APPOINT: An Approach for Peer-to-Peer Offloading the
INTernet *

Egemen Tanin
Hanan Samet
Computer Science Department
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742
(301) 405-0368
{egemen,hjs}Qumiacs.umd.edu
www.cs.umd.edu/{ egemen, "hjs}

Abstract

The Internet has recently become the medium of interaction with large volumes of online
data. Enterprises in the public and private sectors made their data archives available over the
Internet. Working with such large volumes of online data is a challenging task. APPOINT (an
Approach for Peer-to-Peer Offloading the INTernet), a centralized peer-to-peer approach that
helps users of the Internet transfer large volumes of online data efficiently, is introduced with
this paper. In APPOINT, active clients of a client-server architecture act on the server’s behalf
and communicate with each other to decrease network latency, improve service bandwidth,
and resolve server congestions. In essence, a server is enabled to appoint alternatives when
needed and create a scalable collaborative virtual mirror from the active clients. Multiple
parameters such as locality and availability to decide on how to best forward a download request
are considered. The problems that can arise in symmetric upload requests are also addressed.
APPOINT is an ongoing project and it is being built as an add-on to existing client-server
systems. A library of functions, with a simple application programming interface (API) that
can be used within an existing client-server system to improve the service, is currently being
developed.

1. Introduction

In recent years, many enterprises in the public and private sectors have provided access to large
volumes of data over the Internet. Downloading, processing, and finally uploading large volumes
of data is a challenge. We have been developing a sample interactive data browser for access to
online databases. Specifically, our application domain contains large volumes of online spatial data
that require high levels of visual interactions. We define two different types of usages for our
browser. First, the browser can be activated as an applet so that users across various platforms can
continuously access large spatial data on a remote location without having to install any additional

*This work was supported in part by the National Science Foundation under Grants EIA-99-01636, EIA-99-00268,
11S-00-86162, and ETA-00-91474.

software on their side. Second, the browser along with an Internet-enabled database management
system can be installed on the local architecture. In this case, the browser can still be utilized
to view data from remote locations. However, in this second type of usage, frequently used data
can be downloaded to the local database on demand, and subsequently accessed locally. Users can
process and then upload large volumes of spatial data back to the server using this new browser.

We focus our research efforts in two directions. First, we are developing efficient caching methods
to balance local resources on one side and the significant latency of the network connection on the
other. The low bandwidth of this connection is the primary concern in both cases. The outcome
of this research will primarily address the issues of our first type of usage (as an applet), for our
browser and other similar applications. Second, we want to help users that wish to manipulate
large volumes of online data for prolonged periods of time by developing APPOINT (an Approach
for Peer-to-Peer Offloading the INTernet), a centralized peer-to-peer approach to provide them
with the ability to transfer large volumes of data more efficiently by better utilizing the distributed
network resources among active clients of a client-server architecture. The results of this research
addresses primarily the issues of the second type of usage for our browser. Although we are using
a spatial data browser to test our approach, we believe that our approach is highly generalizable to
other client-server applications. This paper focuses on APPOINT and on large online data transfer
aspects of our research using peer-to-peer systems.

The rest of this paper is organized as follows. Section 2 describes our approach, APPOINT, in
more detail. It also introduces our developing application programming interface (API). Section 3
discusses APPOINT in relation to existing work. Section 4 gives a sample client-server scenario
with APPOINT. Section 5 contains concluding remarks as well as a discussion of our plans for the
future.

2. Our Developing Approach: APPOINT

Optimizing the network download and upload times for large volumes of data is our main goal.
The common client-server approach to transferring data between the two ends of a connection
assumes a designated role for each one of the ends, i.e., some clients and a server. It also ignores
the fact that the needs of the two ends may be time dependent, i.e., there can be congested periods
of usage for the server while multiple clients may be idle and waiting to be served. There is also a
common understanding that data moves over a single pipe, i.e., from a server to a client. With the
recent changes in the Internet Community, one can imagine a peer-to-peer approach instead, where
the two ends (peers) can assume both the roles of a client and a server from time to time, promising
to improve the overall network performance, the most scarce of resources needed for transferring
large volumes of online data.

