
A Unified Framework for Authenticating Privacy
Preserving Location Based Services

Tanzima Hashem1, Shudip Datta1, Tanzir Ul Islam1, Mohammed Eunus Ali1,
Lars Kulik2, and Egemen Tanin2

1Dept of CSE, BUET
Dhaka 1000, Bangladesh

2Dept of CIS, University of Melbourne
VIC 3010, Australia

tanzimahashem@cse.buet.ac.bd

ABSTRACT
An important class of location-based services (LBSs) is informa-
tion queries that provide users with location information of nearby
point of interests such as a restaurant, a hospital or a gas station.
To access an LBS, a user has to reveal her location to the location-
based service provider (LSP). From the revealed location, the LSP
can infer private information about the user’s health, habit and
preferences. Thus, along with the benefits, LBSs also bring pri-
vacy concern to the users. Hence, protecting the privacy of LBSs
users is a major challenge. Another major challenge is to ensure
the reliability and correctness of the provided LBSs by the LSP,
which is known as authentication. We develop a novel authentica-
tion technique that supports variants of privacy preserving LBSs
with less storage and communication overhead. More importantly,
we present a unified framework that can handle authentication for
a wide range of privacy preserving location-based queries, range,
nearest neighbor, and group nearest neighbor queries. We conduct
experiments to show the efficiency and effectiveness of our ap-
proach in comparison with the state-of-art techniques.

1. INTRODUCTION
With the proliferation of location-aware mobile devices and map

based applications (e.g., Google map), the popularity of location-
based services (LBS) is daily increasing. Users can access a wide
range of LBSs from different location based service providers
(LSPs). These LBSs include various types of location based infor-
mation queries such as finding the nearest point of interest (POI)
such as a restaurant or an ATM, searching for a shopping place in 1
km radius around user’s location, and finding a meeting place that
minimizes the aggregate travel distance for a group of friends. In all
these services, users need to reveal their locations to the LSP, from
which the LSP could infer the user’s health, habit and preferences
from the revealed locations. Thus protecting user privacy while ac-
cessing LBSs is a major challenge in location-based query process-
ing. Nowadays it is common that the data owner and the LSP are
two different entities, and thus, another major challenge is to en-
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sure the authenticity (reliability and correctness) of the location-
based services offered by the LSP. In this paper, we develop an au-
thentication technique to process privacy preserving LBSs with less
storage and communication overhead, in particular for users’ mo-
bile devices. More importantly, we propose a unified framework to
process a wide range of privacy preserving location-based queries,
range, nearest neighbor (NN), and group nearest neighbor (GNN)
queries, with authentication.

Due to limited processing capabilities or the lack of technical ex-
pertise, a data owner might outsource their data to an LSP. The LSP
processes the location-based queries and then sends the answers to
the users. Though historically, LSPs were limited to large organi-
zations such as Google and Microsoft, with the widespread use of
Android and iOS any small company can act as an LSP. These LSPs
use data from a third party, a data owner. Since most of these LSPs
are either unknown or little known, users might not want to share
their location data with these LSPs due to privacy concerns. A re-
cent survey of Microsoft [12] reveals that 92% of users consider
LBSs as valuable services, whereas at the same time 52% of users
are worried about their privacy predominantly because they fear
that their location data might be shared with unknown organiza-
tions and people. In addition, users do not trust these LSPs in terms
of the quality of the answers, because it may happen that the LSP
works with a third party for personal gain and provides low-quality
answers. Therefore, both privacy of users’ locations and authentic-
ity of the answer set are major concerns of users of LBSs.

A large body of research works appeared in the last few years
to protect user privacy [16, 7]. On the other hand, Voronoi dia-
grams [9] and Merkle R-tree (MR-tree) [15] are used to enable
users to authenticate the reliability and correctness of the obtained
results. For authentication, the LSP returns the answer set to the
user along with additional information such as a verification ob-
ject, Voronoi neighbors, and digital signatures obtained from the
data owner. The main limitation of existing works is that they can
either protect privacy or ensure the authenticity of the result set
for LBSs. If we adopt existing authentication techniques to process
privacy preserving LBSs, it incurs high communication overhead
while authenticating multiple POIs.

