
Trip Planning Queries for Subgroups
in Spatial Databases

Tanzima Hashem1, Tahrima Hashem2, Mohammed Eunus Ali1, Lars Kulik3, and
Egemen Tanin3

1 Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Bangladesh,

{tanzimahashem, eunus}@cse.buet.ac.bd
2 Department of Computer Science and Engineering, Dhaka University, Bangladesh,

tahrimacsedu14@gmail.com
3 Department of Computing and Information System, University of Melbourne, Australia,

{lkulik, etanin} @unimelb.edu.au

Abstract. In this paper, we introduce a novel type of trip planning queries, a sub-
group trip planning (SGTP) query that allows a group to identify the subgroup and
the points of interests (POIs) from each required type (e.g., restaurant, shopping
center, movie theater) that have the minimum aggregate trip distance for any sub-
group size. The trip distance of a user starts at the user’s source location and ends
at the user’s destination via the POIs. The computation of POI set for all possible
subgroups with the straightforward application of group trip planning (GTP) al-
gorithms would be prohibitively expensive. We propose an algorithm to compute
answers for different subgroup size concurrently with less query processing over-
head. We focus on both minimizing the total and maximum trip distance of the
subgroup. We show the efficiency of our algorithms in experiments using both
real and synthetic datasets.

1 Introduction

Location-based services that involve more than one user have become common in re-
cent years [11, 13, 16]. A group of users located at different places may want to visit
a number of points of interests (POIs) such as a restaurant, a shopping center, or a
movie theater together, and then go towards their own individual destinations. Group
trip planning (GTP) queries [6, 7, 15] return points of interests (POIs) of required types
(e.g., restaurant, shopping center, movie theater) that minimize the aggregate trip dis-
tance with respect to the source and destination locations of the group members. The
trip distance of a user starts at the user’s source location and ends at the user’s destina-
tion via the returned POIs and the aggregate trip distance is computed as the total or the
maximum trip distance of group members.

Sometimes it may happen that the majority of the users in the group are located
nearby, whereas a few users may be located far away from them. These distant users,
considered as outliers, may change the query answer for the group and increase the trip
distances of the other group members. In such scenarios, if the aggregate trip distance of
a subgroup improves significantly compared to a complete group, the group may prefer

2 Authors Suppressed Due to Excessive Length

to select the POIs for the trip that minimize the aggregate trip distance for a subgroup.
Other group members who are not included in the subgroup can join the trip in return of
traveling a little bit more for the overall interest of the group. In Figure 1, for the entire
group (of size 4), the pair of POIs (p′′1 , p′′2) minimizes the maximum travel distance,
while (p′′1 , p′2) minimizes the maximum travel distance if we consider a subgroup of
size 3. We observe that the aggregate trip distance significantly improves if the group
does not take (s4,d4) into account as (s4,d4) is located far away from other source-
destination pairs. To address the above mentioned scenario, in this paper, we propose a
subgroup trip planning (SGTP) query that returns for every subgroup size, the subgroup
and the POIs from each required type that have the minimum aggregate trip distance.

p
1
'

p
1
'''

p
1
''

s2 s3

s1

d 1

Fig. 1. An example SGTP query, where si and di represent the source and destination locations of
a user ui, and p1 and p2 represent POI types restaurant and movie theater, respectively.

Evaluating an SGTP query requires identifying the subgroup and the POIs from
each required type that have the minimum aggregate trip distance for every subgroup
size. A straightforward approach to evaluate an SGTP query is to apply our GTP query
algorithms [6, 7, 15] for all possible subgroups independently, and select the best sub-
group that results in a minimum aggregate distance. This approach incurs high process-
ing overhead and is not scalable as it requires to combinatorially enumerate all possible
subgroups and apply our GTP query algorithm for each of these subgroups. We pro-
pose an efficient solution to process an SGTP query that can identify the query answer
in a single search on the database. Our approach gradually refines the POI search space
based on the smallest aggregate trip distance computed using already retrieved POIs,
and does not retrieve those POIs from the database that cannot be part of the answer
for any subgroup. Furthermore, we develop an efficient technique to identify subgroups
of different sizes with the minimum aggregate trip distances for a set of POIs, without
enumerating all subgroups.

