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Abstract— This paper develops a unified framework for
studying robustness of the input-to-state stability (ISS)
property and presents new results on robustness of ISS to
slowly-varying parameters, to highly oscillatory signals, and
to generalized singular perturbations. The common feature
in these problems is a time-scale separation between slow
and fast variables which permits the definition of a bound-
ary layer system like in classical singular perturbation the-
ory. To address various robustness problems simultaneously,
the asymptotic behavior of the boundary layer is allowed to
be complex and it generates an average for the derivative of
the slow state variables. The main results establish that if
the boundary layer and averaged systems are ISS then the
ISS bounds also hold for the actual system with an offset
that converges to zero with the parameter that character-
izes the separation of time-scales. This result is then applied
to various classical robustness problems.
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I. INTRODUCTION

One of the strongest threads in the fabric of nonlin-
ear stability theory is the inherent robustness of uniform
asymptotic stability to regular perturbations, slowly vary-
ing parameters, highly oscillatory signals and fast unmod-
eled dynamics. For a uniformly asymptotically stable equi-
librium, these results are classical. Robustness to regu-
lar perturbations, also called “total stability” or “stability
under constantly acting perturbations”, dates back to the
1940’s in the work of Malkin [40], GorSin [19], Vrko¢ [70],
as summarized in [71, Chapter VI] and [22, Section 56].
Robustness to slowly-varying parameters derives from the
work of Hoppensteadt [25] which establishes robustness of
uniform asymptotic stability to singular perturbations and
extends to the infinite interval the classical results due to
Tikhonov [67]. (Additional statements on approximating
solutions of singularly perturbed systems on the infinite
interval are given in [51]. For further references, consult
[29].) Robustness of asymptotic stability to highly oscilla-
tory signals, found in the “averaging” literature, has a rich
history summarized in [52, Section 8.1]. Pioneering contri-
butions to averaging theory were made by Bogoliubov and

The first author was supported in part by the AFOSR under grant
F49620-00-1-0106 and the NSF under grant ECS-9988813. CCEC,
Electrical and Computer Eng. Dept., University of California, Santa
Barbara, CA, 93106-9560, USA

Second author supported by BOF grant 011D0696 of the Ghent
University. This paper presents research results of the Belgian Pro-
gramme on Inter-university Poles of Attraction, initiated by the Bel-
gian State, Prime Minister’s Office for Science, Technology and Cul-
ture. The scientific responsibility rests with its authors. SYSTeMS,
Universiteit Gent, Technologiepark 9, 9052, Zwijnaarde, Belgium

The third author was supported by the Australian Research Council
under the small ARC grants scheme. Department of Electrical and
Electronic Engineering, The University of Melbourne, Parkville, 3052,
Victoria, Australia

coauthors in [32], [12]. Additional averaging-based robust-
ness results can be found in [52], [23], [69], [42], [54], [41],
[24], [34], [47], [63], and, in discrete-time, [55, Chapter 7].

Averaging and singular perturbation techniques have
been combined, especially in the identification and adaptive
control literature, under the title “two time-scale averag-
ing”. In this setting the boundary layer system, obtained in
the singular perturbation approach by setting the deriva-
tive of the slow state variables to zero, is time-varying and
possesses a time-varying integral manifold on which the
derivative of the slow state variables can be averaged. This
approach is taken in [50], [11], and [24, Section V.3], and, in
the context of adaptive control and identification, in [39],
[1], [49], [16], [53], and [55, Chapter 8].

Averaging can be useful in singular perturbation studies
even when the boundary layer system is time-invariant. In-
stead of insisting that the trajectories of the boundary layer
system converge to an equilibrium manifold, as in classical
singular perturbation theory (see [29]), or a time-varying
integral manifold like in certain adaptive control problems,
the “steady-state” behavior of the boundary layer may be
complex. For example, the trajectories of the boundary
layer may converge to a family of limit cycles, or some
other more complicated family of attractors, parameter-
ized by the slow state variables. The steady-state behavior
can then be used to average the derivative of the slow state
variables. This idea can be found in the work of Anosov
[4], more recently in the optimal control results of Gaits-
gory [17], [18], in the work of Grammel [20], [21] and in
the elegant, pioneering formulation of Artstein and coau-
thors [9], [8], [5], [6], [7], where the averaging is done using
invariant measures (see [45]) and the reduced system is typ-
ically a differential inclusion. Except for the results on near
asymptotic stability of the origin in [5], these papers focus
on approximating trajectories on compact time intervals.