In this paper, we develop an authentication technique for pri-
vacy preserving LBSs with less storage and communication over-
head. More importantly, we present a unified framework to process
a wide range of privacy preserving location queries, range, near-
est neighbor (NN), and group nearest neighbor (GNN) queries. An
important benefit of our unified framework is that it uses the same
index and processing algorithm to handle variants of privacy pre-
serving LBSs. In addition, in our unified framework, a user does



not reveal the query type (range or NN or GNN) to the LSP. A
range query returns locations of all POIs within a specific range.
An NN query returns the nearest POI for a query location. A GNN
query returns the location of a POI that minimizes the aggregate
distance from a group of users who are in different locations. The
underlying idea of our authentication technique for private LBSs is
to incrementally retrieve nearest POIs with respect to a user’s false
location until the optimal authenticated answer with respect to the
actual location has been found.

More specifically, in our approach a user sends her false location
instead of her actual location to the LSP for privacy reasons. The
LSP returns the nearest neighbor along with the additional informa-
tion required to authenticate the answer. The user authenticates the
returned NN and checks whether the optimal answer is found with
respect to the actual location for the specified query (i.e., range,
NN, and GNN). If the answer for the required query has not been
found, then the user requests for the next NN with respect to the
false location to the LSP. The process repeats until the optimal au-
thenticated result with respect to the actual location has been deter-
mined by the user.

In this paper, we propose a novel authentication technique for
incremental retrieval of nearest POIs, which forms the base of the
unified framework to process variants of LBSs. Simply applying
existing authentication techniques for NN queries independently
for every incrementally retrieved POI would cause retrieval of the
same authentication information multiple times and thereby incur
high communication overhead. In contrast, our approach ensures
that the LSP never returns same POI more than once. In our ap-
proach, for every POI, the data owner computes the distance of the
farthest Voronoi neighbor (i.e., POI) of the considered POI and de-
termines count, i.e., the number of other POIs that have a smaller
distance than the farthest Voronoi neighbor. Then the data owner
signs the data containing the POI location along with the distance
of the POI’s farthest Voronoi neighbor and the count. Finally, the
data owner shares all signed POI information with the LSP. An ad-
ditional benefit of our approach in contrast to the existing authen-
tication technique [9] is that our approach does not store the loca-
tions of Voronoi neighbors of every POI in the LSP’s database and
significantly reduces the storage overhead.

In response to a user’s nearest neighbor request, the LSP returns
the nearest POI, the distance of farthest Voronoi neighbor and count
along with the signature of the data owner. In addition, the LSP re-
turns the locations of those POIs that have a smaller distance than
the farthest Voronoi neighbor from the POI and have not been al-
ready sent to the user before. The user verifies the signature to en-
sure the reliability of the returned nearest POI and checks other
additional information to verify that the returned POI is the actual
nearest one with respect to the user’s false location. The incremen-
tal retrieval of POIs and authentication continues until the query
answer (of the desired query type: range, NN, or GNN) for the
user’s actual location has been identified.

In summary, the contributions of our paper are as follows:

• We propose an authentication technique that incurs less com-
munication and storage overhead for authenticating multiple
POIs retrieved from the LSP, which forms the base of pro-
cessing privacy preserving LBSs.

• We develop a unified framework to process a wide range
of privacy preserving LBSs, range, nearest neighbor, group
nearest neighbor queries with authentication.

• We conduct experiments to validate the effectiveness and ef-
ficiency of our proposed approach.

The remainder of the paper is organized as follows. In Section 2,
we discuss existing literature related to authentication techniques
and privacy preserving approaches. In Section 3, we present our
approach for authenticating answers of variant privacy preserving
location-based queries. Section 4 shows experimental results and
Section 5 concludes the paper with future research directions.