In summary, the contributions of this paper are summarized as follows:

– We introduce subgroup trip planning (SGTP) queries in spatial databases.
– We propose a hierarchical algorithm to evaluate SGTP queries. We consider mini-

mizing both the total trip distance and the maximum trip distance of the members
in the subgroup.

– We develop a technique to compute aggregate trip distances for different subgroup
sizes with respect to a set of POIs with reduced computational overhead.

Trip Planning Queries for Subgroups in Spatial Databases 3

– We evaluate the performance of our approach in experiments using both synthetic
and real datasets.

2 Problem Overview

A subgroup trip planning (SGTP) query is formally defined as follows:

Definition 1. (SGTP Queries). Given a group G of n users {u1,u2, . . . ,un}, the min-
imum subgroup size n′, a set of source locations S, a set of destination locations D,
sets of m types of data points {D1,D2, . . . ,Dm}, and an aggregate function f the SGTP
query returns for every subgroup size n′′ ∈ [n′,n], a subgroup G′ ∈ G of n′′ users and a
set of data points P = {p1, p2, . . . , pm}, pt ∈ Dt , that minimizes f .

In this paper, an aggregate function f can be either SUM or MAX, where SUM and
MAX return the total or maximum trip distance of group members, respectively. The
total trip distance for a subgroup is the summation of each user’s trip distance in the
subgroup, where a user’s trip distance starts from a user ui’s source location si and
ends at ui’s destination location di via the returned data points. On the other hand, the
maximum trip distance for a subgroup is computed as the maximum of the trip distances
of users in the subgroup.

For an ordered SGTP query, the group fixes the order of the types of data points in
which a subgroup visits the data points (e.g., the group may want to visit a shopping
center before a restaurant) and the aggregate trip distance is computed accordingly. For
a flexible SGTP query, the order of visiting data point types is not fixed, i.e., the group
is happy to visit the data points in any order that minimizes the aggregate trip distance.

An SGTP query can be extended to a k subgroup trip planning (kSGTP) query that
returns for every subgroup size, k subgroups and sets of data points that have k smallest
aggregate distances for the group trip. A kSGTP query enables a group to select data
points based on other parameters like cost or preference for restaurants. In this paper,
we develop solution for processing kSGTP queries.

3 Related Work

GTP queries have been first introduced in [7], where the authors developed algorithms
to determine group trips with the minimum total trip distance. In [1, 15], algorithms
have been proposed to process ordered GTP queries. Recently, in [6], the authors have
proposed an algorithm that can minimize both total and maximum distances of the
group members for both ordered and flexible GTP queries. In this paper, we focus on
an SGTP query, a new variant of a GTP query. A GTP query identifies only a set of
data points whereas an SGTP query returns the subgroup and the set of data points that
together minimize the aggregate group trip distance.

Group nearest neighbor (GNN) queries [10, 12–14] and variants [2, 4, 9, 11] have
been extensively studied in the literature. A GNN query returns a single type of data
point that minimize the aggregate travel distance with respect to the current locations
of group members. On the other hand, a GTP query returns a set of data points of

4 Authors Suppressed Due to Excessive Length

different types that minimize the aggregate travel distance with respect to the source and
destination locations of group members. It has been already shown in the literature [7]
that extending GNN algorithms for processing SGTP queries would be an exhaustive
search and prohibitively computationally expensive.

In [11], Li et al. have proposed a flexible aggregate similarity search that finds the
nearest data point and the corresponding subgroup for a fixed subgroup size; for exam-
ple, a group may query for the nearest data point to 50% of group members. In [2], the
authors have developed an approach for spatial consensus queries that find subgroups of
different size and corresponding data points that together minimize the aggregate travel
distance. In this paper, we introduce a subgroup trip planning query, which is different
from the above mentioned variants of GNN queries.