We are building APPOINT as a centralized peer-to-peer system to demonstrate our approach
for improving client-server systems. A company or a government server still exists. There is a
central source for data and a decision mechanism for the service. The environment still functions
as a client-server environment under many circumstances. Yet, unlike many other client-server
environments, APPOINT maintains more information about the clients. This includes, inventories
of what each client downloads, their networking capabilities, locations, and availabilities. When the
client-server service starts to perform poorly or a request for a data item comes from a client with
a poor connection to the server, APPOINT can start appointing appropriate active clients of the
system to serve on behalf of the server, i.e., clients who have already volunteered their services and
can take on the role of peers (hence, moving from a client-server scheme to a peer-to-peer scheme).
The directory service for the active clients is still performed by the server but the server no longer

serves all the requests. In this scheme, clients are used mainly for the purpose of sharing their
networking resources rather than introducing new contents and hence they help offload the server
and scale up the service. The existence of a server is simpler in terms of management of dynamic
peers in comparison to pure peer-to-peer approaches where a flood of messages to discover who is
still active in the system should be used by each peer that needs to make a decision. The server is
also the main source of data and under regular availability and connectivity circumstances it may
not forward the service.

Data is assumed to be formed of files. A single file forms the atomic means of communication.
APPOINT optimizes requests with respect to these atomic requests. Frequently accessed data sets
are replicated as a byproduct of having been requested by a large number of users. This opens up
the potential for bypassing the server in future downloads for the data by other users as there are
now many new points of access to it. Bypassing the server is useful when the server’s bandwidth is
limited. Existence of a central server assures that unpopular data is also available at all times. The
service depends on the availability of the central server. The central server is now more resilient to
congestions as the service is more scalable.

Backups and other maintenance activities are already being performed on the central server
and hence no extra administrative effort is needed for the dynamic peers. If a peer goes down, no
extra precautions are taken. In fact, APPOINT does not require any additional resources from an
already existing client-server environment but, instead, expands its capability. The peers simply
get on to or get off from a table on the server.

Uploading data is achieved in a similar manner as downloading data. For uploads, the active
clients can again be utilized. Users can upload their data to a set of peers other than the main server
if the server is busy or lies in a distant location. These decisions are made by a process running on
the central server. Of course, eventually when the server is available, the data is propagated to it.

All the operations are performed in a transparent fashion to the clients. Upon initial connection
to the server, they are asked whether they want to share their idle networking time and disk space
or not. The rest of the operations follow transparently after the initial contact. APPOINT works
on the application layer but not on lower layers in order to achieve platform independence and
easy deployment of the system. APPOINT is not a replacement but an addition to the current
client-server architectures. We are developing a library of function calls that when placed in a
client-server architecture starts the service. Location of active clients, bandwidth among active
clients, data-size to be transferred, load on active clients, availability of an active client are all used
to select the best clients that can form a contemporary alternative to the server.

With APPOINT we are defining a very simple API that could be used within an existing client-
server system easily. Instead of denial of service, this API can be utilized to forward the service.
The API for the server side is:

start (serverPortNo)

makeFileAvailable(fileName, fromLocation, booleanValue)

callback receivedFile(fileName, toDefaultLocation)

callback errorReceivingFile(fileName, toDefaultLocation, errorString)
stop()

Similarly the API for the client side is:

start(clientPortNo, serverPortNo, serverAddress)
makeFileAvailable(fileName, fromLocation, booleanValue)
receiveFile(fileName, tolocation)

sendFile(fileName, fromLocation)

stop()

Many client-server systems define a limit for their services. When this limit is reached, the server
denies further service to the incoming clients. In such situations, incoming clients can request the
file that they want to download from APPOINT by using the APPOINT API. If there are active
clients making this file publicly available, they will get their file from these clients. Similarly, denial
of service for large upload requests can be handled by utilizing the APPOINT API. The details
of how transfers and assignments are made remain transparent to the designer of the client-server
system. To the user, even the existence of APPOINT is transparent during operation. It is possible
to use the APPOINT API for many different purposes. A programmer can even write a simple
program, i.e., a centralized peer-to-peer file exchange system, by using the APPOINT API.