2. RELATED WORK
In Sections 2.1 and 2.2, we present existing authentication tech-

niques and privacy preserving approaches for LBSs, respectively.

2.1 Authentication Techniques
Existing authentication techniques mostly use the Merkle R-trees

(MR-trees) [14, 15] or Voronoi diagrams [9, 10] to authenticate
LBSs. However, neither of these techniques take a user’s privacy
into account. In MR-tree based approaches [14, 15], a hash digest is
stored with the information stored in every leaf node of the R-tree,
where a hash digest represents the concatenation of binary repre-
sentation of information stored in the leaf node. The hash digest
stored in an intermediary node of the R-tree represents the summa-
rization of MBRs of child nodes and hash digest stored in the child
nodes. The data owner signs the has digest of the root node. When
a user requests a location based query, in addition to the query an-
swer, the LSP constructs a verification object from which the user
can reconstruct the hash digest of the root node, and compare it
against the hash digest signed by the data owner and thereby, con-
firms the reliability of the answer, i.e., the POI data included in
the answer belongs to the data owner. In addition, the verification
object includes information from which the user can verify the cor-
rectness of the answer. However, the MR-tree based authentication
techniques are not suitable if the answer of a location-based query
includes multiple POIs due to its high processing overhead [9]. Our
proposed unified framework for privacy preserving LBSs requires
multiple POI retrieval from the LSP and therefore we cannot adopt
the MR-tree based authentication techniques.

In Voronoi diagrams based authentication techniques [9, 10], the
data owner computes Voronoi neighbors of every POI and shares
the signed POI information that includes the POI location, the count
of its Voronoi neighbors, the location information of Voronoi neigh-
bors, with the LSP. In the LSP’s database, this signed POI infor-
mation is stored on the leaf node of the R-tree. When a user re-
quests an LBS, the LSP evaluates the answer and returns additional
signed information (i.e., the count and locations of Voronoi neigh-
bors) along with the actual answer. From the signature and loca-
tions of the Voronoi neighbors, the user verifies the reliability and
the correctness of the query answer. The limitation of these tech-
niques is that they incur high storage overhead because they store
information of Voronoi neighbors for every POI. Further, we need
to retrieve multiple POIs from the LSP to process LBSs in a privacy
preserving manner. Since multiple POIs can share same Voronoi
neighbors, this would also incur high communication overhead be-
cause of sending the same information multiple times to the user
for authenticating different POIs. We develop a Voronoi neighbor
based technique, where the information of Voronoi neighbors are
not stored in the LSP’s database and same authentication informa-
tion is not sent multiple times to the user.

In [8, 1], the authors have focused on authenticating a query an-
swer and protecting privacy of the stored data in the LSP’s database,
while our approach aims to protect privacy of users’ locations in-
stead of protecting privacy of returned POI data to the user.



Figure 1: System Overview

2.2 Privacy Preserving LBSs
There exist a large number of approaches on protecting user pri-

vacy while accessing LBSs that include k-anonymity [2, 6], spatial
cloaking [7], false location [3, 16, 11, 17] and cryptography [4].
None of these privacy preserving approaches consider authenticat-
ing the answers of location-based queries. In this paper, we develop
an authentication technique to verify the reliability and correctness
of query answer while protecting privacy of a user’s location using
the privacy model based on false locations [3, 16, 11, 17].

3. OUR APPROACH
We develop a novel authentication technique for processing vari-

ants of LBSs based on incremental retrieval of POIs from the LSP.
In our approach, the data owner (DO) shares signed locations of
POIs along with additional parameters related to POIs with the
location-based service provider (LSP). The LSP indexes the re-
ceived data using an R-tree. When a user requires to access an LBS,
the user incrementally requests nearest POIs with respect to a false
location instead of her actual location for privacy reason. The LSP
returns the locations of nearest POIs, other parameters related to
POIs received from the data owner, and the signature of the data
owner to the LSP. From the signature, the user can verify the relia-
bility, i.e., whether the POI information comes from the data owner.
In addition, the LSP returns locations of other nearby POIs from
which the user verifies the correctness of the answer, i.e., the POI
is the actual nearest ones with respect to the false location. The in-
cremental retrieval of nearest POIs with respect to a false location
continues until the authenticated query answer with respect to the
user’s actual location has been identified.

