensors AS s2, lags
WHERE
ABS(DISTANCE(s1.location, s2.location)-lags.distance) ≤ t
GROUP BY lags.distance

where sensors represents the table of sensor values for the phenomenon under
observation, lags represents a table of required lag values and t is the tolerance
level to accommodate the non-regular spacing between nodes. In a WSN, the
sensors table can be viewed as being split across all nodes in the network such
that each node only possesses the tuples that it generates. We assume that the table
lags is distributed in the network and each node possesses the complete table.

Figure 3 presents the basic idea behind in-network execution of the above ex-
perimental variogram self-join (EVSJ) query. Leaf nodes communicate their sensed
values and locations to parent nodes where partial aggregation is performed. In the
case of EVSJ query, the partial aggregation refers to computing the pair-wise count
and sum of squared differences of child node values for each lag, as shown in Fig. 3.
All internal nodes suppress child nodes’ data from further traversal and only transmit
the partial aggregate along with their own values and location information. Final
EV values for each lag can then be calculated at the root using partial aggregates.
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Fig. 3 In-network execution of the EVSJ query comprising a single lag (5 units). Dashed circles
represent node pairs within a distance of 10 units to each other. Partial aggregate at internal nodes
consists of tuples of the form: (lag, sum of squared difference (SSD) and count of node pairs)

The main challenge in the partial aggregation of the EVSJ query is the involvement
of self-join on the table sensors because it requires the value of each node to be
aggregated with all nodes that are within a certain distance. Therefore, an internal
node can aggregate and suppress incoming data from a child node, say A, only if it
receives the data from all nodes located within a distance of lag units from A.

Consider the example presented in Fig. 4a. For the EVSJ query, node 5’s data is
required to be aggregated with all nodes present within a certain distance, referred
to here as node 5’s EV neighborhood (as shown by the shaded circle in Fig. 4a).
The nodes located inside node 5’s EV neighborhood (nodes 4 and 6) do not have a
communication link with it. Therefore, node 5’s EVSJ aggregation cannot be fully
performed until the data from itself and nodes 4 and 6 reaches a common parent
node on the data aggregation tree. Clearly, if the common node is reached quickly,
the energy savings will increase because node 5’s data can be stopped from traversing
up in the tree further. In this example, node 2 can aggregate node 5 as it fully covers
node 5’s EV neighborhood. However, the key challenge is to determine whether or
not a given internal node (e.g., node 2) covers EV neighborhoods of its child nodes.

3.2 The quad suppress (QS) algorithm

In general, the in-network computation of the EVSJ query has the following chal-
lenge: each internal node should locally determine if it spans all nodes in the EV
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Fig. 4 In-network execution of the EVSJ query using the QS algorithm (a, b)

neighborhood of its child nodes. These nodes can either aggregate child nodes’ data
or forward it in an unaggregated form. Moreover, to reduce the data communication
costs, unaggregated data forwarding should be minimized.

To address this challenge, we present the Quad Suppress (QS) in-network ag-
gregation algorithm. The QS algorithm comprises two main parts: (i) aggregation
tree creation and (ii) data aggregation. The following subsections detail these
components.

3.2.1 Aggregation tree creation

Typically, a WSN data aggregation tree is created in an uncontrolled or random
manner [21]. The base station broadcasts a tree creation message and all receiving
nodes join as its child nodes, forming the first level of the tree. These nodes in turn
extend the tree by re-broadcasting the message to nodes further away from the base
station. The message re-broadcast is continued until all nodes in the network have
joined the aggregation tree. In this tree creation method, internal nodes have no
control over the nodes that join their subtrees. Consequently, without an extensive
message exchange an internal node cannot determine if it spans a given subset of
nodes forming the respective EV neighborhoods of its child nodes.

In the QS algorithm, we propose to create the aggregation tree in a controlled
and regionalized manner such that each internal node grows its subtree within a
specific region. The EV neighborhood of a node is defined by its location and a prede-
fined lag value. Therefore, in a regionalized tree an internal node can determine if
it completely spans the EV neighborhood of a child node using only the child node’s
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Algorithm 1: QS tree formation algorithm for node

// : QS tree formation message comprising of:

// : node id of message sender

// : a quadrant represented by a rectangular region

// : node s quadtree level (if is a quadhead)

// : expected location of level quadhead in the quadrant

(a fixed size rectangular region cocentric with )

// : message type (quadtree creation message or random

Input: QS tree formation message
Output: QS tree formation message

if = quadtree creation message then1
if is located inside then2

Save node as level quadhead3
Set as level quadhead4

5
if is less than predefined quadtree resolution then6

random aggregation tree creation message7
Broadcast8

else9
10
11

quadtree creation message12
13

foreach quadrant in do14
15

Update to be cocenteric with16
Geocast to17

else18
Geocast to19

if = random aggregation tree creation message then20
if is inside and has no parent then21

Set as aggregation tree parent22
23

Schedule partial aggregation transmission time period24
Broadcast25

aggregation tree creation message)

location information and predefined lag values. For regionalized tree creation, we
propose a quadtree-based process that works as follows:

– the base station partitions the deployment space into four quadrants and geo-
casts2 a quadtree creation message to constant sized regions defined around the
centroids of each quadrant;

– nodes forward the geocasted message until it reaches the first node located inside
the geocasted region (as shown in Fig. 4b we expect to have one such node in
each quadrant and refer to these nodes as level 1 quadheads);

– each quadhead further partitions its quadrant and determines new subregions
defined around the respective centroids of each partition;

2A routing strategy used in WSNs and Mobil Adhoc Networks (MANETs) that delivers data to all
nodes located inside a specific region.
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– quadheads geocast the quadtree creation messages to new subregions, received
by level 2 quadheads;

– level 2 quadheads continue to recursively partition their corresponding quad-
rants and the partitioning and geocasting process terminates when a predefined
quad-tree resolution is reached;

– final level quadheads create random aggregation trees in their respective quad-
rants if there are many nodes in that quadrant.