3. APPOINT’s Relation to Existing Work

Peer-to-peer systems are gaining momentum [Oram, 2001] over the Internet. Nap-
ster [Napster, 1999] and Gnutella [Gnutella, 2000] were the first and most well-known of these
systems. Napster was also a centralized peer-to-peer system like APPOINT where the directory
service is centralized on servers and people exchanged music files that they have on their disks. Our
application area, where the data is already freely available to the public, forms a prime candidate
for a peer-to-peer approach. Gnutella was a pure (decentralized) peer-to-peer file exchange system.
Unfortunately, it suffered from scalability issues, i.e., floods of messages between peers to map
connectivity in the system are required. Other systems followed these, each addressing a different
flavor of sharing over the Internet. Multiple peer-to-peer storage systems have recently emerged.
PAST [Rowstron and Druschel, 2001b], Freenet [Clarke et al., 2000], Ficus [Page et al., 1997], Free
Haven [Dingledine et al., 2000], Eternity Service [Anderson, 1996], CFS [Dabek et al., 2001], and
OceanStore [Kubiatowicz et al., 2000] are some popular peer-to-peer storage systems. Some of
these systems, like Freenet, have focused on anonymity while others, like PAST, have focused on
persistence of storage. Also, other approaches, like SETI@Home [SETI@Home, 2001}, made other
resources, such as idle CPUs, work together over the Internet to solve large scale computational
problems. Our goal is different than these approaches. We want to improve existing client-server
systems in terms of performance by using idle networking resources among active clients. Hence,
other issues like anonymity, decentralization, and persistence of storage were less important in our
decisions.

Along with these systems, researchers have developed underlying routing and location utilities to
address the core problems of mainly pure peer-to-peer systems. These are for optimally locating and
accessing an object in a decentralized dynamic distributed system over a wide-area network. Fx-
amples of some lower level utility systems are [Plaxton et al., 1999, Rowstron and Druschel, 2001a,
Stoica et al., 2001]. Multiple peer-to-peer systems are built on them. For example, PAST is built
on the Pastry [Rowstron and Druschel, 2001a] location and routing service. Unfortunately, these
systems do not directly fit to our application domain, i.e., one where the data is generated and
maintained by a central governmental agency or a company.

From our perspective, although APPOINT employs some of the techniques used in pure

peer-to-peer systems, it is also closely related to current Web caching architectures. Squir-
rel [Iyer et al., 2002] forms the middle ground. It is also built on top of Pastry and creates
a pure peer-to-peer collaborative Web cache among the Web browser caches of the ma-
chines in a local-area network. Except for this recent peer-to-peer approach, Web caching
is mostly a well-studied field in the realm of server/proxy level caching [Breslau et al., 1999,
Cao and Irani, 1997, Challenger et al., 1999, Dingle and Partl, 1996, Karger et al., 1997,
Karger et al., 1999, Kurcewicz et al., 1998, Rabinovich et al., 1998, Wolman et al., 1999]. Collab-
orative Web caching systems, the most relevant of these for our research, focus on creating either a
hierarchical, hash-based, central directory-based, or multicast-based caching schemes. We do not
compete with these approaches. In fact, APPOINT can work in tandem with collaborative Web
caching if they are deployed together. We try to address the situation where a request reaches to a
central server, meaning all the caches report a miss. Hence, the point where the server is reached
can be used to take a central decision but then the actual service request can be forwarded to a set
of active clients, i.e., the download and upload operations. Cache misses are especially common
in the type of large data-based services on which we are working on. Most of the Web caching
schemes that are in use today employ a replacement policy that gives a priority to replacing the
largest sized items over smaller-sized ones. Hence, these policies would lead to the immediate
replacement of our relatively large data files even though they may be used frequently. In addition,
in our case, the user community that accesses a certain data file may also be very dispersed from a
network point of view and thus cannot take advantage of any of the caching schemes. For example,
a data file containing a scientific data set may gather interest from thousands of scientists around
the world, but the fact that these scientists are dispersed among many different countries can
make their local caching schemes ineffective. Finally, none of the Web caching methods address
the symmetric issue of large data uploads.