Figure 1 shows the steps involved in our proposed system. In
Sections 3.1, 3.2, and 3.3, we present the detailed description of
these steps, respectively.

3.1 The Data Owner
The data owner has location information of all POIs. Before shar-

ing this information with the LSP, the data owner constructs an ob-
ject for every POI that consists of three parameters: (i) the location
of a POI, (ii) the distance of the POI’s farthest Voronoi neighbor
from the POI, and (iii) count, i.e., the number of other POIs that
are in less distance than the farthest Voronoi neighbor.

Figure 2 shows an example, where a POI p has 6 Voronoi neigh-
bors, p1, p2, p3, p4, p5, and p6. The parameter d represents the
distance between p and its farthest Voronoi neighbor p3. There are
8 POIs whose distances from p are less than or equal to d (shown in

Figure 2: Voronoi neighbors of a POI p

Figure 2). Thus, the DO constructs an object for p as {p|d|8}. Then
the DO signs the object. The signature is essential to ensure the re-
liability of the POI information. For the signature generation, an
RSA cryptography and SHA-1 algorithm are used. The user veri-
fies the signature with the public key of the data owner and confirms
that the object has been constructed by the DO.

3.2 LSP-Side Processing
After receiving the POI dataset from the data owner, the LSP

indexes them using an R-tree. For each POI, the POI location, the
distance of the farthest Voronoi neighbor from the POI, count, and
the signature of the DO are stored in the leaf node of the R-tree.
When a user requests nearest POIs for the first time, the user pro-
vides a query location (i.e., a false location) q and the number of
nearest POIs. For the subsequent requests, the user only specifies
the number of required nearest POIs. For example, for the first re-
quest, if the user’s required number of nearest POIs is 3, the LSP
returns 1st , 2nd , and 3rd nearest POIs with respect to q. For the sec-
ond request, if the user’s required number of nearest POIs is 2, the
LSP returns 4th, and 5th nearest POIs with respect to q. The user
continues to request nearest POIs until the user has identified the
query answer with respect to her actual location.

To retrieve nearest POIs incrementally, our approach uses best
first search (BFS) [5]. For authentication purposes, the LSP needs
to send additional information to the user. For every returned POI
p to the user, the LSP also provides the distance of the farthest
Voronoi neighbor from the POI, count, and the signature of the
DO. In addition, for authentication purposes, the LSP sends the in-
formation of POIs (i.e., the POI location, the distance of the farthest
Voronoi neighbor from the POI, count, and the signature of the DO)
whose distances are less than or equal to the distance between p and
the farthest Voronoi neighbor of p. When a user receives this infor-
mation the user verifies whether the number of these POIs sent by
the LSP equals to count signed by the DO for authentication pur-
pose (a detail discussion is given in Section 3.3).

Retrieving the additional POI information from the database to
authenticate the correctness of every nearest POI independently
would incur high processing overhead as a single POI might be
retrieved multiple times for authenticating multiple nearest POIs.
Our proposed approach avoids a repeated retrieval of POI data and
thereby reduces computational and communication overhead.

To retrieve the required POI information for authentication pur-
pose in a single traversal, the LSP first computes the required maxi-
mum distance from q. Without loss of generality, Figure 3 shows an
example to compute the required maximum distance. In Figure 3,



a user requests 3 nearest POIs with respect to q. The LSP first re-
trieves 3 nearest POIs p1, p2, and p3 and the distances from their
Voronoi nearest neighbors, counts, and the signatures. Let d rep-
resent the distance from q to a nearest POI pi for i ∈ 1,2,3 and f
represent the distance from pi to its farthest Voronoi neighbor. Fig-
ure 3 shows that d+ f for p2 is the maximum among 3 POIs p1, p2,
and p3 and the required maximum distance is computed as d + f
for p2. Thus, to ensure that all POIs required to authenticate p1, p2,
and p3, the LSP retrieves information of the POIs whose distances
are less or equal to the required computed maximum distance. The
LSP sends information (i.e., the POI location, the distance of the
farthest Voronoi neighbor from the POI, count, and the signature of
the DO) of p1, p2, p3, and other retrieved POIs to the user.