The tree creation scenario explained above is illustrated in Fig. 4b, while Algorithm 1
lists the process for an arbitrary node n. Upon receiving the QS tree formation
message, node n first determines the message type as either quadtree or random
aggregation tree creation message. For a quadtree creation message, node n first
determines if it is the intended quadhead (Algorithm 1 line 2). If node n is the
intended quadhead and it finds the partitioning level to have reached the predefined
resolution, it stops the quadtree creation process and starts a random aggregation
tree (lines 6 to 8). Otherwise, it further partitions the current quadrant and geocasts
the tree formation messages to next level quadheads (lines 14 to 17). If node n
does not fulfill the quadhead criteria, it simply geocasts the message to the intended
quadhead (line 19). If a random aggregation tree creation message is received, node
n first checks if it has not joined the tree yet and is located in the right quadrant
(line 21). If this is the case, it joins the tree and broadcasts the message to its
neighboring nodes in order to extend the tree further (lines 22 to 25).

3.2.2 Data aggregation

After creating the aggregation tree, the QS algorithm uses a phased approach for
data aggregation. Assume that the tree creation results in a tree with i levels. In
the first phase of data aggregation, ith level quadheads gather sensed data and
location information from all direct child nodes. Quadheads also gather data from
indirect child nodes if they head a random data collection tree. After receiving all
the data, each quadhead scans the incoming data for nodes with EV neighborhoods
completely inside its quadrant. Data from all such nodes is aggregated at this level
and suppressed from further traversal.

It is expected that the ith level quadheads may not cover the EV neighborhoods
of all nodes in their quadrant. This is caused by a node’s location, for instance, a
quadhead may not be able to cover the EV neighborhood of a node located on the
border of its quadrant. Consequently, quadheads are required to transmit the data
from such nodes in unaggregated form. In the second phase of data aggregation,
ith level quadheads transmit the partial aggregates and any unaggregated data to
the quadheads at level i − 1. These quadheads perform further aggregation and
reduce the unaggregated data as a large number of previously uncovered nodes
will now have their EV neighborhood covered. The resultant partial aggregates
are forwarded to the quadheads at level i − 2. The aggregation and data reduction
process is repeated at each level of the tree until all data reaches the base station.

Once all aggregated data reaches the base station, a variogram model can be fitted
to it and Kriging parameters such as nugget, sill and range can be estimated. If this
variogram model is intended for use at node level in a decentralized way, the base
station simply broadcasts the model to all nodes in the network.
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Algorithm 2: QS data aggregation algorithm for node

// : time period for which node listens for child nodes  data

// : QS data aggregation message comprising of:

// : node id of message sender

// UAGG : unaggregated information at as a list of tuples of 

// AGG : result of partial aggregation at as list of tuples of 

, , )where is a lag value,

the sum of squared differences of node values for node pairs

located at a distance of to each other and is a count 

Output: QS data aggregation message

Initialize QS data aggregation message1
2

location of node3
sensed phenomenon value at node4

Add tuple ( , , ) to UAGG5
while has not expired do6

Listen for QS data aggregation messages from child nodes7
Update s UAGG and AGG lists using corresponding lists from each received message8

if node is not a quadhead then9
Transmit to parent node10

else11
foreach tuple in UAGG do12

Compute EV neighborhood of node in tuple13
if node s quadrant encloses then14

foreach tuple in UAGG do15
if then16

distance between nodes in and17
Find a tuple from AGG such that tolerance18

squared difference between sensed values in and19
20

Remove from UAGG21

Transmit to quadhead one level higher22

the form (node id, location, sensed value) belonging to nodes 

whose EV neighborhood is not covered by

the form ( is

of node pairs forming

Algorithm 2 formally presents the QS aggregation process for an arbitrary node
n. In the first phase, nodes simply forward the data received from each child node
towards the quadhead in unaggregated form using the previously computed random
aggregation tree (Algorithm 2, lines 1 to 10). Since this tree is not created in a
regionalized manner, in-network aggregation for the EVSJ query is not started
until the data reaches a quadhead. If node n is a quadhead it attempts to partially
aggregate and hence reduce the unaggregated information. The partial aggregation
has the following steps: node n scans the incoming unaggregated data for all nodes
with an EV neighborhood completely within node n’s quadrant (lines 12 to 14); for
each pair of nodes (i, j) in the unaggregated data, where i is a covered node and
j is located inside i’s EV neighborhood, node n computes the distance between i
and j (lines 12 to 17); it then determines the appropriate lag value lv depending
on the computed distance and updates the partial sum of squared differences and
pair counts corresponding to lv (lines 18 to 20). After aggregating the covered nodes
data, node n removes it from the unaggregated data list (line 21). After analyzing all
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incoming data, node n forwards the aggregated message to the quadhead one level
above itself. The same process is repeated at each quadhead.

3.2.3 Analysis

Cost comparison Figure 5 shows a significant difference in energy expenditure of
the QS algorithm and a random tree based global data collection using 2500 samples
from the Digital Elevation Model (DEM) dataset covering a 500 m2 area of the state
of Colorado [37]. The difference in the performance of the two algorithms can be
explained by their data forwarding behavior. The first data collection scheme creates
the aggregation tree randomly, thus an internal node cannot determine whether or
not it covers the EV neighborhood of its child nodes. Consequently, all internal
nodes propagate their data to the base station in unaggregated form. On the other
hand, the QS algorithm reduces the communication costs significantly by performing
the aggregation in the network using location information as soon as a node’s EV
neighborhood is covered.