4 Our Approach

In this section, we present our solution to process kSGTP queries. Though it is possible
to evaluate an SGTP query by applying the GTP query algorithm [6, 7, 15] indepen-
dently for all subgroups, this straightforward solution would be an exhaustive search
and require to access same data multiple times. More specifically, for every subgroup
of size j from a group of n users, this approach requires to apply kGTP query algorithm(n

j

)
times to evaluate the answers for

(n
j

)
groups independently and then select k sets of

data points from the evaluated answers and corresponding k sets of j users that together
provide k smallest aggregate trip distances. The limitation of this straightforward ap-
proach is that the combined query processing overhead is very high and does not scale.
We assume that data points of the same type (e.g., restaurants) are indexed using a sin-
gle R∗-tree [3], and develop an approach to evaluate the query answers for different
subgroup sizes concurrently with a single traversal on the R∗-trees R1,R2, . . . ,Rm. Our
approach prunes those POIs that cannot be part of the SGTP query answer using the
smallest aggregate trip distance computed based on the already retrieved POIs from
the database. We develop a technique to identify the subgroups of different sizes with
minimum aggregate trip distances without computing aggregate trip distances for all
possible subgroups, which further reduces the query processing overhead.

Algorithm 1 shows the steps to evaluate an kSGTP query. The input to the algo-
rithm are a group of n users G = {u1,u2, . . . ,un}, source locations S = {s1,s2, . . . ,sn},
destination locations D = {d1,d2, . . . ,dn}, m types of data points for m > 0, the
number k of required sets of data points, the minimum subgroup size n′, and an
aggregate function f . The output of the algorithm is the answer set A = {A j},
where n′ ≤ j ≤ n, represents the query answer for subgroup size j. A j con-
tains k subgroups consisting of j members from G and corresponding data points,
{G1,{p1

1, p1
2, . . . , p1

m}},{G2,{p2
1, p2

2, . . . , p2
m}}, . . . ,{Gk,{pk

1, pk
2, . . . , pk

m}} having the k
smallest aggregate distances for the group trip.

We use the following notations in our algorithm:

– ri: a data point or a minimum bounding rectangle (MBR) of a node of Ri.
– Distmin(., .)(Distmax(., .)): the minimum (maximum) distance between two param-

eters.

Trip Planning Queries for Subgroups in Spatial Databases 5

– d j
min(w1,w2, . . . ,wm): the distance computed as the smallest minimum aggregate

trip distances computed for all possible subgroups of size j, where the minimum ag-
gregate distance for a subgroup G′ of size j is determined as fui∈G′

(
Distmin(si,w1)+

∑
m−1
t=2 Distmin(wt ,wt+1)+Distmin(di,wm)

)
, where w1,w2, . . . ,wm are data points or

MBRs of R∗-tree nodes.
– d j

max(w1,w2, . . . ,wm): the distance computed as the smallest maximum aggre-
gate trip distances computed for all possible subgroups of size j, where
the maximum aggregate distance for a subgroup G′ of size j is determined
as fui∈G′

(
Distmax(si,w1) + summ−1

t=2 Distmax(wt ,wt+1) + Distmax(di,wm)
)
, where

w1,w2, . . . ,wm are data points or MBRs of R∗-tree nodes.
– MinDist[j][k]: The kth smallest distance for subgroup size j from already computed

d j
max(w1,w2, . . . ,wm)s.

The algorithm works in a hierarchical manner. The algorithm maintains a priority
queue Qp, which is initially ordered based on the minimum dn′

min and reordered based
on the minimum dn′+1

min when the query answer for subgroup size n′+1 has been identi-
fied. The reordering continues through dn′+2

min ,dn′+3
min , . . . ,dn

min until the query answer for
subgroup size n, i.e., the entire group has been identified.

