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Abstract—
The Internet has become the common medium for con-

tent distribution. Searching content using keywords is

well-known. But there are many shortcomings to it. Users

cannot search within the content and on many of the at-

tributes of the content, i.e., other than its name. Content

is also becoming increasingly decentralized. New mech-

anisms allowing access to complex distributed content is

needed. We introduce a hashing-based method for access-

ing complex content over large dynamic networks such as

peer-to-peer networks, which uses distributed hash tables

in a novel way. In particular, we are interested in spa-

tial content that is becoming popular in databases. Our

method is scalable, addressing the needs of todays net-

works.

I. Introduction

The Internet has become the main medium of inter-
active content dissemination. Some widely accepted ad-
vantages that the Internet has over other mediums is its
completely decentralized nature, scalability, and capacity
for allowing independent subscriber interaction. However
we believe the Internet users have just started to uti-
lize these aspects of the Internet to their full potential.
Content and interactions with it is becoming less reliant
on centralized systems. Content distribution networks
(CDN) are emerging in various forms, with the most gen-
eral case being the peer-to-peer (P2P) networks [12]. A
CDN maintains many data objects and any node in the
network can service requests for the objects. Every ob-
ject has a source and objects may be cached throughout
the network to improve access efficiency. CDN nodes can
cooperate to build data object indexes for searching and
also to provide higher level management functions such as
anonymous content publication. Yet, they do not provide
a full solution for querying complex content.

Searching complete content in the form of files using
keywords is common. But there are many shortcomings
to this approach. First, you cannot search within the
content (i.e., files). Second, you cannot use many of the
attributes of the content for your search other than the
content’s name (i.e., file name). More elaborate mecha-
nisms that allow users to access complex distributed con-
tent over the Internet is needed.

Current CDNs require some form of object indexing or
a mechanism for locating objects in the network. Cen-
tralized indexes are relatively straight forward to im-
plement but they lead to congestion as the rate of re-
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quests increases. Central index replication and query re-
sult caching may be used to offset this congestion. But
they do not scale well. Recently developed hashing-based
distributed indexes does address this problem [14], [16].
Hence, what is also required is a completely decentral-
ized index that we can use to search and access complex
content.

In this paper, we introduce a hashing-based method
that can be used to access complex content over large
scale distributed dynamic networks such as the P2P net-
works of today. In particular, we are interested in spa-
tial content. Spatial references are becoming a common
component in various databases. Cars with positioning
systems, personal assistants, demographic data from gov-
ernment servers, even homepages of restaurants with ad-
dresses are a part of this emerging wave of spatial content.

In Section II we overview the state of the art methods
to access distributed content over large networks. Then
we list P2P networks in Section II-C. We discuss our
solution to accessing distributed spatial content in Sec-
tion III.

II. Hashing and distributed hash tables

Hashing is becoming increasingly popular for access-
ing distributed content over large networks. This section
explains consistent hash algorithms in general terms and
then shows how these algorithms are important for dis-
tributed systems.

A. Consistent hashing

A hash algorithm uses a hash function, H, that maps
keys to locations, H : K → L, where K is the set of all keys
and L is the set of all locations. A key is usually a unique
identifier that represents the data object to be stored,
e.g., a file name is a key that represents the file contents.
A hash algorithm requires close to constant time to find
a data object, rather than for instance log

2
k time steps

required for a binary search, where k is number of keys
currently stored. This means that the time required to
find an object is independent of the number of objects.

Hash functions can typically take any arbitrarily long
binary string as a key and provide a many-to-one map-
ping to the locations as depicted in Fig. 1. The figure
shows L locations depicted as buckets with data objects
as shaded rectangles. The key for each object is a text
string. When two or more objects hash to the same loca-
tion then a secondary operation such as a second hashing
function is applied or a search algorithm is used. The
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Fig. 1. A basic hash function.

widely known SHA-1 algorithm can hash arbitrary strings
onto L = 2160 different locations.

Using L = 2160 locations means that it is highly un-
likely for any two objects to hash to the same location (so
secondary operations are not usually required). Also it is
important to note that a good hash algorithm like SHA-
1 will provide a distribution of keys over buckets that
is close to uniformly random. As a consequence, simi-
lar keys do not hash to similar locations. For example
the location H(“apple”) is independent of the location
H(“apples”).