Many recent robustness studies have focused on systems
with exogenous disturbances where uniform asymptotic
stability is replaced by the input-to-state stability (ISS)
property, introduced by Sontag [56]. (ISS has been the ba-
sis for global stabilization algorithms [56], robust output
or partial state feedback designs [48], [26], and modular
nonlinear adaptive control [31, Chapters 5,6,9]. General-
ized versions of ISS, where distance of the state to a point
has been replaced by distance of the state to an attractor,
have been considered in [37], [60].) Robustness of ISS has
been established for systems with small time delays [62],
for singularly perturbed systems [13], and for systems hav-
ing an average [46], [44]. Most of these results rely on the
existence of a converse Lyapunov function for ISS, which
was established in [58] (see also [38], [59], [61] and [66]).



In this paper, we develop a unified framework for study-
ing robustness of general ISS properties and presents new
results on robustness of ISS to slowly-varying parameters,
to highly oscillatory signals, and to generalized singular
perturbations. The common feature in these problems is a
time-scale separation between slow and fast variables which
permits the definition of a boundary layer system like in
classical singular perturbation theory. To address the var-
ious robustness problems simultaneously, the asymptotic
behavior of the boundary layer is allowed to be complex,
and it generates an average for the derivative of the slow
state variables, like in the seminal work of Artstein [5]. The
main results establish that if the boundary layer and aver-
aged systems are ISS then the ISS bounds also hold for the
actual system with an offset that converges to zero with the
parameter that characterizes the separation of time-scales.
Our result relies on the proof technique we introduced in
[44] which enables capturing the behavior of the system on
the infinite time interval even though the actual system’s
solutions are typically not close to the simplified systems’
solutions on this interval due to exogenous disturbances
and the general ISS properties considered.

Our results cover well-known facts from the literature
on averaging, regular perturbations, and singular pertur-
bations. When the fast state variable is time we recover
results in classical averaging, partial averaging ([42],[54]),
averaging with fast and slow disturbances [46], and averag-
ing for pulse-width modulated control systems [34]. When
the fast state variables include time and the boundary layer
system contains a time-varying integral manifold we ob-
tain the “two time-scale averaging” results from adaptive
control and identification. When the slow state variables
are not present we produce results on robustness to slowly
varying parameters and regular perturbations. In another
special case, we recover results on asymptotic stability for
weakly nonlinear oscillators. We also address standard
singular perturbations and unconventional situations like
when the boundary layer has an unstable equilibrium man-
ifold [5, Remark 5.1].

We present these results as follows: In Section III we
give an example that illustrates the main concept we will
be developing in more generality in the core of the paper.
We study the robustness of generalized ISS to generalized
singular perturbations in Section IV where our main as-
sumptions and result are given. In Section V we present
sufficient conditions for the main assumptions of Section IV
to hold. In Section VI we apply these sufficient conditions
to cover the special cases of robustness mentioned above.
Technical proofs are given in Section VII. We summarize
our work in Section VIII.

II. NoTATION
A. Notation
2T

o We will often write (z5,) in place of (z] ,z}
e A function is said to belong to class-/C if it is continuous,
zero at zero and strictly increasing.

e A function 8 : R>g X R>g = Ryo is of class KL if it is
class-K in its first argument and decreasing to zero in its

)T

second argument.

e B denotes a closed unit ball, pB a closed ball of radius
p >0, and X + pB the set obtained by taking a closed ball
of radius p around every point in the set X.

e For a function d(-) belonging to a set of functions D that
take values in V, we will use both d € D and d € V.

III. A MOTIVATIONAL EXAMPLE

In a wide variety of industrial applications, the control
action is due not to the instantaneous motion of the ac-
tuator but rather to some average effect of this motion.
The most common example is the actuation of electric mo-
tors via pulse-width modulating (PWM) power electronic
circuitry. Inspired by such applications, we construct our
example with a van der Pol oscillator as a prototype vi-
brating actuator and an RL circuit as an elementary linear
plant. The voltage and current in the van der Pol circuit
oscillate rapidly but the shape of the oscillation can be ad-
justed by varying the circuit’s capacitance. The control
algorithm will adjust the capacitance based on the error
between the voltage across the resistor in the RL plant and
its reference value.