The algorithm first initializes all entries of A with /0, Mindist with ∞, cur with n′,
and end with 0 (Line 1.1). The search for the query answer starts from the root nodes of
R∗-trees, R1,R2, . . . ,Rm; the algorithm inserts the root nodes of R1,R2, . . . ,Rm together
with

⋃n
j=n′ d

j
min into a priority queue Qp. The elements of Qp are stored in order of

dn′
min. In each iteration of the search, the algorithm dequeues r1,r2, . . . ,rm from Qp. If all

r1,r2, . . . ,rm are data points then the algorithm updates the answers for a subgroup size
j, cur ≤ j ≤ n, if the condition d j

min(r1,r2, . . . ,rm) < MinDist[j][k] is satisfied (Lines
1.8–1.9). The algorithm checks this condition because at any point in time Qp is ordered
based on a d j

min and it may happen that d j′
min(r1,r2, . . . ,rm) for j′ > j is greater than

current MinDist[j′][k] and cannot be part of the answer for subgroup size j′.
After updating the answer set, the algorithm checks whether kSGTP answer for sub-

group size cur have been already found, i.e., dcur
min(r1,r2, . . . ,rm) > MinDist[cur][k]. If

the next subgroup size, cur+ 1 is greater than n then the algorithm terminates by as-
signing 1 to the variable end (Line 1.16). Otherwise, the remaining elements of priority
queue is reordered based on dcur+1

min (r1,r2, . . . ,rm).
On the other hand, if r1,r2, . . . ,rm are not data points, the algorithm computes W

using the function FindSets. FindSets determines all possible sets {w1,w2, . . . ,wm}s,
where w j represents either one of the child node of r j or the data point r j. In case of an
ordered SGTP query, FindSets only computes ordered set of data points/R∗-tree nodes,
whereas in case of a flexible SGTP query, FindSets considers all combination of data
points/R∗-tree nodes.

For each set {w1,w2, . . . ,wm} in W , the algorithm computes⋃n
j=n′{d

j
min(w1,w2, . . . ,wm),d

j
max(w1,w2, . . . ,wm)} using function CompTripDist

(please see Section 4.1). Before inserting {w1,w2, . . . ,wm} into Qp, the algorithm
checks whether it is possible to prune {w1,w2, . . . ,wm}. The algorithm prunes
{w1,w2, . . . ,wm} if for every n′ ≤ j ≤ n, d j

min(w1,w2, . . . ,wm)> MinDist[j][k].

6 Authors Suppressed Due to Excessive Length

Algorithm 1: kSGTP(G,S,D,n′,k, f)
Input : G = {u1,u2, . . . ,un}, S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, n′, k, and f
Output: A = {An′ ,An′+1, . . . ,An}

1.1 Initialize(A,MinDist,cur,end);
1.2 Enqueue(Qp,root1,root2, . . . ,rootm,

⋃n
j=n′ d

j
min(root1,root2, . . . ,rootm));

1.3 while Qp is not empty and end = 0 do
1.4 {r1,r2, . . . ,rm,

⋃n
i=n′ d

i
min(r1,r2, . . . ,rm)}← Dequeue(Qp);

1.5 if r1, r2, . . . , rm are data points then
1.6 j← cur;
1.7 while j ≤ n do
1.8 if d j

min(r1,r2, . . . ,rm)< MinDist[j][k] then
1.9 U pdate(G,S,D,k, f ,A j,d

j
min, j);

1.10 j← j+1;

1.11 if dcur
min(r1,r2, . . . ,rm)> MinDist[cur][k] then

1.12 cur← cur+1;
1.13 if cur ≤ n then
1.14 Reorder(Qp,cur);

1.15 else
1.16 end← 1;

1.17 else
1.18 W ← FindSets(r1,r2, . . . ,rm);
1.19 for each (w1,w2, . . . ,wm) ∈W do
1.20

⋃n
j=n′{d

j
min(w1,w2, . . . ,wm),d

j
max(w1,w2, . . . ,wm)}←

CompTripDist(S,D,n′, f ,w1,w2, . . . ,wm) ;
1.21 j← n′;
1.22 entry← 0;
1.23 while j ≤ n do
1.24 if d j

min(w1,w2, . . . ,wm)≤MinDist[j][k] then
1.25 if entry = 0 then
1.26 Enqueue(Qp,w1,w2, . . . ,wm,

⋃n
i=n′ d

i
min(w1,w2, . . . ,wm));

1.27 entry← 1;