Performance tuning and accuracy An important parameter in the QS algorithm
is the resolution of the final level of the quadtree. We propose to set the value
of this parameter according to the expected EV range of a phenomenon, i.e., the
distance at which the spatial correlation in the phenomenon values is expected to
become insignificant. If this resolution is kept too small, a large number of nodes
from one cell will be required to be aggregated with many nodes from neighboring
cells. Consequently, only limited aggregation would be possible in the lower levels of
the tree. Similarly, a very coarse resolution will produce larger cells and still reduce
the benefit of aggregation. A good balance can be found by setting the resolution
equal to the expected EV range.

The accuracy and quality of variogram modeling using the QS algorithm depends
on the large scale correlation structure of a target phenomenon. Since, the QS
algorithm computes the variogram by considering pairs of values within a certain
distance (the expected EV range), it cannot reflect any large scale correlation
structure. A centralized method, on the other hand, can analyze node pairs present

Fig. 5 Comparison of energy
expenditure in QS and random
tree algorithms for EV
construction on 2500 samples
of the DEM dataset. Energy
expenditure is measured as a
function of number of
messages and byte content per
message (see Section 5 for
details on energy
computation)
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at any distance and hence can reflect both short and large scale correlation well.
In practice however, most physicals phenomena have strong local spatial correlation.
Therefore, for most situations the accuracy of variogram model established by the QS
algorithm is expected to be close to that reached by centralized methods. In Section 5,
we experiment with this aspect of the QS algorithm in detail and analyze its effect on
interpolation accuracy in different situations.

4 Distributed Kriging (DISK) algorithm

In this section we explain our interpolation approach, the DISK algorithm, which is
a distributed computation of the Kriging interpolation.

Equation 3 shows that the matrix inverse calculation poses a major bottleneck
in the Kriging operation. To reduce this computation usually a restricted neigh-
borhood method, referred to as Kriging with moving window, is employed where
only the sample points within a certain distance from the interpolation point are
used in the Kriging matrix. We argue that in large scale WSN settings, the moving
window approach calls for a localized Kriging computation (as according to our
experiments, pumping all window data to a base station several hops away proves
to be expensive). Similarly, naive distributed approaches that assume the presence
of global knowledge at each node are not practical as well, since there is no reliable
and inexpensive way of maintaining global network information on sensor nodes.
In this context, a localized approach replaces the need of global knowledge with
knowledge sharing among neighboring nodes and becomes increasingly efficient as
the difference between the size of neighborhood (window) and the size of network
grows.

4.1 Formulation

The basic building block of the DISK algorithm is an iterative approach of the
Gaussian elimination method that allows us to localize and distribute the solution of
Kriging SLE presented in Eq. 3. In terms of Kriging SLE, the Gaussian elimination
method can be interpreted as the process of finding a sequence of elementary row
operations, or linear maps, that transforms matrix A to its reduced row-echelon
form. Applying the same linear maps on matrix b would then yield to the solution of
Kriging SLE. The aim of the DISK algorithm is to compute the Kriging operator in
a recursive fashion so that the process of finding the linear maps can be distributed
among the nodes participating in the Kriging estimation.

The basic idea of our iterative elimination approach is presented in Fig. 6. If
the nodes inside a Kriging window are assumed to be aligned along a chain, each
node k adds a new variable, i.e., its Kriging weight (λk), and its corresponding linear
combination (

∑k
i=1 λicki = b k) to the Kriging SLE. In terms of matrix operations,

each node in the chain adds a new row and column to the matrix A required to be
inverted while not changing the original entries. We can then order the elimination
process on the basis of following recursive formulation of matrix A:

Ak =
[

1 KT

K Ak−1

]
(7)
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Fig. 6 Iteratively building
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where k ≥ 2 and

K =
⎡

⎣
ck(k−1)

. . .

ck1

⎤

⎦ A2 =
[

c22 c21

c12 c11

]

Now for Ak, we define �(Tk) : Ak → A�
k as a group of all linear maps enumerated

by the following recursive definition:

� (Tk−1) (8)

Rk ← Rk + (−k1i × Rk−i) ∀i ∈ {1, 2 . . . k − 1} (9)

Rk ← Rk × 1

a11
(10)

Rk−i ← Rk−i + (−ki1 × Rk) ∀i ∈ {1, 2 . . . k − 1} (11)

where,

– k ≥ 2.
– Ri represents the ith row of Ak and a11, ki1, k1i, i = 1, 2 . . . k − 1 represent

elements of matrices Ak and its corresponding K and KT constituent vectors,
respectively.

– �(Tk−1) represents all linear maps defined for matrix Ak−1.
– �(T1) comprises one row operation defined as: Rk ← Rk × 1

a11
.

An immediate consequence of above formulation can be specified as the following
Lemma:

Lemma 1 If Ak−1 = I, the identity matrix, and Ak defined in terms of Eq. 7, then
A�

k = I.

Theorem 1 Let Ak be an invertible matrix and �(Tk) : Ak → A�
k = I be the group

of linear maps corresponding to Ak. The solution of SLE λ = A−1
k b can be obtained

by a recursive application of linear maps from �(Tk) on b.
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The above formulation allows us to find the linear maps required to solve the
Kriging SLE in an iterative manner. Consider the example in Fig. 6. The first
intermediate node (2) in the chain initiates the iterative process by computing the
required transformations for A2 and transmit the composite linear map, T2, to the
node above it (node 3). Node 3 computes the row and column entries for A3 and
according to the definition above, first applies the received linear map, T2 on A3

followed by linear maps that reduce all new row entries to 0, reduce the pivot element
to 1 and reduce all new column entries to 0, i.e., applying Eqs. 9, 10 and 11, in that
order. Node 3 then forwards the composite linear map T3 to the next node in chain.
The iterative application of the same procedure at each intermediate node in the
chain results in a final composite linear map, Tk at root node of the chain. Tk can
then be applied on vector b to compute the solution of the Kriging SLE resulting in
the required Kriging weighting vector: �.