Figure 3: Query processing by the LSP

It may happen that POIs that are not required for the authentica-
tion of current nearest POIs (e.g., p8 is not required to authenticate
p1, p2, and p3) have been retrieved and sent to the user. However,
the LSP keeps track of the covered maximum distance, i.e., the dis-
tance of the farthest POI from q that has been already sent to the
user and does not send any POI again to the user whose distance
from q is less than or equal to the covered maximum distance even
if it is required for the authentication of nearest POIs in subsequent
user requests.

To avoid retrieval of the same POI multiple times from the
database, the LSP always stores the already retrieved POI informa-
tion from the database in a temporary buffer. For example, if in the
next request the user queries the 4th and 5th nearest POIs from q, the
4th and 5th nearest POIs might have been already sent to the user
but the additional POIs for authenticating the 4th and 5th nearest
POIs may have not been sent to the user. Thus, to compute the re-
quired maximum distance for the 4th and 5th nearest POIs, the LSP
needs to know the distances to their farthest Voronoi neighbors. In
our approach the LSP can get these distances from the temporary
buffer and does not need to access database again for this purpose.
After computing the required maximum distance, the LSP checks
whether it is greater than the covered maximum distance. If yes, the
LSP retrieves information of those POIs that have distances from
q greater than the covered maximum distance, stores them in the
temporary buffer and also sends them to the user. The covered max-
imum distance is now updated to the required maximum distance.
When the user terminates the incremental nearest POI retrieval pro-
cess, i.e., the query answer with respect to the user’s actual location
is found, the LSP removes all POI information from the temporary
buffer.

3.3 User-Side Processing
As we mentioned earlier, the user incrementally requests nearest

POIs with respect to a false location q. After retrieving a number
of nearest POIs with additional authentication information, the user
checks the reliability of those nearest POIs by verifying the signa-
tures using the public key of the DO. To verify the correctness of
a jth nearest POI p, i.e., the distance of p from q is the jth small-
est among the distances of all POIs on the LSP’s database from
q, the user first determines the number of POIs that have less or
equal distances to the distance between p and the farthest Voronoi
neighbor of p. If the determined number is equal to count then the
user is confirmed that the LSP has returned all Voronoi neighbors
of p. Note that our approach does not store information Voronoi
neighbors such as [9], instead our approach only stores the distance
of a POI to its farthest Voronoi neighbor and count, and thus, re-
duces storage overhead significantly. Then, our approach computes
the distances of q from the retrieved POIs from the LSP and if p
has the jth smallest distance among the computed distances, then p
is the actual jth nearest POI from p. The following theorem shows
the correctness of our claim.

THEOREM 3.1. If P represents the set of retrieved POIs from
the LSP, q represents the query point (i.e., the user’s false location),
and a POI p has the jth smallest among the distances of POIs in P
from q, then p is the actual jth nearest POI from q for j > 0.

PROOF. (By contradiction)
Let an LSP send a false jth nearest neighbor of q, p′, which has
the jth smallest distance among the distances of POIs in P from
q. According to our approach, the LSP has also sent the Voronoi
neighbors of p′ to the user, otherwise count must not have been
verified. For j = 1, since p′ is not the actual 1st nearest POI, one
of its Voronoi neighbors, which are included in P, must have less
distance from q than that of p′. Thus, for j = 1, p′ does not have the
smallest distance among the distances of POIs in P from q, which
contradicts our assumption.

