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Synonyms

Nearest neighbor monitoring; Temporal nearest
neighbor query

Definition

Given a query point q and a set D of data
points, a nearest neighbor (NN) query returns the
data point p in D that minimizes the distance
DIST(q,p), where the distance function DIST(,)
is the L2 norm. One important variant of this
query type is kNN query, which returns k data

points with the minimum distances. When taking
the temporal dimension into account, the kNN
query result may change over a period of time
due to changes in locations of the query point
and/or data points. Formally, the k-nearest neigh-
bor (kNN) query is defined as follows.

Definition 1 (k-Nearest Neighbor (kNN)
Query) Given a set D of data objects and a
query point q, the kNN query finds a set R
of objects such that: (i) R contains k objects
from D. (ii) for any object x 2 R and object
y 2 .D � R/, DIST(q, x) � DIST(q,y).

A dynamic kNN query in Euclidean space returns
kNN query results over a period of time in a
dynamically changing environment.

Figure 1 provides an example of a dynamic
1NN query with a moving query point and a static
dataset. The example shows that the query point q
moves from left to right in three successive snap-
shots t1, t2, and t3, where a is the nearest neighbor
at times t1 and t2, and the result is updated to c
at t3. A straightforward approach to processing
a dynamic kNN query is to issue multiple kNN
queries repetitively. However, the result accuracy
of this approach highly depends on the query
frequency, and a higher query frequency incurs
a greater query processing cost. In this example,
if we assume that a kNN query is issued at t1, at
t2, and at t3, then there is a time period between
t2 and t3 in which the result is obsolete.
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Dynamic Nearest Neighbor Queries in Euclidean
Space, Fig. 1 Continuous k-nearest neighbor query with
a moving query point q and a static dataset fa; b; c; d; e; fg
in Euclidean space, where for k D 1, a is the nearest

neighbor at times t1 and t2, and b is the nearest neighbor
at time t3. (a) Time t1: NN(q/ D a. (b) Time t2:
NN.q/ D a. (c) Time t3: NN.q/ D c

Historical Background

The study of continuous kNN queries is gener-
ally concerned with deriving query processing
techniques to reduce the query processing cost
without sacrificing the result accuracy. Since the
early 2000s, considerable research attention has
been given techniques to process variants of con-
tinuous kNN queries for moving query points and
moving data objects.

Scientific Fundamentals

Continuous kNN processing relies on the same
fundamental concept as other continuous query
types, i.e., figuring out the conditions that may
invalidate the current result set. For a continuous
kNN query, the result set can be invalidated by
having an object y that is not included in the
current result set R coming closer to the query
point q than an object in R. The manner in which
y can come closer to the query point than an
object in R depends on whether the query point
and/or the data objects are assumed to be moving.

Moving Query over Static Data Objects
This variant is also known as the moving kNN
(MkNN) query. In this case, changes in the result
set are caused by the query point q moving closer
to an object y that is not in the result set R

than any object x in R. One popular processing
approach for this variant is identifying all pos-
sible pairs of x and y in order to compute the
boundaries Bx;y , where Bx;y is formally defined
as a set of points p such that DIST(p, x) is equal
to DIST(p,y). The area inside these boundaries
is also known as a safe region. As long as the
movement of q is confined within the safe region,
R remains valid.

Precomputing safe regions. A classic example
of safe region-based techniques is the Voronoi di-
agram (Aurenhammer 1991; Okabe et al. 1992).
The Voronoi diagram is a well-known space de-
composition technique determined by distances
to a given discrete set of objects, typically a set
of points. Figure 2b shows a Voronoi diagram of
six data objects fa; b; c; d; e; fg. Assume that the
query point is originally at q1, the safe region
is the area confined by five boundaries, Ba;b ,
Ba;c , Ba;d , Ba;e, and Ba;f . As long as the query
point does not cross any of these boundaries, a
remains the first NN. As exemplified in Fig. 2c,
the Voronoi diagram can be generalized to the
kth-order Voronoi diagram (kVD), which can be
used to help process kNN queries for any given
location in the data space.