Bistro [Bhattacharjee et al., 2000] is a recent framework for building scalable wide-area upload
applications. For example, deadline driven online tax form submissions forms a prime application
for this framework. This work is closely related to our approach. It uses intermediaries (in compar-
ison to our active clients), termed Bistros, for improving the efficiency and scalability of uploads.
The Bistro approach is to break the original deadline-driven upload problem into the following
pieces: (i) a real-time timestamp subproblem, (ii) a low latency commit subproblem, where the
data goes to an intermediary, and (iii) a timely data transfer subproblem, which can be carefully
planned (and coordinated with other uploads) and results in efficient data delivery to the original
destination.

4. A Sample Application

SAND (denoting Spatial And Nonspatial Data) is a prototype spatial database system developed
at the University of Maryland [Esperanca et al., 2001]. The SAND Internet Browser provides a
graphical user interface to the facilities of SAND over the Internet. Users specify queries by choosing
the desired selection conditions from a variety of menus and dialog boxes. The SAND Internet
Browser forms a good example application to the applications that are used to (interactively)
manipulate large volumes of online data.

We envision two different types of usages for the SAND Internet Browser. First, the SAND
Internet Browser can be activated as an applet to enable users across various platforms to access a
spatial database on a remote computer without having to install the SAND system on their side.
Second, the SAND Internet Browser along with the SAND spatial database system can be installed
on the client side. In the latter case, the SAND Internet Browser can be utilized to view data

from remote data sources, while frequently used data can be loaded to the local SAND database on
demand, and subsequently accessed locally. In time, users can build up their own local databases.
They can also transfer local data files (results of their daily work) back to a central server. We will
use this local application oriented latter case as our test client-server application for APPOINT.

When users want to download some large data from a remote server, there are three possible
cases that can occur: (i) the server is too busy and hence denies service, (ii) the server is available
but the connection is poor, or (iii) the server is available and there is a good connection to it. For
the first two cases, if the server decides to use APPOINT, the client can be notified of this decision.
Then, the client can request the file by using the APPOINT APIL. When the file is ready, it can be
accessed locally by the SAND Internet Browser. Similarly, for an upload action we can create the
three cases mentioned above. A client can send the file by again using APPOINT. Yet, in uploads,
when the file finally reaches the destination, the server is notified by a call to the relevant callback
function. Hence, the client-server system observes two confirmations for the uploads, one when the
file goes into the network and one for the receipt of the file by the server. These two notifications
can be used separately by the designer of the client-server system. In our case, we explicitly use
the first notification to inform the user about the submission, and the second for the receipt by
the server. So the transfer can be viewed as a large email sent to an automated system. It is also
possible to use the APPOINT API in a more direct manner where the large data file transfers
are directly requested from APPOINT even without checking the connectivity or the status of the
server. If the server has made all of it’s files visible through APPOINT, then APPOINT will choose
it when there are not any better alternatives than the server. In many client-server applications
this type of APPOINT API usage may be preferred as it is easier to implement.

5. Concluding Remarks

By developing APPOINT, we are introducing a novel approach to improving service under
current client-server systems. We envision the development of new efficient algorithms with this
work for large online data transfers using active clients of a client-server system. In our approach,
a client can go down anytime and hence this requires a special attention and we want to enhance
our methods to include dynamic updates.

References

[Anderson, 1996] Anderson, R. (1996). The Eternity Service. In Proceedings of the PRAGOCRYPT’96,
pages 242-252, Prague, Czech Republic.

[Bhattacharjee et al., 2000] Bhattacharjee, S., Cheng, W. C., Chou, C.-F., Golubchik, L., and Khuller, S.
(2000). Bistro: A platform for building scalable wide-area upload applications. ACM SIGMETRICS
Performance Fvaluation Review, 28(2):29-35.

[Breslau et al., 1999] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and
Zipf-like distributions: Evidence and implications. In Proceedings of the IEEFE Infocom’99, pages 126-134,
New York, NY.

[Cao and Irani, 1997] Cao, P. and Irani, S. (1997). Cost-aware WWW proxy caching algorithms. In Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems (USITS), pages 193-206, Monterey,
CA.