An important class of hash functions are those that
are consistent. A consistent hash function minimizes the
degree of remapping required when the set of locations
changes. Basically, the set of locations will change when
either: (i) an existing location is removed or (ii) a new
location becomes available. The concepts are explained
using the illustrations in Fig. 2. In Fig. 2(a), an incon-
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(a) An inconsistent hash function after remapping caused by
the removal of location 3.
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(b) A consistent hash function after remapping caused by the
removal of location 3.

Fig. 2. Examples of hashing (in)consistency.

sistent hash function requires the objects from location 3
and all the other objects to be rehashed due to location
3 being removed. Comparing Fig. 2(a) and Fig. 1 note
that inconsistent hashing has relocated many of the ex-
isting data objects due to the change. In Fig. 2(b) the
removal of location 3 only leads to the relocation of the
objects at location 3 – consistent hashing reduces the ef-
fect of a change. Similarly when a new location is made
available, only a small number (proportional to the ra-
tio of the number of items to the number of locations) of
objects need relocating.

It is known that some hash algorithms provide opti-
mum consistency, i.e., the degree of remapping is mini-
mized. This class of hash algorithms are important build-
ing blocks of efficient content distribution networks and
other systems that require distributed data and process-
ing.

B. Distributed hashing

A distributed hash algorithm uses a number of servers
to maintain some number of locations. A server repre-
sents a computer on the Internet, e.g., a http server. In
the simplest sense, if there are M servers and L locations
then each server should maintain roughly L/M locations.
Although there are many methods for a distributed sys-
tem to implement a distributed hash algorithm, we ex-
plain a method that has recently become widely known
as the Chord method [16].

The Chord method maps both keys and servers to lo-
cations, as depicted more generally in Fig. 3. The figure
shows a hash algorithm using 2t different locations, from
0 to 2t − 1. Each server has a unique Internet Protocol
(IP) address (and port number which is not shown) that
is used plainly as a key.

addresses
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Fig. 3. Hashing server addresses and object keys to the same
locations.

The Chord method derives its name from the use
of modulo arithmetic and the clarity of representation
achieved by depicting the hash locations in a circle. Fig. 4
depicts the locations using a circle and also shows other
details of the Chord method.
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Fig. 4. Details of the Chord method.

Each server in the Chord maintains a table of up to t
other servers, where t is logarithmically proportional to
the number of locations. Each entry in the table rep-
resents an interval that is twice as large as the interval
of the previous entry. The entries in the table for two
servers are shown as arrows from the servers in Fig. 4.
Each interval is associated with a successor server. These
are shown as dashed arrows.



Without giving an explicit algorithm, consider the case
when server 10.28.1.5 is trying to locate the object with
key prog1. The server scans through the table and finds
the interval which contains the key and the associated
successor server. In this case prog1 is in the interval de-
fined by the third and fourth arrows (counting clockwise
from the server). The request for the object is then for-
warded to server 128.56.32.1, which repeats the process
and finally forwards the request to server 128.56.32.5. In
general, it is proven that a request to locate an object
must be forwarded up to log

2
n times, where n is the

number of servers in the system.
The Chord method is consistent. As depicted in Fig. 5,

the addition of a new server requires relocating only the
objects on one existing server. The removal of a server
requires relocating only the objects that were owned by
that server. In general, servers can be added and removed

the new server takes

new server objects
ownership of some
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Fig. 5. Inclusion of a new server.

from the Chord arbitrarily since the overhead is logarith-
mically proportional to the number of servers. There are
many more aspects to the Chord algorithm, including
caching requests and objects for object locality and vir-

tual servers for load balancing improvements. However
in this paper we direct our discussion to a higher level
system implementation perspective.

C. Peer-to-peer content distribution networks

Use of P2P systems on the Internet are gaining momen-
tum. Napster [2] and Gnutella [1] were the first and most
well-known of these systems. Napster was a P2P system
where the directory service is centralized on servers and
people exchanged music content that they had on their
disks. Gnutella was a more general P2P content exchange
system. Unfortunately, it suffered from scalability issues,
i.e., floods of messages between peers to map connectiv-
ity in the system were required. Other systems followed
these, each addressing a different flavor of sharing over
the Internet. Multiple P2P storage systems have recently
emerged. PAST [9], Freenet [6], Free Haven [8], Eter-
nity Service [4], CFS [7], and OceanStore [11] are some
popular P2P storage systems.