We combine the RL circuit input-output equations

s
y =

—Vs +u

1
o 1)
where vy is the voltage across the resistance, with those for
the van der Pol circuit

ety = exp(uc) (—%v? +vp — If)
3 jf = Uy (2)
Ye = K|Uf| — Vdc

where vy is the voltage across the capacitor and iy is the
current through the inductor. Equations (1) and (2) are in
normalized units. The capacitance C is sum of a nominal
value C, and an adjustable value C related to u. by

C.+C
exp(—uc) = —F— -

3)

We have normalized 1/ L/C, to one and defined € := +/LCS.
Central to our control algorithm derivation will be the as-
sumption that £ is small.

The output equation for the van der Pol circuit can be
realized with the combination of a rectifier and an opera-
tional amplifier, where vy, is a constant bias voltage.

One interconnection condition that we impose is

(4)

which indicates that the output of the van der Pol circuit
is the input voltage to the RL circuit.

The second interconnection condition will include the
control law to be inserted between the measurement of the
RL circuit voltage, vs, and the adjustable capacitor, C' or
Uc, in the van der Pol circuit. To derive a control algo-
rithm we exploit our assumption that ¢ is small which will

Ye =u



make the van der Pol circuit oscillations fast compared to
the dynamics in the RL circuit. Because of this time-scale
separation property, we will rely on the static mapping

Ue > f(uc) = (5)
1 T
Jim. T/o Ko, (t,07(0), I;(0), u, €)|dt — vae
(vf (0)7 If (0)) € IR2\ {0} 3

to approximate the effect of the oscillating actuator. This
mapping is well-defined and locally Lipschitz continuous.!
Restricting our attention for this function to the domain
[-1,1] (a numerical approximation with K = 29.63 and
vge = 38.926 is shown in Figure 1), the simplified control

e>0

Fig. 1. Approximate plot of the map uc — f(uc).
system becomes
0s = —vs + f (sat(uc)) . (6)

To allow the values of the nonlinear mapping (5) to be
uncertain, we employ an integral controller

é =

r— v
Ue = E (7)
so that our simplified closed-loop system is
Vg = —Us+ f(sat(E))
E = r—uws. 8)

When the nonlinearity is monotone and r is strictly in the
range of f(-) so that f~!(r) exists, the point (vs,&) =
(r, f71(r)) is globally asymptotically stable. Let Ay (u.)
be the set of points on the limit cycle of the van der Pol
equation corresponding to the constant input u.. Then, for
the complete closed-loop system (1)-(4), (7), we can make
a set arbitrarily close to the set

{(s, & 07, 05) 2 (vs,6) = (r, (1)) 5 (v, Iy) € A ()}

asymptotically stable with basin of attraction arbitrarily
close to the set R* x (R?\ {0}) by choosing ¢ sufficiently

1Local Lipschitz continuity follows from the local Lipschitz conti-
nuity of the right-hand side of the van der Pol equation together with
the fact that f(uc) can be determined by considering one initial con-
dition in the limit cycle corresponding to u. and integrating over one
period of the limit cycle, since the basin of attraction for this limit
cycle is R\ {0}.

small. A similar statement can be made even if f is not
monotone. All of these statements are now demonstrated.
Suppose f(-) and 7 are such that

fE) <r<f(1) . (9)

Let &. be any value such that f(sat(&.)) = r. Define the
Lyapunov function

14
V08 1= glos=r+ [ [F (sat(0) ~rle

td

(10)

It follows from (9) that the sublevel sets of V' are compact.
The derivative of V along the solutions of simplified closed-
loop (8) is negative semidefinite, ensuring for (8) global
stability of the set

AS(C) = {(vs,§) : V(Usaf) < c} (11)

for each ¢ such that As(c) is nonempty. In fact, the time
derivative of V' (vs(t),£(t)) is equal to —(vs(t) —r)? so that
the Krasovskii/LaSalle invariance principle ([30, Theorem
14.1], [35]) guarantees global convergence to a point of the

form (r,&,) where f(sat(§.)) = r. We conclude that, with

c*(r) = sup V(ré),
(& : f(sat(&))=r}

(12)

the set A,(c*(r)) is globally asymptotically stable. Of
course, when &, is unique and thus equal to &. then
c*(r) = 0 and As(c*(r)) is the point (r,&.). If the map
uc — f(uc) is monotone, this applies to every value of r
considered.