As a byproduct of above process, Kriging variance and hence a confidence interval
for a Kriging estimate can be computed easily. As shown in Eq. 4, once vector � is
computed, the Kriging variance can be computed simply as �Tb .

4.2 DISK algorithm implementation

In this section we outline the sequence of operations required to implement the
DISK algorithm in actual WSN settings. In general, our DISK algorithm based
interpolation scheme works through the following steps:

– the base station broadcasts a query specifying the phenomenon to be sampled;
– if coverage holes are not known in advance, the network applies a discovery

method, such as [20, 38], to identify nodes bordering a coverage hole;
– border nodes disseminate the coverage hole knowledge to all nodes within a

threshold distance to the coverage hole;
– all nodes that receive the coverage hole knowledge along with the border nodes

form a Kriging neighborhood;
– finally, DISK is used by all nodes in the Kriging neighborhood to interpolate the

values inside the hole area.

We divide the coverage hole area in a grid of size h × v, where h and v are the
number of grid cells along horizontal and vertical axis, respectively. We use a moving
window model for Kriging the phenomenon value for each grid cell [17]. The value
for a grid cell xij, 0 < i ≤ h, 0 < j ≤ v is interpolated using only the nodes that fall
inside the Kriging window defined by a search ellipse centered on xij. We assume
that the variogram model of the phenomenon is distributed in the network during a
previous variogram modeling phase using the QS algorithm.

The basic idea behind DISK is to distribute the Kriging computation among the
nodes in a neighborhood such that each node only performs part of the overall
processing. Our iterative computation requires the nodes to be organized in a
communication chain. Such a chain ensures that only one node is added to the
Kriging SLE at each intermediate stage and the diagonalized matrix of the preceding
stage remains intact. As a result, a node at level i in the chain has to compute new
linear maps for 2i entries it adds to the Kriging SLE. The challenge is to create this
communication chain reliably in absence of global information such that all nodes
inside the Kriging neighborhood are included.
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We propose a novel tree-based method that performs chain processing required
for iterative elimination. The nodes in the Kriging window are organized in a tree,
referred to as DISK tree, rooted at an arbitrary border node. To save from setup
costs, border nodes start establishing the DISK tree while disseminating the coverage
hole information. The root node starts the DISK procedure by initiating a depth-first
tree traversal. In general, an intermediate node k keeps forwarding the Kriging data
it receives from one of its traversed children to untraversed children until all child
nodes are traversed. At this stage the node k computes Ak (as defined in Eq. 7) and
corresponding composite linear map Tk. Node k then forwards all composite linear
maps, its position and the observed value of the phenomenon to its parent node.

Figure 7 shows an example DISK tree spanning 10 nodes. In this example, the
initialization request follows the path from node 100 to 110 terminating at node 109.
Leaf node 109 initializes the Kriging SLE with its values and sends the message back
to node 110. Consequently, node 110 forwards the received message to its next child,
i.e., node 115. Since node 115 is not a leaf node it forwards the message that is finally
received by node 116. Node 116 performs the computations described in Section 4.1
to extend the current Kriging system and sends the extended system back to node
115. As node 115 has no untraversed child left, it extends the Kriging system further
by adding its value and performs the computations. The same process is repeated at
each internal and leaf node of the tree until the root node 100 receives the data and
has no more untraversed child left. The chain in Fig. 7 shows the sequence of nodes
that extend the Kriging SLE.

Algorithm 3 details the steps to compute DISK for an arbitrary node n.
Algorithm 3 assumes that a DISK tree is already created in the Kriging neighborhood

Fig. 7 Execution of the DISK
algorithm on a DISK tree.
Dashed arrows with labels
show sequence of messages
passed in the depth first
traversal of the DISK tree
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where node n is located. Lines 1 and 2 of Algorithm 3 implement the depth first
traversal of the DISK tree. If node n has traversed all child nodes (or if it has no
child nodes), it iterates through the list of grid cells formed for the interpolation of
the coverage hole (line 3). For each grid cell that has a Kriging window enveloping
node n, it extends the corresponding Kriging system using the recursive procedure
explained in Section 4.1 (lines 6 to 12). If n is not the root of DISK tree, it simply
forwards the updated Kriging data to its parent node. Otherwise, it computes the
final interpolation estimates for each grid cell using Theorem 1 (lines 15 to 19). It
then forwards the interpolation estimates to the base station (line 22).

4.3 Cost analysis

The worst-case time complexity of DISK for a given Kriging system at an individual
node is O(N2), where N is the Kriging size or number of nodes in the Kriging system.
The number of operations performed by a node present at level k in the DISK
chain is equal to the total number of linear maps in Tk enumerated by Eqs. 8–11.
As explained in the algorithm above, the node at level k in the chain will first execute
all linear maps sent to it from the node at level k − 1. It then computes linear maps
for 2(k − 1) + 1 new values it adds to the Kriging matrix in the form of one new row
and one new column. The total number of linear maps in Tk, denoted by |Tk|, can be
given as:

|Tk| = |Tk−1| + 2k − 1

Here, k ≥ 2 and the base case for the recursion is give by T1 = 1, i.e., the number of
linear maps computed by the first node of DISK chain. Solving the above recursion
yields

|Tk| = k2

The aggregate complexity of DISK computation over N nodes will then be∑n
i=1 |Ti| ≈ O(N3).
For an m node neighborhood, the total number of messages generated during

the execution of DISK algorithm is 3m, i.e. m messages transmitted during the tree
creation and 2m transmitted during the depth-first traversal.