1.28 if d j
max(w1,w2, . . . ,wm)≤MinDist[j][k]) then

1.29 U pdate(MinDist[j],d j
max(w1,w2, . . . ,wm));

1.30 j← j+1;

1.31 return A;

4.1 Function CompTripDist

The purpose of the function CompTripDist is to compute d j
mins and d j

maxs for a set of R∗-
tree nodes or data points {w1,w2, . . . ,wm}with respect to a set of source and destination
locations for subgroup size j varying from n′ to n. In a straightforward approach to
determine these distances, we can first compute each user’s individual minimum and

Trip Planning Queries for Subgroups in Spatial Databases 7

maximum trip distances and then for every subgroup size j, we have to determine the
minimum and maximum aggregate trip distances for all possible subgroups of size j
and select the minimum and maximum from the computed aggregate trip distances as
d j

min and d j
max, respectively. We develop an algorithm that avoids computing aggregate

distances for every subgroup and thus, reduces computational overhead.

Algorithm 2: ComputeTripDist(S,D,n′, f ,w1,w2, . . . ,wm)
Input : S = {s1,s2, . . . ,sn}, D = {d1,d2, . . . ,dn}, n′, f , and w1,w2, . . . ,wm

Output:
⋃n

j=n′{d
j
min(w1,w2, . . . ,wm),d

j
max(w1,w2, . . . ,wm)}

2.1 InterMinDist← Distmin(w1,w2)+Distmin(w2,w3)+ · · ·+Distmin(wm−1,wm);
2.2 InterMaxDist← Distmax(w1,w2)+Distmax(w2,w3)+ · · ·+Distmax(wm−1,wm);
2.3 i← 1;
2.4 while i≤ n do
2.5 Enqueue(DMinQp,Distmin(si,w1)+Distmin(di,wm));
2.6 Enqueue(DMaxQp,Distmax(si,w1)+Distmax(di,wm));
2.7 i← i+1;

2.8 j← 1;
2.9 EndMinDist,EndMaxDist← 0;

2.10 while j ≤ n do
2.11 EndMinDist←Comp f (EndMinDist,Dequeue(DMinQp), f);
2.12 EndMaxDist←Comp f (EndMaxDist,Dequeue(DMaxQp), f);
2.13 if j ≥ n′ then
2.14 if f = SUM then
2.15 d j

min(w1,w2, . . . ,wm)← EndMinDist + j× InterMinDist;
2.16 d j

max(w1,w2, . . . ,wm)← EndMaxDist + j× InterMaxDist;

2.17 else
2.18 d j

min(w1,w2, . . . ,wm)← EndMinDist + InterMinDist;
2.19 d j

max(w1,w2, . . . ,wm)← EndMaxDist + InterMaxDist;

2.20 j← j+1;

2.21 return
⋃n

j=n′{d
j
min(w1,w2, . . . ,wm),d

j
max(w1,w2, . . . ,wm)};

Algorithm 2 shows pseudocode for the function CompTripDist. The input to
the algorithm are source locations S = {s1,s2, . . . ,sn}, destination locations D =
{d1,d2, . . . ,dn}, the minimum subgroup size n′, an aggregate function f , and a set of
R∗-tree nodes or data points {w1,w2, . . . ,wm}. The output of the algorithm is the set of
distances

⋃n
j=n′{d

j
min(w1,w2, . . . ,wm),d

j
max(w1,w2, . . . ,wm)}. For d j

min(w1,w2, . . . ,wm),
we need to consider j users who have j smallest minimum (maximum) trip distances
via (w1,w2, . . . ,wm). The minimum (maximum) distances to travel from w1 to wm via
w2,w3, . . . ,wm−1 remain constant for all users’ minimum (maximum) trip distances.
The trip distances of individual users differ due to their different source and destination
locations, i.e., the summation of the minimum (maximum) distance to travel from a
user’s source location to w1 and the minimum (maximum) distance to travel from wm

8 Authors Suppressed Due to Excessive Length

to the user’s destination. Based on this observation, the steps of CompTripDist are as
follows.