Processing an MkNN query using a kVD can
be done by identifying the Voronoi cell in which
the query point q is currently residing and moni-
toring the location of q constantly. The result set
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Dynamic Nearest Neighbor Queries in Euclidean Space, Fig. 2 The Voronoi diagram and its generalizations. (a)
Point set D, fa; b; c; d; e; fg. (b) Voronoi diagram of D. (c) Second-order Voronoi diagram of D

is updated only when q crosses a boundary. The
main benefit of this approach is the query pro-
cessing costs which are logarithmic with respect
to the number of data objects for the initial lookup
and constant for safe region checking (Auren-
hammer 1991; Okabe et al. 1992).

The main drawback of using a kVD to pro-
cess moving kNN queries is that the technique
requires an evaluation of Voronoi cells of the
entire dataset. This is considered undesirable es-
pecially when the movement of the query point
q is confined in a small area with respect to the
entire data space. Furthermore, one may require
different kVDs for different needs. For example,
a driver may need to find a gas station with a
restroom facility, while another driver needs one
with a special type of fuel. Precomputing kVDs
for all possible scenarios is impractical.

Predefined query trajectories. When the tra-
jectory is known in advance, the MkNN query
processing problem can be simplified to iden-
tification of the point along the trajectory at
which the kNN result set changes, i.e., where
the trajectory intersects a safe region bound-
ary. Tao and Papadias (2002) proposed the time-
parameterized kNN (TPkNN) query. Assuming
a linear trajectory of the query point, a TPkNN
query finds (i) the current kNN set, (ii) a posi-
tion on the trajectory where the kNN result set
changes (the influence point), and (iii) the object
that causes the change (the influence object).

Finding the influence object is done by rank-
ing candidate influence objects according to how
early their corresponding influence points appear
on the trajectory.

Another well-known method to handle an
MkNN query with a predefined query trajectory
is to use the continuous kNN (CkNN) query (Tao
et al. 2002). CkNN query splits the query
trajectory into segments where each segment
corresponds to a particular kNN result set. This
is done by identifying the influence points along
the query trajectory. The main difference between
CkNN and TPkNN is that CkNN obtains all kNN
result sets along a given trajectory, but TPkNN
provides only the segment corresponding to the
current kNN result set.

Unknown query trajectories. One method to
handle an MkNN query for an unknown trajec-
tory is to locally construct the Voronoi cell that
currently contains the query point. Since only one
Voronoi cell is needed at a time, this method does
not suffer from the same drawback as the Voronoi
diagram method. Zhang et al. (2003) proposed a
method that executes multiple instances of TP-
kNN queries to discover all possible influence
objects and cell boundaries around the query
point (as illustrated in Fig. 3). Due to the convex-
ity property of Voronoi cells generated from a set
of data points, it is guaranteed that all boundaries
are discovered when all safe region corners share
the same kNN result set as the query point.
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Dynamic Nearest Neighbor Queries in Euclidean Space, Fig. 3 Locally compute a kVD cell (k D 1). (a) Step 1.
(b) Steps 2 and 3. (c) Steps 4 and 5. (d) Final steps

Result caching. Based on the principle of spa-
tial locality of references, we can cache data ob-
jects around the query point and attempt to repro-
duce query results using the cached data objects
as the query point moves (Nutanong et al. 2010;
Song and Roussopoulos 2001). Once the cached
data can no longer produce accurate query re-
sults, the cache is updated. One method to utilize
cached data for processing an MkNN query is
to apply the sampling-based approach (Song and
Roussopoulos 2001), i.e., periodically ranking
the cached data objects according to the distance
from the query point. The cache is updated when
the correctness of the kNN result set cannot be
guaranteed.