5 Experimental study

We performed extensive simulations to evaluate the performance of the DISK
algorithm with respect to the size of the network, the size of the Kriging neigh-
borhood, node to base station distance and node density. A fundamental goal of
this experimentation is to demonstrate the scalability of our approach in large
deployments. Therefore, we experiment with data sets that are large both in terms
of node density and volume. In this paper, we present the results of simulations
based on two datasets: a Digital Elevation Model (DEM) dataset from the state of
Colorado [37] and simulated traffic data for the city of Melbourne, Australia. Both
datasets represent large WSN deployments, i.e, network sizes from approximately
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1000 to 5000 nodes with deployment area ranging between 8 km2 to 18 km2 for DEM
data and 16 km2 to 36 km2 for traffic data.

An important consideration in using DEM and traffic data for this experimenta-
tion is to show the useability of our interpolation approach at the opposite ends of
the spectrum, i.e., a phenomenon that is highly spatially correlated on one end and
highly dynamic road traffic data on the other end. Contour plots in Fig. 8 clearly show
the opposing nature of these datasets. Smooth contours of DEM data (Fig. 8a) show
strong local spatial correlation in this dataset. On the other hand, noisy contours
of traffic data (Fig. 8b) show extremely limited small-scale spatial correlation. The
traffic data does show the presence of large-scale spatial correlation, a fact that
represents the nature of road traffic. For instance, the traffic level on a major arterial
road in a city may be quite different from the level on an adjacent suburban road.
However, similar traffic levels are usually recorded on arterial roads that may be at a
larger distance to each other but connect the same parts of the city.

Algorithm 3: DISK algorithm for node

// : list ofgrid cells overlaying the coverage hole

// : DISK data message containing hole locations and interpolated 
values

// : DISK interpolation message sent by node comprising of 

( , , , , ) defined as follows:

// : centroid of a grid cell in

// : list of node locations

// : list of node values

// : list of correlations between the expected phenomenon value

and each location in

// : list of linear maps

Input : DISK interpolation message:
Output : Data message , if node is root of DISK tree; interpolation message , otherwise

foreach DISK tree child of node do1
Forward to2

foreach grid cell in do3
Compute Kriging window for4
if location( ) is inside then5

Retrieve Kriging system from KS corresponding to6
1 + total entries in7

Compute for //as described in Section 4.18
Compute composite linear map for9

10
Add location( ) to11
Add value( ) to12

if is root of DISK tree then13
Create an empty DISK data message14
foreach grid cell in do15

Retrieve kriging system from KS corresponding to16
Compute vector of Kriging weights by applying linear maps on vector17
Compute interpolation value as:18
Save s location and its computed interpolation in19

Transmit to the base station20
else21

Transmit to parent node in DISK tree22

list KS of Kriging systems where each tuple is of the form 

at
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Fig. 8 Contour plots for DEM and Traffic datasets used in experimentation (a, b)

5.1 Global Kriging (GK) and averaging (AVG) algorithms

In order to compare the cost and accuracy of the DISK algorithm, we also simulate
a Global Kriging (GK) algorithm that is a typical in-network data aggregation
tree. GK assumes the full knowledge of node and coverage hole locations at the
sink. Similar to DISK, GK also uses the moving window model for Kriging and
hence interpolates using data only from a neighborhood. However, it performs its
interpolation centrally by propagating the data from a neighborhood to the base
station. Kriging computation of GK is restricted to the same neighborhood as DISK
in order to ensure a fair cost comparison between the two methods.

A major distinction between interpolations by GK and DISK is the variogram
model used in each method. In the DISK approach, we first create a variogram model
locally, using the QS algorithm, and distribute the model to each node in the network.
In GK, the variogram model is built centrally after collecting data from all nodes at
the base station. The use of different models in each interpolation method leads to
a difference in their accuracy. It is possible to use the global variogram model in
DISK, in which case its interpolation results and accuracy will exactly match those of
GK. However, in our experiments we use different models to analyze the impact of
localized variogram modeling on interpolation accuracy.

In addition to GK, we also report the energy efficiency and accuracy results of
an in-network aggregation based averaging scheme (AVG). This scheme simply
computes the average value of all nodes present inside the Kriging neighborhood.
We include the AVG method in our comparison to establish the design space for
our proposed method. GK represents an ideal interpolation scheme based on global
correlation data while AVG represents a quick and dirty estimation method. We
show that our proposed scheme is much cheaper in cost as compared to GK and
provides much higher accuracy than simple averaging.



Geoinformatica (2010) 14:101–134 123

5.2 Simulation setup

Our experiments are based on simulations of the Mica motes [7] implemented in the
NS-2 simulation software [25]. We use the total data transmission in the network
as a measure of energy usage and hence as the metric for cost comparison. The
amount of data transmission in a network can be related to the energy expenditure
by a function such as ε = σs + δsx, where ε is the total amount of energy spent in
sending a message with x bytes of content, and σs and δs represent the per-message
and per-byte communication costs, respectively [32]. When aggregated for all nodes,
the above energy relation represents the cumulative effect of number of messages
and message size sent by each node.

In the experiments below, we do not incorporate the cost of variogram modeling
in the cost of DISK and GK algorithms. We consider variogram modeling to be a
setup cost incurred by both the algorithms. Like DISK, GK also requires a global
variogram model for its computation. Since during interpolation it retrieves node
values from Kriging neighborhood only, it cannot use the same values for building
its variogram. Hence, GK has to use a variogram model created previously. Our
experiments show that the cost of building the variogram in a localized manner
(i.e., for DISK) is much smaller than that for building it in a global manner (i.e.,
for GK). Although DISK requires O(n) messages to broadcast the variogram model
in the network, the difference of the two costs still remains significant as shown
in Fig. 5. Therefore, even if variogram modeling cost is considered, it will still be
smaller for DISK than GK. Moreover, variogram modeling is performed only rarely
as compared to interpolation. We discuss this feature of variogram modeling in more
detail in Section 6.