To compute
⋃n

j=n′{d
j
min(w1,w2, . . . ,wm)}, the algorithm uses two variables,

InterMinDist and EndMinDist, where InterMinDist stores the minimum distance from
w1 to wm via w2,w3, . . . ,wm−1 and EndMinDist stores the summation of the users’ min-
imum aggregate distance from their sources to w1 and the users’ minimum aggregate
distance from wm to their destinations. The algorithm computes InterMinDist in Line
2.1 and InterMinDist remains constant for all subgroups of size j.

On the other hand, EndMinDist changes based on the source and destination lo-
cations of the users in a subgroup. To compute EndMinDist for a subgroup size j,
we need to determine j smallest values from n distances, where n is the number
of users in the group and each distance represents the summation of the minimum
distance from a user ui’s source to w1 and the minimum distance from wm to ui’s
destination, i.e., Distmin(si,w1)+Distmin(di,wm). The algorithm uses a priority queue
DMinQp to store these n distances in a sorted manner; DMinQp is ordered based
on Distmin(si,w1) +Distmin(di,wm). We can have j smallest distances for computing
EndMinDist by dequeuing first j elements from DMinQp.

In every iteration, the algorithm starts to dequeue a distance from DMinQp and up-
dates a variable EndMinDist using function Comp f based on the aggregate function
f . If f is SUM, Comp f adds the dequeued distance to EndMinDist, and if it is MAX,
Comp f assigns the dequeued distance to EndMinDist, since the current dequeued dis-
tance is always greater than previous one dequeued from DMinQp (Line 2.11).

In addition, if n′ or more distances have been dequeued from DMinQp, i.e., j ≥
n′, the algorithm computes corresponding d j

min(w1,w2, . . . ,wm) as EndMinDist + i×
InterMinDist, if f is SUM. Otherwise, for f = MAX, d j

min(w1,w2, . . . ,wm) is computed
as EndMinDist + InterMinDist.

Similarly, the algorithm computes
⋃n

j=n′{d
j
max(w1,w2, . . . ,wm). In summary, our al-

gorithm avoids redundant computations, because we do not need to consider all sub-
groups while finding the subgroups that provide smallest minimum aggregate trip dis-
tances for different subgroup sizes.

5 Experiments

In this section, we present experiments to show the performance of our proposed ap-
proach for SGTP queries using both real and synthetic datasets. The real dataset C con-
sists of 62,556 points of interests (i.e., data points) of California. The synthetic datasets
U and Z are generated using uniform and a Zipfian distribution, respectively. The total
space is normalized into a span of 10,000×10,000 square units. We use a desktop with
a Intel Core 2 Duo 2.40 GHz CPU and 4 GBytes RAM to run our experiments.

We measure the performance of our algorithm in terms of IO costs and the query
processing time. We run the experiments for 10 sample SGTP queries and show the
average performance. For every SGTP query sample, we randomly select an area in
the total space as a query area, and then generate the source and destination locations
of group members in the selected query area using a uniform random distribution. We
vary the group size, the subgroup size, the number of required sets of data points (k), the

Trip Planning Queries for Subgroups in Spatial Databases 9

query area, i.e., the minimum bounding rectangle covering the source and destination
locations (M), and the dataset size in different sets of experiments. Table 1 shows the
range and default value of each parameter. The subgroup size is measured in terms of
percentage of the group size; e.g., 60% subgroup size means 38 group members with
respect to a default group size 64. We fix the number of required POI types to 2 as a
group normally plans a trip for a limited number of POI types. We run the experiments
for ordered kSGTP queries as it is a common scenario that the group predefines the
order of visiting POI types. Note that our approach is applicable for both flexible and
ordered kSGTP queries for any number of POI types.