For j > 1, we assume that j− 1 nearest POIs with respect to q
have been authenticated. Similar to the case of j = 1, since p′ is
not the actual jth nearest POI, one of its Voronoi neighbors, which
are included in P, must have distance from q less than that of p′

and greater than those for authenticated j− 1 nearest POIs. Thus,
for j > 1, p′ does not have the jth smallest distance among the
distances of POIs in P from q, which again contradicts our assump-
tion. Thus, a POI that is the jth nearest POI of q has the jth smallest
among the distances of POIs in P from q.

After authenticating the reliability and the correctness of the
nearest POIs, our approach computes an authenticated known re-
gion. An authenticated known region represents the area, where lo-
cation of all POIs are known and the POIs are authenticated. The
authenticated known region is a circle centered at q and having ra-
dius equal to the distance of the farthest authenticated nearest POI
from q. The authenticated known region expands with the incre-
mental retrieval of nearest POIs.

In the following subsections, we discuss how through the use
of the authenticated known region a user determines the query an-
swer with respect to her actual location l for range, nearest neighbor
(NN), and group nearest neighbor (GNN) queries.

3.3.1 Range Queries
A range query returns locations of all POIs within a given range.

In a privacy preserving range query, a user retrieves nearest POIs
with respect to a false location and the authenticated known region
gradually expands. If the authenticated known region covers the
user’s specified range then it is guaranteed that all POIs within the
range have been identified and authenticated.



3.3.2 Nearest Neighbor Queries
In [16], the authors have shown that if a circle centered at the

user’s location l and having a radius equal to the distance between
l and a POI p does not contain any other POI, then p is the near-
est neighbor of l. Thus, similar to the technique proposed in [16],
our approach identifies the POI with the smallest distance from l
among all POIs and computes the circle for that POI. If the authen-
ticated known region covers the circle, then it is guaranteed that
p is the authenticated nearest neighbor with respect to the user’s
actual location l. If not, then the user continues to retrieve more
nearest POIs from the LSP until the authenticated nearest neighbor
has been identified.

3.3.3 Group Nearest Neighbor Queries
A GNN query returns the location of a POI that minimizes the

aggregate distance with respect to the group members. In [13], the
authors have shown that if a circle centered at the geometric cen-
troid of the locations of group members and having a radius equal
to the average distance of a POI p from the group members does
not contain any other POI, then p is the group nearest neighbor. In
our approach, the user computes the average distance of retrieved
POIs from the group members, determines the POI with the small-
est average distance and computes the circle with the center at the
geometric centroid of the locations of group members and radius
equal to the smallest average distance. If the authenticated known
region covers such a circle then it is guaranteed that the correspond-
ing POI is the authenticated group nearest neighbor. On the other
hand, if the authenticated known region does not include the circle,
the user requests more nearest POIs from the LSP until the authen-
ticated group nearest neighbor has been identified.

3.3.4 Privacy Analysis
The LSP can also compute the authenticated known region in

a similar fashion to the user, and knows the algorithms used by
the user to determine the answers for range queries, nearest neigh-
bor queries and group nearest neighbor queries with respect to the
user’s actual location. Thus, the LSP can reverse engineer and re-
fine the user’s location within a region. The larger the authenticated
region the larger is the imprecision for the predicted location of the
user. Thus, to increase the privacy level, even if the query answer
for the user’s actual location has been identified, a user may con-
tinue to retrieve more POIs from the LSP to expands the authenti-
cated known region.

4. EXPERIMENTAL STUDY
In this section we evaluate the performance of our proposed

incremental algorithm for processing range and nearest neighbor
queries that protects user privacy and ensures authenticity of the
query answer. We name this approach, Incremental Authenticated
Privacy-preserving (IAP) approach. Since we are the first to address
the authentication for privacy preserved location based services
(e.g., range, NN queries), we have adopted the best known tech-
nique for authenticating for LBSs [9] for our experimental compar-
ison. In this approach, to preserve the privacy, a user needs to send
multiple NN requests to the server and the server evaluates each
of these requests independently. We name this approach as Base
Authenticated Privacy-preserving (BAP) approach.