We measure the accuracy based on cross-validation of the interpolation with the
known values. The accuracy is computed as the root mean square error (RMSE).
We measure the relationship between the deployment area and the Kriging neigh-
borhood as a ratio between their sizes (in terms of number of nodes), referred to as
the network to neighborhood size ratio (NNR). We repeat each experiment for four
different coverage hole locations (one in each quadrant of the deployment area) and
report the mean energy expenditure and RMSE.

5.3 Results and discussion

We have run multiple experiments studying different aspects of DISK in comparison
to GK. Each of the following experiments isolate the effect of an individual factor on
the performance of DISK and GK in terms of cost and accuracy. In the DEM dataset
experiments we estimate the altitude at various points, whereas in the traffic dataset
experiments we estimate the number of cars at various locations.

5.3.1 The effect of network size

In this experiment we analyze the scalability of DISK and GK with increasing net-
work size. In each step, we increase the network size and the Kriging neighborhood
such that the NNR stays constant at 2%. Since the node distribution for both DEM
and traffic datasets is uniform, we gain the effect of increasing network size by
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expanding the deployment area uniformly in all directions. For DEM data we start
with a deployment area of 8 km2 comprising approximately 1000 nodes deployed
in a regular grid with 250 m resolution. We increase the deployment area up to
18 km2 (approximately 5000 nodes) such that each increment adds approximately
1000 nodes. Similarly, for traffic data we start with a deployment area of 16 km2

comprising approximately 1000 nodes deployed in a uniform random distribution. In
this case, the deployment area is increased up to 36 km2 (approximately 5000 nodes)
with an addition of approximately 1000 nodes in each step. We assume that in all
experiments the base station is located at the geographic center of the deployment
area.

Figure 9a shows the effect of increasing network size on the energy expenditure
in the DEM dataset experiments. It can be observed that DISK scales remarkably
well with the increase in network size while GK increases in cost. For the network
of 1000 nodes, DISK uses about 60% of energy used by GK while for a network of
5000 nodes its energy usage reduces to about 48% of GK. Figure 9b shows a similar
scalability behavior for DISK and GK in the experiments with the traffic dataset.
This behavior is expected because the energy consumption of DISK depends upon
the number of nodes inside the Kriging neighborhood. On the other hand, the energy
consumption of GK depends heavily on the network size as all node values from the
neighborhood have to be propagated to the sink. As expected, AVG shows the least
cost, several times smaller than the costs of both, DISK and GK.

Figure 10 shows a comparison of the accuracy of DISK, GK and AVG algorithms.
AVG shows the worst accuracy, showing an error nearly twice as much as errors
for DISK and GK. Both Kriging techniques interpolate using the same Kriging
neighborhood in all experiments. The difference in accuracy can be attributed to the
fitness of the variogram model used by a technique to the spatial correlation structure
of corresponding dataset. DISK uses the localized variogram model built through the
QS algorithm while GK creates the variogram model centrally. Resultantly, DISK
interpolation suits datasets that exhibit high spatial correlation over short distances,
such as the DEM dataset used in our experiments. For DEM dataset, we observe that
the localized variogram model enables DISK to achieve similar (even slightly better)
accuracy than GK. On the other hand, spatial correlation over small distances is low
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in traffic data resulting in an increased interpolation error for DISK. Although GK
also suffers in this case, its accuracy degrades less than that of DISK.

For this experiment, Table 1 presents the mean estimation error for various
confidence intervals, computed using Eq. 5. As discussed in Section 4, Kriging
variance and confidence intervals can be computed for free, as a byproduct in the
DISK algorithm. In practice, this calculation can be of huge value for the DISK
algorithm as users can be kept informed regarding a system’s confidence in the
computed estimate. If the error interval is large, a user may opt for GK or may choose
to refresh the variogram model.

5.3.2 The effect of the Kriging neighborhood size

As noted earlier, DISK replaces the need of global knowledge with message passing
between a neighborhood of nodes. This behavior results in a direct proportionality
between the number of nodes in a neighborhood and the communication cost of
DISK. Moreover, as sensor values from the neighborhood are used in estimation,
the size of neighborhood also drives the estimation accuracy of the DISK approach.
In this experiment, we analyze the impact of the size of Kriging neighborhood on the
cost and accuracy of DISK. We increase the Kriging neighborhood size by increasing
the NNR in equal steps while the deployment area is kept fixed (18 km2 and 16 km2

for DEM and traffic datasets, respectively).
The results in Fig. 11 show that increasing the neighborhood size results in a

rapid increase in the communication cost of both GK and DISK. For GK, increasing
neighborhood area results in more nodes in the neighborhood and hence more data
to be propagated to the base station. Similarly, the communication cost of DISK rises
with the increase in neighborhood size as more nodes are involved in the Kriging
process. However, we observe from Fig. 12 that for accurate Kriging the NNR
should not be increased beyond a certain value as further samples add noise to the

Table 1 Error statistics for DISK showing error in Kriging estimates in various confidence intervals

Confidence interval 75% 80% 85% 90% 95% 97.5% 99% 99.5%

DEM 0 0 1.8 1.8 2 3.618 3.9 5.12
Traffic 0 3.35 3.35 3.35 6.7 13.4 14.1 17.6
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Fig. 11 Effect of the size of Kriging neighborhood on energy expenditure (energy is shown in the
logarithmic scale) (a, b)

estimation and lower the accuracy. This result follows the well founded geostatistical
assertion that as samples come from farther and farther away, the appropriateness of
representing a phenomenon as a random function becomes doubtful [17]. As shown
in Fig. 12a, the most accurate estimation results for DEM data are obtained for
4% NNR where the cost of DISK is only about 40% of GK. Due to lower spatial
correlation in the traffic data, estimation error increases with increasing NNR and
best result is achieved at 2% NNR (Fig. 12b). In both the cases, GK’s accuracy is
not effected much by the neighborhood size mainly due to the insensitivity of its
variogram model towards spatial correlation over short distances.