Parameter Range Default
Group size 4, 16, 64, 256 64

Subgroup size 60%, 70%, 80%, 90% 70%
Query area M 2%, 4%, 8%, 16% 4%

k 2, 4, 8, 16 4
Data set size (Synthetic) 5K, 10K, 15K, 20K -

Table 1. Experiment Setup
 170

 120

 80

 40

 0
16%8%4%2%

IO
s

Query Area

SGTP (MAX)

SGTP (SUM)

 160

 120

 80

 40

 0
16%8%4%2%

T
im

e
 (

s
e
c
)

Query Area

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 2. Effect of query area for kSGTP queries (dataset C)

Effect of Query Area (M): The query area M is varied as 2%, 4%, 8%, and 16%
of the data space. The IO cost and processing time for processing SGTP queries are
measured for both aggregate SUM and MAX functions (Figures 2(a) and 2(b)). Both the
IO cost and the processing time increase with the increase of the area M as for a larger
M we need to access more data points from R*-trees than that of a smaller M for the
aggregate SUM and MAX functions.

Effect of Group Size: We vary the group size as 4, 16, 64, and 256, and measure
IOs and processing time for SGTP queries for aggregate functions SUM and MAX. Fig-
ure 3(b) shows that the processing time increases with the increase of the group size
for both MAX and SUM functions. The reason behind this is for a larger group size,
SGTP requires to process a large number of subgroups. Thus, it computes the aggre-
gate trip distances for these increasing number of subgroups. However, the IOs remain
almost constant (MAX) or slightly increase (SUM) with the increase of the group size
(see Figure 3(a)).

Effect of Subgroup Size: In this set of experiments, we vary the subgroup size as
60%, 70%, 80%, and 90% of the default group size of 64, and measure IOs and pro-
cessing time for both aggregate functions SUM and MAX. In Figure 4(a), we can see

10 Authors Suppressed Due to Excessive Length

 80

 60

 40

 20

 0
 256 64 16 4

IO
s

Group Size

SGTP (MAX)

SGTP (SUM)

 500

 400

 300

 200

 100

 0
 256 64 16 4

T
im

e
 (

s
e
c
)

Group Size

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 3. Effect of group size for kSGTP queries (dataset C)
 60

 45

 30

 15

 0
90%80%70%60%

IO
s

Subgroup Size

SGTP (MAX)

SGTP (SUM)

 60

 45

 30

 15

 0
90%80%70%60%

T
im

e
 (

s
e
c
)

Subgroup Size

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 4. Effect of subgroup size for kSGTP queries (dataset C)

that the IOs remain constant with the increase of the subgroup size. However, there
is a decrease in processing time with the increase of the subgroup size (see Figure 4
(b)). As the subgroup size increases, the number of subgroups decreases and hence, less
computations are required in computing the aggregate trip distances.

 160

 120

 80

 40

 0
 16 8 4 2

IO
s

k

SGTP (MAX)

SGTP (SUM)

 160

 120

 80

 40

 0
 16 8 4 2

T
im

e
 (

s
e
c
)

k

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 5. Effect of k for kSGTP queries (dataset C)

Effect of k: In this set of experiments, k is varied as 2, 4, 8, and 16. In Figure 5(a),
we observe that the IO cost slightly increases or remains constant with the increase of
k for both SUM and MAX aggregate functions. Figure 5(b) shows that the processing

Trip Planning Queries for Subgroups in Spatial Databases 11

time remains constant (with a slight decrease at initial phase) for SUM and increases for
MAX with the increase of k.

 60

 45

 30

 15

 0
 20 15 10 5

IO
s

Data Set Size (in K)

SGTP (MAX)

SGTP (SUM)

 60

 45

 30

 15

 0
 20 15 10 5

T
im

e
 (

s
e
c
)

Data Set Size (in K)

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 6. Effect of dataset size for kSGTP queries (dataset U)

 60

 45

 30

 15

 0
 20 15 10 5

IO
s

Data Set Size (in K)

SGTP (MAX)

SGTP (SUM)

 60

 45

 30

 15

 0
 20 15 10 5

T
im

e
 (

s
e
c
)

Data Set Size (in K)

SGTP (MAX)

SGTP (SUM)

(a) (b)

Fig. 7. Effect of dataset size for kSGTP queries (dataset Z)

Effect of Data Set Size: In this set of experiments, we vary the dataset size as 5K,
10K, 15K, and 20K for both uniform (U) and Zipfian (Z) distributions. Figures 6(a)
and 6(b) show the IO cost and processing time, respectively, for different data set sizes
with U distribution for aggregate functions SUM and MAX. The experimental results
show that SGTP requires more IOs and processing time for SUM aggregate function
than MAX aggregate function. Figures 7(a) and 7(b) show the IO cost and processing
time required by SGTP, respectively, for different data set sizes with Z distribution. The
results show similar characteristics of U distribution.