Now we ask: to what extent does this asymptotic stabil-
ity property also hold for the complete closed-loop system
(1)-(4), (7), at least for ¢ > 0 sufficiently small? The an-
swer is “semiglobally, practically”. By this we mean:

Proposition 1: Let f(-) and r satisfy (9). Let r generate
the set A(c*(r)) via the equations (10)-(12). For each com-
pact subset Q of R? x (R?\ {0}) and each neighborhood N
of the compact set

{(vs, &g, Ir) = (05, 8) € As(c™(r)) , (vg,If) € Af(ﬁ)(}lg)
there exists ¢* > 0 such that for each ¢ € (0,&*] there
is a set in N that is asymptotically stable with basin of
attraction containing €. |
Proof. The result follows as a special case of our general
results presented below. See, especially, Section VI-A. B

IV. UNIFIED FRAMEWORK
A. Assumptions

We consider nonlinear dynamical systems with state x
decomposed into a “slow” state z; and a “fast” state zy,
and driven by a “slow” disturbance d; and a “fast” dis-
turbance dy. The governing differential equation has the
form

~—

&s = Fs(zs,xp,ds(t),ds(t),e) (14)

ty = Fp(ws,z5,d5(t),ds(t),¢)



where € is a small, positive parameter. To fit time-varying
systems into the form (14), we augment the state-space
with the equations £ = 1 and/or = ¢. The equation is as-
sumed to have at least one solution, locally in time, for each
initial condition and disturbance of interest. The functions
ds and dy belong to the sets D, . and D; of measurable
functions taking values in subsets of Euclidean space Vg
and Vy, respectively. The disturbance sets are such that,
for each £ > 0, the solution set to (14) is time-invariant:

Assumption 1: The sets Ds . and Dy are shift invariant,
ie., if t = ds(t) is belongs to Ds. then t — ds(t + to)
belongs to D; . for all t,, and similarly for Dy. |

The “slow” (and, by extension, “fast”) terminology we
are using is justified by the following assumption which is
geared toward ensuring that, when ¢ is small, the rates of
change of t = z4(t) and t — d,(t) are small.

Assumption 2: The following conditions hold:

1. Fy(zs,2¢,ds,ds,0) = 0 for all (zs,2¢,ds,df) € R X
R* xV, x Vg.

2. For each T' > 0 and p > 0 there exists €* > 0 such that,
for all € € (0,e*],

dy €Dye = |d(t) —dy(0)| <p VEE[0,T]. (15)

|

Remark IV.1: An example of a class of functions D;
that satisfies Assumption 2 is the class of functions given
by t — ds(et) where ds(-) belongs to a class of uniformly
equi-continuous functions.

In general, the condition on the set D, . does not require
that the time derivative of the slowly-varying input d(-)
exists or, if it exists, that it is small when ¢ is small. (For
the class mentioned above, equi-continuity of ds(-) does not
necessarily imply that the derivative of ¢ — d(et) exists or
is small when ¢ is small.) In this way, our statements will
be related to “slowly-varying” results where the derivative
of the disturbance is only required to be small in the mean,
like in [36] and [27]. |

Remark IV.2: In our motivational example, the state of
the plant and controller, vs and &, corresponds to the slow
state variables while the states of the oscillating van der Pol
circuit, vy and Iy, correspond to the fast state variables.
The motivational example can be put into a form where
Assumption 2 holds by changing from the original time-
scale t to a new time-scale t/e. ]

Remark IV.3: The fast disturbance dy can represent en-
vironmental influences and /or can be used to realize the be-
havior of a differential inclusion with a nonempty, compact,
convex right-hand side. There are several ways to express
a set-valued map in terms of a function with a parameter
ranging over a unit ball, in this case dy ranging over the
unit ball in R™ x R™ =:V;. The parameterization based
on the Steiner selection is one the most appealing because
the resulting function inherits the continuity properties of
the set-valued map it is parameterizing. See [10, Chapter
9]. For related remarks, see Section VI-B. ]

For the system (14), we are interested in the infinite time
interval input-to-state behavior resulting from stability as-
sumptions on two simplified systems that arise from (14).