5.3.3 The effect of distance of base station from the Kriging neighborhood

An important factor that determines the cost of GK and DISK is the distance of
the base station to a Kriging neighborhood. The DISK algorithm only transmits
the interpolation values from a Kriging neighborhood to the base station, whereas
GK propagates all data to the base station. We expect that as the physical distance
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Fig. 13 Effect of distance of
the base station from the
Kriging neighborhood
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increases between the base station and a Kriging neighborhood, the cost of GK will
increase drastically. In this experiment, we analyze the scalability of both approaches
for increasing distances between the base station and a Kriging neighborhood.

We perform this experiment on the DEM dataset where the network size and
NNR are kept fixed at 5000 nodes and 5%, respectively. We assume that the base
station is present at the geographical center of the deployment space and for each
observation point we move the coverage hole away from the base station. Figure 13
shows the results of this experiment. As expected, the impact of increasing the sink
distance is much larger on GK as the data transmission increases linearly with each
hop. For instance, in this experiment the communication cost of GK increases by
approximately 18 mJ per hop traversed outside the neighborhood. For DISK, on the
other hand, this cost is approximately 1 mJ per hop as only interpolation results are
routed from the neighborhood to the sink.

5.3.4 The effect of network density

Increase in network density results in more nodes per unit of the deployment area
and hence increases the Kriging neighborhood size. As shown in Section 5.3.2,
communication costs of both DISK and GK increases with increasing neighborhood
sizes. We observe a similar behavior in this experiment, i.e., the communication costs
of both approaches rises with increasing network density.

We perform this experiment on the DEM dataset and keep the deployment area
fixed at 8 km2. We start with a network size of approximately 1000 nodes and increase
it to 2000 nodes while refining the resolution of the deployment grid. As shown in
Fig. 14, the communication costs of both algorithms increase with increasing network
density.

6 Further analysis

To simplify the presentation of our interpolation scheme, we do not directly address
certain issues that can affect its accuracy and cost. It is important to note that for
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Fig. 14 Effect of the network
density
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a given variogram model and set of samples, the DISK algorithm computes exactly
the same solution as any centralized Kriging solver would compute. Therefore, the
accuracy of the DISK algorithm is largely dependent on the quality and accuracy
of variogram modeling and hole discovery methods. In following subsections, we
discuss major factors that influence the cost and accuracy of DISK algorithm.

6.1 Impact of variogram modeling

Theorem 1 establishes that the DISK algorithm will produce results identical to a
centralized Kriging solver if both computations are performed using the same vari-
ogram model. However, as shown in Section 3, it is not possible to establish an exact
variogram model in a distributed manner. Hence, to remain purely decentralized in
our approach, we propose the use of QS algorithm for a distributed approximation
of the variogram model prior to the use of DISK algorithm. This decision makes our
approach more scalable.

Although variogram modeling, both in a distributed or centralized manner,
incurs significant message cost, it is performed rarely. Therefore, we exclude the
variogram building cost when computing the cost of interpolation in DISK or GK.
The variogram model of a phenomenon characterizes the correlation among sensor
nodes as the phenomenon evolves spatially. The intrinsic stationarity assumption
states that this correlation depends only on the distance and the orientation of two
nodes with respect to each other [6]. Therefore, node values may vary with time
but the correlation among nodes is expected to stay uniform. For instance, an air-
conditioning plant may cause the temperature at different points in a building to
rise or fall but the spatial correlation in temperature values at these points should
stay largely uniform. Therefore, once a variogram model is built there is no need of
updating it each time Kriging interpolation has to be performed in a different part
of the network. Situations with extremely dynamic correlation structure are rare. In
such situations, all correlation based interpolation techniques are likely to perform
poorly, a case not considered in our research.
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6.2 Impact of coverage hole detection

We classify WSN coverage holes as deployment or communication holes. In appli-
cations such as NASA’s VolcanoWeb [23], deployment holes exist naturally as it is
not possible to deploy nodes in certain hostile areas. We argue that such deployment
holes are known to WSN users in advance and hence active hole detection methods
are not required to be used prior to interpolation. Communication holes, on the other
hand, result when a significant number of nodes in close proximity face hardware or
network failures. Only for such cases a hole detection method (such as [20, 38]) is
required to be used to disseminate the knowledge of a coverage hold among the
nodes in its neighborhood. In this context, typical errors such as overestimation or
underestimation of hole area and missing smaller holes may arise that can affect
interpolation accuracy. However, we consider accurate hole detection to be an
orthogonal research direction to our work.

6.3 Impact of network gaps

Message loss during radio transmission is a common problem faced by WSNs.
Typically, WSN communication protocols handle message loss by attempting re-
transmission of the lost message until a successful acknowledgment is received [11].
Retransmission is one of the most effective communication strategies catering to
the intermittent message loss that occur routinely. We propose to employ a similar
strategy in DISK implementation. In cases where message loss occurs due to failure
of a large number of nodes, a communication hole detection strategy has to be
employed. Similarly, the use of resilient routing schemes such as multi-path trees [24]
could be explored.

7 Related work

The problem of phenomenon estimation in a WSN that partially covers a deployment
area is explored in [41]. The basic idea of this approach is to first identify a subset of
WSN nodes that provide enough samples for the estimation of a region of interest.
The samples are then routed to the base station that estimates the phenomenon
using a model based on partial differential equations. The major limitations of [41]
in comparison to our proposed approach is its global nature. Their method assumes
complete knowledge of the network at the base station and pumps all data from
the sampled nodes to the base station. As shown in our experiments for increasing
deployment sizes (as well as under other circumstances where coverage holes are
distant) routing all sample values to the base station becomes increasingly inefficient.