[Challenger et al., 1999] Challenger, J., Iyengar, A., and Dantzig, P. (1999). A scalable system for consis-
tently caching dynamic Web data. In Proceedings of the IEEE Infocom’99, pages 294-303, New York,
NY.

[Clarke et al., 2000] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2000). Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, pages 311-320, Berkeley, CA.

[Dabek et al., 2001] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. (2001). Wide-area
cooperative storage with CFS. In Proceedings of the ACM SOSP’01, pages 202-215, Banff, AL.

[Dingle and Partl, 1996] Dingle, A. and Partl, T. (1996). Web cache coherence. Computer Networks and
ISDN Systems, 28(7-11):907-920.

[Dingledine et al., 2000] Dingledine, R., Freedman, M. J., and Molnar, D. (2000). The Free Haven Project:
Distributed anonymous storage service. In Proceedings of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, pages 67-95, Berkeley, CA.

[Esperanca et al., 2001] Esperanca, C., Hjaltason, G. R., Samet, H., Brabec, F., and Tanin, E. (2001). An
overview of the SAND spatial database system. University of Maryland, submitted for publication.

[Gnutella, 2000] Gnutella (2000). http://www.gnutella.com/.

[Iyer et al., 2002] Iyer, S., Rowstron, A., and Druschel, P. (2002). Squirrel: A decentralized peer-to-peer
Web cache. Rice University /Microsoft Research, submitted for publication.

[Karger et al., 1997] Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., and Panigraphy, R.
(1997). Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proceedings of the ACM Symposium on Theory of Computing, pages 654663, El
Paso, TX.

[Karger et al., 1999] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K.,
Kim, B., Matkins, L., and Yerushalmi, Y. (1999). Web caching with consistent hashing. Computer
Networks, 31(11-16):1203-1213.

[Kubiatowicz et al., 2000] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-
madi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000). OceanStore: An
architecture for global-scale persistent store. In Proceedings of the ACM ASPLOS’00, pages 190-201,
Cambridge, MA.

[Kurcewicz et al., 1998] Kurcewicz, M., Sylwestrzak, W., and Wierzbicki, A. (1998). A distributed WWW
cache. Computer Networks and ISDN Systems, 30(22):2261-2267.

[Napster, 1999] Napster (1999). http://www.napster.com/.

[Oram, 2001] Oram, A. (2001). Peer-to-peer: Harnessing the power of disruptive technologies. O’Reilly and
Associates, Sebastopol, CA.

[Page et al., 1997] Page, T. W., Guy, R. G., Heidemann, J. S., Ratner, D. H., Reiher, P. L., Goel, A.,
Kuenning, G. H., and Popek, G. (1997). Perspectives on optimistically replicated peer-to-peer filing.
Software — Practice, and Ezperience, 11(1):155-180.

[Plaxton et al., 1999] Plaxton, C. G., Rajaraman, R., and Richa, A. W. (1999). Accessing nearby copies of
replicated objects in a distributed environment. Theory of Computing Systems, 32(3):241-280.

[Rabinovich et al., 1998] Rabinovich, M., Chase, J., and Gadde, S. (1998). Not all hits are created equal:
Cooperative proxy caching over a wide-area network. Computer Networks and ISDN Systems, 30(22-
23):2253-2259.

[Rowstron and Druschel, 2001a] Rowstron, A. and Druschel, P. (2001a). Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings of the ACM Middleware’01, pages
329-350, Heidelberg, Germany.

[Rowstron and Druschel, 2001b] Rowstron, A. and Druschel, P. (2001b). Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In Proceedings of the ACM SOSP’01, pages
160-173, Banff, AL.

[SETI@QHome, 2001] SETIQ@Home (2001). http://setiathome.ssl.berkeley.edu/.

[Stoica et al., 2001] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord:
A scalable peer-to-peer lookup service for Internet applications. In Proceedings of the ACM SIGCOMM’01,
pages 149-160, San Diego, CA.

[Wolman et al., 1999] Wolman, A., Voelker, G. M., Sharma, N., Cardwell, N.; Karlin, A., and Levy, H. M.

(1999). On the scale and performance of cooperative Web proxy caching. In Proceedings of the ACM
SOSP’99, pages 16-31, Kiawah Island, SC.