The first simplified system that we consider, which is ob-
tained from (14) by setting £ = 0 and using Assumption 2,
is the system

s = 0
.Z"f = Ff(a:s,a:f,ds,df(t),O) (16)
ds, = 0.

We will refer to this system as the boundary layer system
so that our terminology is consistent with the classical sin-
gular perturbation literature. We will use zp; to denote the
composite state for this system, i.e., zp; := (x5, 25, ds).

We express our stability assumption on the boundary
layer system in terms of two “measuring functions”, an
output measuring function 2y — wy,o(2,) and an input
measuring function dy — wy ;(ds). The measuring func-
tions are not required to be continuous, a priori, and
they are allowed to take values in R>o |J{oo}. A com-
mon example of an output measuring function is the norm,
ie., zy — |2m|, or the distance to a closed set A, i.e.,
zp > |zpi|a = infeca|¢ — 2m|. A common example of
an input measuring function is a class-KC function ~ of the
norm, i.e., dy — vy(|ds|). Another common output mea-
suring function, relevant for the case where dy is used to
realize the behavior of a differential inclusion, is the iden-
tically zero function. The set H; denotes a set of initial
conditions for the system (16).

Assumption 3: There exist a class-K£L function 3y such
that, for all initial conditions zy;(0) € H; and all distur-
bances dy € Dy, the solutions of (16) exist and satisfy

wy,o(z01(t)) < max{ Br(wy,o(201(0)), %) , [lwy,i(dy)lloo }
(17)
for all t > 0. |
Remark IV.4: For our motivational example, we can
take wy,; identically zero (we considered no disturbances),
and H;y = R? x (R2\{0}). Then, following the lead of
Kurzweil [33], and also of [66, Section 3.3], we can pick the
function wy, in the following way: Define the set (recall
that Ay (u) is the set of points on the limit cycle associated
with u)

A = {(sr & 07, 17) < (v, Iy) € Ap(sat(6))}
and let 0 > 0 be such that the (closure of the) set
P ={(v5,17) : 3(05,€) st (05, 6,07, T) 5, <6} (19)

does not contain the origin. Such a § exists since there is
positive distance from the origin to (J,¢[_1,1) As(u). Define

(18)

:= inf I 20
wi= it (g, Iy) (20)
and pick wy,, to be the function
1 2
Wf,o(2) := maX{|(US,§,Uf,If)|A'f am—g} (21)

where, in this definition, z = (v, §, vy, If). It follows im-
mediately that

2]z, < wro(2) (22)



and, with the definition of §, that

Wro(2) 8 = wyse(2) = |Z|Zf (23)
and wy, is unbounded as (vy,Iy) approaches the origin.
The fact that Assumption 3 holds with this choice for wy,,
follows from the reasoning used to establish [66, Proposi-
tion 3].2 n

Remark IV.5: While it is the £, norm of the measur-
ing function of the inputs that shows up explicitly in the
stability bound (17), other norms are easily addressed in
our framework. For example, let o : R>g — Ryo be a
given continuous function and suppose Dy is the set of
functions of the form dy = (dy,,d;) where dy,(-) is any
function such that a(|d1 ;()]) is forward integrable and

dy, (t) fo (|d1, ()])dr. If we take wy,i(dy) = da, then

o0

lors(@lloe = [ ala, 0Dt (24)
The given set Dy doesn’t formally satisfy Assumption 1 but
if the differential equation (14) is independent of da, then
the solution set will be time-invariant, which is the main
reason for Assumption 1. In this case, the stability bound
(17) relates the output measuring function to the integral
of the actual disturbances d; ;- In this way we recover the
“integral input-to-state stability” property introduced in
[67] and studied in [2] and [3]. [ ]

In the next assumption, we define the right-hand side
of a reduced system using the average effect of the bound-
ary layer’s asymptotic behavior on Fy;. In what follows
Sei(#pi,dy) represents all solutions of the boundary layer
system (16) starting at zp; under the influence of the func-
tion dy. The set R; represents a set over which we expect
the z; component of the solution to (14) to range. The set
Ky is a set that we expect to be recurrent for the fast dy-
namics. The function wg,,; is another measuring function.