Some of these systems, like Freenet, have focused
on anonymity while others, like PAST, have focused
on persistence of storage. Also, other approaches, like
SETI@Home [3] and distributed shells [17], made other
resources, such as idle CPUs, work together over the In-
ternet to solve large scale computational problems. Along
with these systems, researchers have developed under-
lying routing and indexing utilities to address the core

problems of these systems. These are for optimally find-
ing and accessing an object in a decentralized dynamic
distributed network over a wide-area. Examples of some
lower level utility systems are [5], [13], [14], [15], [16], [18]
including the Chord method. Recent research efforts con-
tinue to examine detailed aspects of these utilities [10].

Multiple P2P systems are built on top of the lower level
utilities. For example, PAST is built on the Pastry [15]
routing and indexing service. All of these routing and
indexing utilities help the nodes of the systems find com-
plete objects. We differ from these systems by supplying
a method to query the content within an object and us-
ing other attributes of the content rather than just the
name of it. We are specifically interested in the spatial
attributes of the content.

III. Hashing distributed spatial content

Spatial databases contain objects with positions in
space, e.g., cities that have a longitude and latitude coor-
dinate. In a more general sense an object, G, is described
by a region of some n-dimensional space. A spatial query
is also defined as an object, Q, and the result of the query
is all objects in the database that intersect with Q.

Unlike documents that are accessed by name (i.e., the
query is simply a file name), spatial objects and spatial
queries require intersection computations – the query is
actually a search for objects that satisfy it. In R

2 space,
a query can be efficiently executed by first recursively
subdividing the space into a quadtree and indexing the
objects into the leaves of the tree1. Each query can sim-
ilarly be subdivided to find which leaves it belongs to,
which can exponentially reduces the average number of
intersection calculations per query, for instance each level
of the tree reduces the number of possible resulting ob-
jects by a factor of 4.

Distributed spatial queries require associating respon-
sibility of spatial regions to the nodes in the system. If a
node is responsible for a region of space then it is respon-
sible for query computations that intersect that region
of space. While it is possible to divide up space into a
regular grid, this trivial division does not maintain the
scalability of a quadtree.

We hash control points, e.g., H(“(5, 2)”) is the loca-
tion of (5, 2) on the Chord, to associate responsibility
of a spatial region with a node in a P2P system. Each
node is responsible for the regions of space surrounding
the control points that hash to that node. We allow the
control points to be dynamically determined using a glob-
ally known function to recursively subdivide space (or to
superdivide as may be required when extending the cur-
rent spatial domain). Fig. 6 depicts some control points
and an example hashing. Objects are inserted into the
distributed hash table by resolving them into spatial re-
gions and hashing the control points of those regions. A
copy of the object is stored at each node that becomes
responsible for a control point. Alternatively a pointer to
the original node that stores the object can be copied to
each node, the data movements depend on the complexity
of the object and the complexity of the intersection cal-

1We discuss R
2 space throughout the remainder of this paper.
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culations. Any node in the P2P network can have a small
database of objects, contributing to the larger system.

Let X, Y and Z be objects or queries. Note that in
Fig. 6, Y will actually be distributed to many nodes
(some nodes may be responsible for more than one as-
sociated control point) while Z may only be stored at a
single node. Parallelism is a direct consequence of having
multiple control points and multiple nodes. All the nodes
can handle the pieces of a query simultaneously.

Considering X as a query and Z as an object, resolv-
ing X to control points A and C will not be sufficient to
detect the intersection of Z which is resolved to the single
control point CC, i.e., the control points must match in
order to give a correct query result. However, the level of
resolution can be computed on a per object basis. We can
use downward flags at higher level control points to indi-
cate that some object does exist at a lower level. When
inserting an object at a level i control point, a downward
flag is hashed to the parent level j = i − 1 control point,
which indicates the presence of an object at level i. This
flag hashing is continued up through the quadtree un-
til reaching a control point for which the downward flag
already exists. Clearly, for a large number of objects,
downward flags will exist for the origin point O and more
than likely for the first few levels of control points (as-
suming a uniform distribution of objects).

Similarly, an upward flag is used to indicate that some
objects are hashed at a higher level. In this case, an
object insertion is also followed by propagating upward
flags to the lower levels for which control points have
already been hashed.