We simulate our experiments on a system with an Intel Core i5
2.67 GHz processor and 4 GB of memory running Windows 7.

We use a synthetic dataset of 10,000 data objects generated us-
ing uniform random distribution. We also generate queries using
uniform random distribution. For each set of experiment, we run
50 queries and then present the average results. We measure the

Table 1: Storage overhead of the existing approach
Object Attribute Byte
location 16
neighbor number 4
neighbours (avg) 6*16
signature 128
size per object 244

Table 2: Storage overhead of our approach
Object Attribute Byte
location 16
d 8
count 4
signature 128
size per object 156

storage overhead and processing time as our performance metric.
For measuring the storage overhead, we compute the storage cost
in bytes for each object. For processing time, in both IAP and BAP
approaches, the server us BFS technique for NN search, we only
compare the processing time at the user device as our performance
metric.

4.1 Storage Overhead
We compare the storage cost of our proposed approach, IAP with

the existing approach BAP. Table 1 and Table 2 show the storage
cost in bytes in BAP and IAP approaches, respectively. We observe
that BAP takes 56% more storage than IAP to store a single object.
The reason is as follows. BAP needs to store all the neighbors’ of
an object, whereas, IAP only needs to store the count of neighbors.
Thus, we can see that BAP needs 244 bytes, whereas IAP needs
156 bytes to store an object.

4.2 Computational and Communication
Overhead

In this set of experiments, we measure the computational and
communication overhead for processing range and NN queries. To
measure the computational overhead, we measure the processing
time (in milliseconds) of the client to find the answer of the query.
To measure the communication overhead, we measure the number
of bytes that need to be transferred from the server to the client.

4.2.1 Range Queries
In this set of experiments, we vary the query range as 200x200,

400x400, 600x600, 800x800, and 1000x100 areas in the dataspace.
We measure the processing time (Figure 4) and communication
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Figure 4: Processing time for range queries
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Figure 5: Communication overhead for range queries
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Figure 6: Processing time for NN queries

overhead (Figure 5) for processing and authenticating privacy pre-
serving range using BAP and IAP approaches. In Figure 4, We ob-
serve that BAP requires on average 65% more processing time than
IAP. We also see from Figure 5 that BAP requires more than a dou-
ble number of bytes than IAP. Figure also shows that our approach
IAP outperforms BAP in a greater margin for an increased query
range area.

Next, we present the processing time and communication over-
head of range and NN queries.

4.2.2 NN Queries
In this set of experiments, we measure the performance of BAP

and IAP for processing NN queries. Figure 6 and Figure 7 show the
processing time (in milliseconds) and the communication overhead
(in bytes), respectively, of two approaches by varying k as 2, 4, 8,
16, and 32.

Figure 6 shows that the processing time of IAP is on average
73% less than that of BAP. We also observe in Figure 7 that IAP
needs 39% (on average) less number of bytes transfer than BAP.
Figure also shows that our approach outperforms BAP by a greater
margin for a larger value of k.
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Figure 7: Communication overhead for NN queries

5. CONCLUSION
In this paper, we propose the first approach that considers both

privacy of users and the authenticity of answers for processing
LBSs. We present a uniform framework to authenticate the answers
for a wide range of location-based queries, range, nearest neighbor,
and group nearest neighbor queries in a privacy preserving manner.
In contrast to existing authentication technique [9], our approach
does not need to store the information of Voronoi neighbors of ev-
ery POI in the LSP’database and thus, reduces the storage overhead
significantly. Furthermore, n our authentication approach, the LSP
does not send the same POI information required to authenticate
more than one POI multiple times and thereby, reduces communi-
cation overhead.

In future, we will consider authenticating other type of privacy
preserving LBSs such as trip planning queries. We also aim to focus
on authenticating LBSs using other privacy models that include k-
anonymity, spatial cloaking and cryptography.
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