When truly continuous query results are re-
quired, cached objects can also be used to build
a safe region. Nutanong et al. (2010) proposed a
method which incrementally maintains two types
of safe regions: (i) one that keeps the rank of
cached data object constant and (ii) one that
ensures the validity of the kNN obtained from
the cache. Li et al. (2014) propose an incremental
method to compute and to update a set of data
objects that may invalidate the current kNN result
set. The kNN result set is guaranteed to be valid
as long as the query point is closer to kNN than
any of the invalidating object. This method can
also be regarded as a safe region-based method
in the sense that we can compute the boundary
between each pair of the invalidating object and
its corresponding object in the kNN set. The
region that is enclosed by these boundaries is a
safe region.

The main difference between the sampling-
based method (Song and Roussopoulos 2001)
and the safe region-based method (Li et al. 2014;
Nutanong et al. 2010) can be described as fol-
lows. The sampling-based method (Song and
Roussopoulos 2001) does not produce truly con-
tinuous query answers; its main objective is to
reduce the cost of each kNN query execution
in order to accommodate a higher query fre-
quency. On the other hand, the safe region-based
method (Li et al. 2014; Nutanong et al. 2010)
can produce continuous query results by keeping
track of locations at which the query point crosses
a safe region boundary.

Static Query over Moving Data Objects
When the query point is static and data objects
are moving, processing a continuous kNN query
involves keeping track of data objects moving in
and out of the kNN result set. Figure 4 shows
how the kNN result set changes from fa; c; eg to
fa; b; cg due to the movements of data objects in
the dataset.

Predefined object trajectories. When object
trajectories are known in advance, processing
a continuous kNN query involves identifying
object trajectories that may involve in the result
set and ruling out those that are guaranteed to be
outside the result set with respect to a given query
location and time of interest. To accommodate
querying in the temporal dimension, a time-
parameterized data structure (Tao et al. 2003;
Saltenis and Jensen 2002) is often used to index
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Dynamic Nearest
Neighbor Queries in
Euclidean Space, Fig. 4
Continuous k-nearest
neighbor query with a
static query point q and a
moving dataset
fa; b; c; d; e; fg in
Euclidean space. (a) Time
t1: 3NN.q/ D fa; c; eg.
(b) Time t2:
3NN.q/ D fa; b; cg

a b

object trajectories. In this way, the location of
each data object is represented as a function
of time (i.e., its initial location and its velocity
vector). Each object updates its location function
only when it no longer accurately describes its
movement or when the location function is older
than a predefined threshold.

A notable example of techniques which uti-
lize time parameterization is the extended time
parameterization (ETP) algorithm, proposed by
Iwerks et al. (2006). The ETP algorithm provides
support for moving objects by extending the TP-
kNN algorithm (Tao and Papadias 2002). Iwerks
et al. (2006) also formulated an approach to
processing a kNN query on moving objects by
continuous evaluation of a range query. Their
proposed approach is based on the observation
that a continuous fixed-range query is easier to
process than a continuous kNN query with mov-
ing objects. By imposing a condition that the
scope of the range query must include at least
k C 1 data objects, the k nearest objects can
be evaluated based on only objects within the
scope. The query scope is allowed to expand and
to contract according to the current density of
objects around the query point.

Unknown object trajectories. Unknown object
trajectories are handled similarly to the case of an
unknown query trajectory. Specifically, a safe re-
gion is associated with every data object. As long
as all data objects remain inside their respective
safe regions, the current kNN result set is guar-
anteed to be up to date. Mouratidis et al. (2005b)
proposed a threshold-based approach to monitor-

ing the k nearest objects in a setting for moving
objects. Each monitored object is associated with
a range of safe distances from the query point. An
object cannot influence the query answer as long
as it remains within the range of safe distances.
Hu et al. (2005) proposed a safe region-based
technique for static window and kNN queries on
moving objects. Each moving object maintains its
own safe region and only reports its new location
if it may affect any query result.