Assumption 4: There exist an integer m, a function F,, :
R™ xV, x V¢ x R™, and, for each p > 0, there exist T* > 0

and * > 0 such that for each
\
T>T*
e € (0,e*]
(xsadsadf) € Rs x Vs X Df

2y = (5, 75,d,) € Ky
w,o(znt) < ||wy,i(ds)llo
o1 € Sei(zp1,dy)

/

there exists a measurable function e : R>o — R™ satisfying

llelloo < llwav,i(dy)lloo (26)

2The cited proposition requires .Zf to be compact, which it is not.
However, since neither the boundary layer dynamics nor the set Af
depend explicitly on vg, that component of z can be ignored. More-
over, since the dependence on £ in the boundary layer dynamics and
the set Ay is restricted to the range [—1,1], the compact set argu-
ments used in the reference are still appropriate.

such that

T
/0 (Fo(ar by, (£), s dy (1), €)— (27)

eFgy(zs,ds,ds(t),e(t))] dt| < Tpe .
|
Remark IV.6: For our motivational example, we can
take m = 0, Fy, to be the right-hand side of the reduced
system (8), wqy,; identically zero, R, = R? and Ky = R*.
Indeed, with these choices, Assumption 4 is satisfied if (re-
call the time-scale change indicated in Remark IV.2): for
each p > 0 there exists T* > 0 such that, for all 7" > T* and
all (v£(0),I7(0)) € Ag(sat(§)) (see also the next remark for
further clarification),

1 T
7| s 0] - v - faseae <5 29

where vy, (-) represents the evolution of the voltage in the
van der Pol circuit with u. = sat(£) and € = 1. For each
value of £, the integrand is periodic with zero mean. More-
over, there is an upper bound on the period and a bound
on the integrand. Thus, the integral is periodic in T' with
a known bound and so, for the given p, it is easy to pick
T* > 0 so that (28) holds for all T > T*. Note that €* can
be anything since the integral does not depend one. W

Remark I[V.7: The way we restrict our attention to
asymptotic trajectories of the boundary layer is by consid-
ering only those initial conditions zp; € Ky of the boundary
layer (16) satisfying

wr,o(zpr) < lwy,i(dy)l]oo

(compare with (17) letting ¢ — o0). For the motivational
example, this corresponds to only considering initial condi-
tions of the boundary layer on a limit cycle, since wy; =0
and wy, is zero only on a limit cycle. |
Assumption 4 is used to generate the reduced system

&y = eFqy(xs,ds(t),ds(t), e(t)) .

The role of e(-) in the definition of the average is to allow
the possibility of an ensemble of solutions for the average
system corresponding to multiple steady-state solutions of
the boundary layer system. The average system proposed
in [5], expressed in terms of invariant measures and pertain-
ing to the case where d; and dy are not present, is typically
a differential inclusion with a nonempty, compact, convex
right-hand side because the steady-state behavior of the
boundary layer system is often different for different ini-
tial conditions. A differential inclusion can be recovered
through e by taking the measuring function wg,,; to be
identically equal to one and using the idea in Remark IV.3.
For example, when F; depends on (25,27,€), € — Fgy(s)

a set-valued map with nonempty, compact, convex val-
ues and F,,(zs,B) = Fyy(xs) for all zs, then Assumption
4 holds with Fy,(z,,€) and wgy,; = 1 if and only if (using

(29)



[14, §5, Lemma 12]) for each p > 0 there exists T* > 0 and
€* > 0 such that, whenever (25) is satisfied, we have

Fs($s7 ¢fbl (t)7 E)

1 /T -
1 / Fol@n b8 gy c 5 @)+ 9B, (30)
T 0

3

When we talk about a differential inclusion satisfying As-
sumption 4 in Sections VI-B and VI-I, this is what we
mean. Artstein has shown [9, Proposition 3.5], [5, Propo-
sition 4.5], [7, Theorem 4.5] that averages defined in terms
of invariant measures have the property corresponding to
(30).

Another situation where e allows an ensemble of solu-
tions is when d; is present and an equilibrium manifold
for the boundary layer system is ISS. This situation is dis-
cussed in more detail in Section VI-E.1. In the case where
25 =1 and wqy,; is identically zero, Assumption 5 asks for
a classical average, or the weak/strong average introduced
in [46]. See Section VI-G.