6 Conclusion

In this paper, we introduced subgroup trip planning (SGTP) queries that enable a group
to identify the subgroups and POI sets that together minimize the total or maximum
trip distance. We have developed a hierarchical approach to process SGTP queries. Our
approach avoids the computation of aggregate trip distances independently for different
subgroups and thus, reduces computational overhead. Our experiments also show that
our algorithm can evaluate a SGTP query with reduced processing time. In the future,

12 Authors Suppressed Due to Excessive Length

we plan to develop algorithms for processing SGTP queries for road networks and the
obstructed space. We also aim to protect location privacy [5, 8] of group members for
SGTP queries.

Acknowledgments

This research is partially supported by the ICT Division - Government of the People’s
Republic of Bangladesh.

References

1. Elham Ahmadi and Mario A. Nascimento. A mixed breadth-depth first search strategy for
sequenced group trip planning queries. In MDM, pages 24–33, 2015.

2. Mohammed Eunus Ali, Egemen Tanin, Peter Scheuermann, Sarana Nutanong, and Lars Ku-
lik. Spatial consensus queries in a collaborative environment. ACM Trans. Spatial Algorithms
and Systems, 2(1):3, 2016.

3. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree:
an efficient and robust access method for points and rectangles. SIGMOD Rec., 19(2):322–
331, 1990.

4. Ke Deng, Shazia Wasim Sadiq, Xiaofang Zhou, Hu Xu, Gabriel Pui Cheong Fung, and Yan-
sheng Lu. On group nearest group query processing. IEEE TKDE, 24(2):295–308, 2012.

5. Tanzima Hashem, Mohammed Eunus Ali, Lars Kulik, Egemen Tanin, and Anthony Quat-
trone. Protecting privacy for group nearest neighbor queries with crowdsourced data and
computing. In UbiComp, pages 559–562, 2013.

6. Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and Egemen Tanin.
Efficient computation of trips with friends and families. In CIKM, pages 931–940, 2015.

7. Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. Group trip
planning queries in spatial databases. In SSTD, pages 259–276, 2013.

8. Tanzima Hashem and Lars Kulik. Safeguarding location privacy in wireless ad-hoc networks.
In Ubicomp, pages 372–390, 2007.

9. Tanzima Hashem, Lars Kulik, and Rui Zhang. Privacy preserving group nearest neighbor
queries. In EDBT, pages 489–500, 2010.

10. Feifei Li, Bin Yao, and Piyush Kumar. Group enclosing queries. IEEE TKDE, 23(10):1526–
1540, 2011.

11. Yang Li, Feifei Li, Ke Yi, Bin Yao, and Min Wang. Flexible aggregate similarity search. In
SIGMOD, pages 1009–1020, 2011.

12. Sansarkhuu Namnandorj, Hanxiong Chen, Kazutaka Furuse, and Nobuo Ohbo. Efficient
bounds in finding aggregate nearest neighbors. In DEXA, pages 693–700, 2008.

13. Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group nearest
neighbor queries. In ICDE, page 301, 2004.

14. Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun K. Hui. Aggregate nearest
neighbor queries in spatial databases. TODS, 30(2):529–576, 2005.

15. Samiha Samrose, Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Moham-
mad Hafiz Uddin, and Md. Iftekhar Mahmud. Efficient computation of group optimal se-
quenced routes in road networks. In MDM, pages 122–127, 2015.

16. Da Yan, Zhou Zhao, and Wilfred Ng. Efficient processing of optimal meeting point queries
in euclidean space and road networks. Knowl. Inf. Syst., 42(2):319–351, 2015.