Moving Query over Moving Data Objects
When both query and data objects are allowed
to move, processing continuous kNN queries
involves monitoring the locations of query points
and moving objects periodically. Mouratidis
et al. (2005b) showed that the threshold-based
approach to handling moving objects can be
extended to support multiple moving query
points. Using this method, the server keeps track
of the location of each query point, while each
data object keeps track of the locations and
threshold of all queries. The server checks the
thresholds as location updates arrive from the
objects and refreshes the query results when one
or more threshold violations occur.

Gedik and Liu (2004) presented a distributed
solution to continuous monitoring of moving
queries and moving objects that utilize the
computational power of the mobile devices
attached to mobile objects. The authors proposed
a technique which enables trade-offs between
query precision and query processing cost
(in terms of network bandwidth and energy
consumption). In order to handle a large number
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of queries, the authors also proposed a query-
grouping mechanism to reduce the computational
cost on the mobile device side. This mechanism
allows continuous queries in proximity to be
coprocessed.

Another stream of work drops the need for
safe regions, as well as any assumptions about
the movement patterns of objects and queries.
Objects and queries move arbitrarily and un-
predictably and report their new location to a
processing server whenever they move. The aim
of methods in this category is for the processing
server to refresh the query results as quickly as
possible in order to cater for the time-critical
nature of monitoring applications. The dominant
approach taken indexes the queries using a regu-
lar grid and augments that index with bookkeep-
ing information to track the influence region of
each query, i.e., the circular disk around the query
location that includes its k nearest objects. Only
objects leaving/entering the influence region of
a query may affect its kNN result. The main
representatives of this stream of work are YPK-
CNN (Yu et al. 2005), SEA-CNN (Xiong et al.
2005), and CPM (Mouratidis et al. 2005a). A
survey of techniques in this category can be found
in Mouratidis (2009).

Key Applications

Aviation Safety
Keeping track of nearby locations at which an
aircraft can land at all times is extremely crucial
to aviation safety. An aircraft pilot can use the
continuous kNN query to precompute the nearest
emergency landing sites along a predefined flight
path.

Location-Based Advertising
Location-based advertising (LBA) is a form of
advertising that uses location information to help
identify potential customers. A business estab-
lishment can use continuous kNN query to moni-
tor movements of nearby LBA participants over a
period of time in order to offer promotional deals
to participants who frequently appear in the kNN
result set.

Location-Based Tour Guide System
A location-based tour guide system provides re-
lated tourist information based on a user’s loca-
tion. The system can make use of the continuous
kNN query type to continuously report a list of
nearby tourist attractions. A user can browse the
list and select to retrieve information about the
attraction in which they are most interested.

Multiplayer Online Gaming
In a multiplayer online gaming environment
where different groups of players compete
against each other, complete awareness of the
surroundings is very important to each player.
The continuous kNN query type can be used to
report nearby threats to each player at all times.

Future Directions

• Privacy Issues. In location-based services,
users may choose to obfuscate their locations
before submitting them to a service provider
for greater privacy (Duckham and Kulik 2005;
Gruteser and Grunwald 2003). Continuous
queries require users to repetitively share
their locations with the service provider.
This may provide the opportunity for the
service provider to infer the trajectory of a
user from a set of altered locations that they
share by applying physical constraints such as
speed, road network topology, etc. (Chow and
Mokbel 2007).

• Probabilistic Queries. One research direc-
tion is to capture the uncertain nature of ob-
ject/query trajectories (Cheng et al. 2004; Nie-
dermayer et al. 2013). Probabilistic continu-
ous querying is concerned with presenting a
number of possible results along with proba-
bility assessments to a user over a period of
time.

• Continuous kNN with Spatial Constraints.
Another important research direction is con-
cerned with incorporating spatial constraints
into problem modeling and query processing.
For example, in the presence of obstacles,
one may be interested in monitoring k nearest
objects that are visible from the query (Gao
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et al. 2011). In the context of objects and
queries that move along the roads of a city, one
would want to monitor the k nearest objects
in terms of traveling distance within the road
network (Mouratidis et al. 2006).

Cross-References

�Nearest Neighbor Query
�Queries in Spatio-temporal Databases, Time

Parameterized
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