We make the following stability assumption for (29):

Assumption 5: There exists a class-KL function 3, such
that, for all e > 0, all initial conditions z;(0) € H,, all
disturbances (d,,df) € Ds. x Dy, and all e satisfying
llelloe < ||waw,i(df)||o, the solutions of (29) exist and sat-
isfy

ws,0(Ts(t)) < max {Bs(ws,o(zs(0)),t), |lws,i(ds, df)||oo }
(31)
for all ¢t > 0. ]
Remark IV.8: For our motivational example, we can
take Hs = R2, ws,o(vs,&) = max {0,V (vs,&) — c*(r)}, and
ws,; identically zero. The function ws, is positive defi-
nite and radially unbounded with respect to the compact
set A (c*(r)). (For the definition of this set, see equation
(11)-(12) and the surrounding discussion.) |
Now we want to pass, at least approximately, from the
stability bounds on the two simplified systems (see As-
sumptions 3 and 5) to the corresponding bounds on the
original system (14). Assumptions 6 and 7, which follow,
will make this possible. We will later guarantee Assump-
tions 6 and 7 by joining Assumptions 2-5 with regularity
assumptions on the functions characterizing the problem.
In Assumptions 6 and 7, X; and Ky are sets of initial
conditions from which we want the stability bounds to ap-
ply. The set Ky is the same one considered in Assumption
4. The first of the final two assumptions asks that the
solutions of (14) be close, in an appropriate sense, to the
solutions of the boundary layer on compact time intervals.
Assumption 6: The following hold:
L. sup,ex, wf,0(2) < 003
2. There exists T* > 0 and for each T' > T* and § > 0
there exists €* > 0 such that for each ¢ € (0,&*], each
(25(0),2£(0),ds(0)) € Ky, each (ds,df) € D x Dy, and
each solution (z4(-),z¢(-)) of (14), there exists zy(0) €
Hy; and a solution zy(-) of (16) such that, with z(t) :=

(xs(t)a Ilff(t), ds(t));

wro(2(t)) —wrolzu(t))| <6 VEe€[0,T] (32)

and

At eK;  Vte[THT]. (33)

|

The last assumption asks that the x, component of the
solutions to (14) be close, in an appropriate sense, to the
solutions of the reduced system, on compact time intervals
of length proportional to 1/e.

Assumption 7: The following hold:
1. SUPz. ek, ws,o(xs) < o0
2. There exists T* > 0 and for each 7' > T™ and each
0 > 0 there exists e* > 0 such that for each € € (0,£*], each
z4(0) € K, each (ds,dy) € D, . x Dy, and each solution
xs(-) of (14), there exists ;,4,,(0) € #Hs and a solution
Zs,qv(-) of (29) such that

|ws,o (Ts (1) — ws,o(Ts,a0(t))| <0 VEE[0,T/e] (34)
and

zs (t) € Ks Vte [T*/e, T/e] . (35)

[ ]

Remark IV.9: For our motivational example, we can
take K; to be any compact subset of R? that contains a
neighborhood of A,(c*(r)), and we can take K¢ to be any
sufficiently large compact subset of R? x (R?\ {0}). In par-
ticular Ky should contain a neighborhood of the family of
attractors and its projection onto the (vs,&) coordinates
should contain a compact set that is determined by K.
For more details, see Remark V.1.

To make a convincing argument that Assumptions 6 and
7 hold for our motivational example, we will need to wait
until we specify sufficient conditions for these assumptions
in Section V. See the discussion in Section VI-A. |

B. General Result

We are now prepared to state and prove the result that
follows from the assumptions we have made. In the next
section, we will give sufficient conditions for the functions
defining the problem to guarantee that Assumptions 6 and
7 hold. After that, we will investigate the meaning of our
assumptions for special cases corresponding to weakly non-
linear oscillators, singular perturbations with an equilib-
rium manifold, regular and slowly varying perturbations,
classical averaging and partial averaging.

Theorem 1: If Assumptions 1, 3, and 5-7 hold then for
each § > 0 there exists £* > 0 such that, for all € € (0,£*],
all (ds,dy) € Ds. x Dy and all initial conditions such that
2,(0) € K, and 2(0) := (2,(0),2;(0),d,(0)) € Ky, the
solutions of (14) exist and satisfy

Ws,0 (ms (t)) < (36)
max { Bs(ws,o(2s(0)),et) , ||ws,i(ds,df)lloc } + 3

and, with z(t) := (x,(t), zs(t),ds(t)),

wro(2(t)) <
max { Bf(wy,0(2(0)),1) , ||wy,i(df)llec } + 6

for all ¢t > 0.