The use of flags allows a query to proceed from any

level of the quadtree, dictated by the desired initial par-
allelism. However, as described, the method generally
requires every query to propagate to the highest level for
which control points have been hashed and to the lowest
level in those regions where objects are known to exist.
While the later case leads to the query propagating down
to the leaves of the quadtree, the former case leads to
queries propagating up to the root which suggests a bot-
tleneck. This is overcome by requiring that no object is
hashed to control points at a level less than some globally
constant value called the fundamental level. For example,
control points, O, A, B, C, and D in Fig. 6 may be forbid-

den to be used, which is using a fundamental level equal
to 2.

In general, the number of nodes (parallelism) that store
an object is selected when the object is stored and so
can be controlled to a suitable value. The parallelism
of a query is not so controllable because it depends on
the location of existing objects and the levels to which
these objects are hashed. However query parallelism is
desirable and in general a high level of query parallelism
is good. Redundant intersection computations can occur
when an object intersects the query in more than one
region. Eliminating this redundancy is a direction for
further investigation.

A. Spatial algorithms

Let u be a control point, then let

D(u) = (upward, downward, list)

if control point u exists (i.e., has already been hashed)
and D(u) is empty if control point u does not exist. The
default values for a D(u) are (0, 0, empty) which are used
when an algorithm implicitly creates a new point u. Here,
upward, downward ∈ {0, 1} are flags and list is a list of
objects that intersect the region, R(u) = (x1, y1, x2, y2),
defined by u =

(

(x2 − x1)/2, (y2 − y1)/2
)

and are con-
trolled by the owner of that control point. Each u has
a parent control point, P (u), and a set of four children,
{C(u, 1), C(u, 2), C(u, 3), C(u, 4)}.

Given a control point u, it is always possible for any
node to determine R(u). This requires an origin region,
R(o) = (0, 0, 1, 1) (the unit square) with control point o =
(0.5, 0.5) and a method of sub/super-division that covers
all space. Call o a (or the) 0-level control point. Let L(u)
be the level of control point u. In Fig. 6, L(O) = 0 and
object Y has been resolved into 4 regions at level 2 plus
1 region at level 1.

The procedures InsertObject() and SeedQuery() are
used to insert objects into the system and to make queries
for objects in the system. The other procedures are recur-
sive and called as appropriate. Let D(o) = (0, 0, empty)
be the initial starting control point, i.e., the control point
exists but there are no objects yet. Other control points
do not exist.



procedure FilterDown(control point u)

for i := 1 to 4

v := C(u,i)

if D(v) exists then

set D(v) upward to 1

FilterDown(v)

done

procedure Resolve(object X,

control point u,

reslevel r)

if X intersects R(u) then

if L(u) = r then

set D(u) list to include X

for i := 1 to 4

FilterDown(C(u,i))

else

set D(u) downward to 1

for i := 1 to 4

Resolve(X,C(u,i),r)

done

procedure InsertObject(object X)

select an r to give reasonable parallelism

t := o

while X is not contained within R(t)

t := P(t); set D(t) downward to 1

Resolve(X,t,r)

done

procedure Query(query X,

control point u,

direction d)

if X intersects R(u) then

intersect all objects in D(u)

record intersecting objects in result

if direction is down

if D(u) downward is 1

for i := 1 to 4

Query(X,C(u,i),down)

else

if D(u) upward is 1

Query(X,C(u,i),up)

done

procedure SeedQuery(query X)

select an r to give reasonable parallelism

for each intersecting R(u) at level r

Query(X,u,down)

Query(X,u,up)

done

IV. Conclusion and future work

With the recent paradigm shifts, content and interac-
tions with the content is becoming less reliant on central-
ized systems. CDNs are emerging in various new forms
such as the P2P networks. CDN nodes can cooperate to
build data object indexes for searching content. Search-
ing complete content in the form of files using keywords is
common. There are many shortcomings to this approach.
More effective mechanisms that allow users to access com-
plex distributed content over the Internet are needed. In
this paper, we introduced a hashing-based method that

can be used to access complex content over large scale
distributed dynamic networks such as the P2P networks
of today. In particular, we are interested in spatial con-
tent, however we believe our method can be extended to
arbitrary spaces. We adopted the Chord approach for
our solution to querying such complex content because
Chord is an efficient distributed hashing algorithm. We
believe our approach addresses the current dynamic and
distributed nature of the new networks. We are in the
process of refining our algorithms and we plan to test our
approach on a prototype P2P system in near future.
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