The Distributed Regression method [12] for global kernel regression closely
compares to DISK. This method is based on the notion that a number of local (or
regional) correlation structures can be identified inside a given deployment. The
authors suggest that message passing for a global regression task can be optimized
by distributing the global computation among the constituent regions. Although we
propose the idea of distributed interpolation on a regional basis as well, the concept
of a region in our method is fundamentally different from [12]. For DISK, the interest
in a region is not based upon its correlation pattern but its vicinity to a coverage hole.
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Hence, the task of interpolation can be localized to the nodes forming a Kriging
neighborhood around the coverage hole. Moreover, the iterative formulation of the
Kriging method in DISK reduces the computation required by each node in the
neighborhood. In [13] and [19] distributed regression concepts are further extended
towards methods for optimal placement of sensor nodes in a WSN.

In [30], a WSN data aggregation approach based on spatial interpolation is
proposed. It is argued that the aggregation quality can be improved if the aggregation
operator takes into account the position of a sensor node and weighs its sensed value
accordingly. For instance, the values reported by nodes located in the sparse parts
of a deployment should be weighed higher than those located in the dense parts.
Using a localized scheme for spatial interpolation and aggregation, the authors show
considerable improvement in aggregation accuracy. However, a major limitation of
the spatial interpolation methods proposed in [30] is the use of geometric distance
rather than statistical distance between sampled and interpolated locations. This
form of interpolation implicitly assumes uniform spatial continuity in the monitored
phenomenon which is rarely the case in nature. In contrast, we propose spatial
interpolation based on a model of spatial continuity that is naturally customized for
a particular dataset, i.e., its variogram.

In [18] phenomenon interpolation using a distributed Gaussian kernel method,
referred to as spatial window query over phenomena (SWOP), is proposed. SWOP
first clusters the nodes based on their proximity. It then reduces the amount of data
required to transmit to the base station by aggregating data inside each cluster using
kernel estimation; a special spatial moving average method. We view SWOP as a
data reduction method orthogonal to our approach. It is possible to use SWOP
or other sample size reduction methods to optimize the Kriging process inside a
neighborhood.

The use of data models to represent WSN data is proposed by [4, 9]. In [9] the
authors present the BBQ framework that uses a statistical model along with live data
acquisition such that queries can be responded in a probabilistic manner. In [4] the
Ken architecture is proposed, which maintains a dynamic probabilistic model for the
WSN data. In a WSN based on Ken, the base station answers all queries based on the
data model. The nodes only send their data to the base station when it starts differing
from the model’s prediction. In [2] a similar approach is pursued where a Bayesian
network model is used to answer target tracking queries in probabilistic terms.

A number of in-network aggregation schemes for WSNs have been proposed
recently. Some in-network aggregation techniques, such as TAG (Tiny AGgre-
gation) [21], are application independent and use a generic tree to compute all
aggregate queries. In contrast, several recent approaches propose to tailor the data
collection paths specifically to a group of similar queries [3, 26, 29]. In the WSN
literature queries similar to the EVSJ query have been referred to as spatial join or
proximity queries. Join queries have only recently received attention in the WSN
research [5, 14, 39, 40].

In [40], the pruner-based acquisitional protocol (AQP) is proposed that relates
closely to the QS algorithm proposed in our work. The AQP aims at efficient
aggregation for queries that join nodes’ records based on a distance threshold.
Similar to the QS algorithm, the AQP also partially aggregates a node a’s data as soon
as it reaches an internal node that covers all nodes that are within a required distance
to node a. However, unlike the QS algorithm, the AQP does not specify a particular
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tree construction method and relies on passing extra information between the nodes.
The QS algorithm, on the other hand, does not require any extra information as the
tree is created in a predefined way. This tree construction method also decreases
the number of hops that a node’s data has to traverse in unaggregated form. It is
also important to note that the aim of the QS algorithm is fundamentally different
than all of the related works mentioned above, i.e., to support the task of correlation
modeling, not to optimize query processing.

8 Conclusions and future work

Coverage holes are a reality for WSNs and it is often important to estimate the infor-
mation within a coverage hole. Spatial interpolation particularly suits this problem as
spatial correlations in measurements is common in WSNs. The challenge, however,
is to perform the interpolation with high accuracy and minimal communication costs.
We address this challenge by a novel method that uses a two step approach towards
spatial interpolation: it first models the spatial correlation in the WSN data and then
interpolates data for coverage holes based on this model. Our interpolation scheme,
DISK, a distributed and localized Kriging computation is highly scalable compared to
centralized interpolation. We show that the cost of local Kriging is determined by the
size of the neighborhood where the Kriging operation is performed. We further show
that for accurate results it is not only important to establish a better variogram model
but also to restrict the neighborhood size within a certain threshold as increasing sizes
lead to higher noise and lower accuracy.

A recent development in the WSN domain is the emergence of mobile WSNs
including controlled [33] and uncontrolled [16] mobile WSNs. Static WSNs fulfill the
sensing coverage requirement by massive and redundant deployment of nodes. On
the other hand, mobile WSNs aim to replace the requirement of a large number of
static nodes by a small set of constantly moving nodes providing on demand sensing
coverage. We are currently extending our interpolation scheme for mobile WSNs. In
such a setting the problem of coverage holes exists by design as only some parts of a
network are covered at any given time. These systems can greatly benefit from spatial
interpolation as it reduces node movement and communication costs. However, a
direct application of our proposed interpolation scheme is not possible as mobile
WSNs do not have fixed coverage holes and Kriging neighborhoods. Thus, methods
are required that are localized as well as resilient to node movement.
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