(37)



Proof. Define

cs = sug Ws,o(T5)

Ts€

s s (38)
¢y = sup wyre(2) .

ZE’Cf

These values are finite according to the first items of As-
sumptions 6 and 7. Let 6 > 0 be given and let § > 0 be
such that

sup (B (r+3,0) = Bu(r)| +3 <
r€[0,cs],t€[0,00)

sup
r€[0,cy],t€[0,00)

NS NS

(85 +3.6) = Br(r,0)] +8 <

(39)
The existence of § follows from the properties of class-XCL
functions. Let T > 0 and 757 > 0 come from Assumptions
6 and 7, respectively. Then let T' > max {T¢,T7} be large
enough so that

Bs(cs,7) < V1 € [T, )

(40)

N[N S,

Brleg,7) < V1 € [T, ) .

The existence of T follows from the properties of class-KL
functions. Let e > 0 and &7 > 0 come from Assumptions 6
and 7, respectively, for the pair (27, 6). Let z(-) be a solu-
tion of the original system (14) starting in Xy and let zy(-)
be the corresponding solution of the boundary layer sys-
tem (16) given by Assumption 6. Then, from Assumptions
3 and 6 and using (39), we have that, for all ¢ € [0,277],

wr,o(2(t))
< wyo(zu(t)) + 5
< max {Bf (wy,0(251(0)), 1) , |lws,i(ds)lloo} + 8

< max {87 (o (2(0)) +5,) , wpi(dp)lloo} +8

0

< max {ff (wr,o(2(0)),1) , [lwrild)lloo} + 5 -

Using (40) it also follows from (41) that for ¢ € [T, 2T,

(41)

wro(2(8) < lwpi(ds)lloo +6 - (42)

Finally, since T > T§ it follows that 2(T") € Ky. Now, using
the shift invariance of D, . and Dy provided by Assumption
1, the argument can be applied repeatedly to obtain

wro(2(t)) < |lwy,i(ds)lloo + 0

The conclusion (37) then follows from (41) and (43).
The conclusion (36) is obtained with a calculation like
(41)-(43) using Assumptions 5 and 7. |

Vte[T,00). (43)

V. CONDITIONS FOR CLOSE SOLUTIONS

In this section we present sufficient conditions on the
measuring functions in Assumptions 3 and 5 and the func-
tions on right-hand side of the actual system (14) and the

average system (29) that guarantee Assumptions 6 and
7. Our first assumption concerns the measuring functions.
This assumption is made to guarantee the recurrence of the
sets Ky and K as in Assumptions 6 and 7.

Assumption 8: The following conditions hold:
1. ’Cs - Hsa

2. Ky CHy,
3.
SUp wy,0(2) =:cfo < 00 (44)
ZG’Cf
4.
sup wy,i(dy) =:cp; < 00 (45)
dyEVy
5.
SUP W, o(Zs) =: €5, < 00 (46)
LS o
6.
sup  ws,i(ds,df) =:¢s; < 00 (47)
dsydeVs XVf
7. There exists p > 0 such that
{zs: "JS,O('Z'S) <csi+ p} CKs (48)
and
{z = (x5, 25,ds) 1:ds €Vs , wro(z) <cri+p, (49)
ws,o(ms) < max {Bs(cs,oao) ’ Cs,i} +P} Cc Icf .

Remark V.1: For our motivational example, we can take
K, to be an arbitrary compact subset of R? that contains a
neighborhood of the set where w; , is zero (since ¢5; = 0).
Then we can take Ky to be a large enough compact subset
of R x (R*\ {0}) to satisfy (49). This remark adds more
detail to Remark IV.9. |

The last assumption we make is on the continuity of the
functions that define the problem on the sets of interest.

Assumption 9: There exist L > 0, M > 0 and ¢ > 0 and
for each p > 0 there exists €* > 0 such that, defining

Xs 1= {Ts 1 ws,0(75) < max{Bs(cs,0,0) , ¢s} }  (50)
and

Zp={z: wro(z) <max{Bs(cs0,0), cri} }  (51)
and
Us(0) = {2 = (25,25,ds) : (52)

z,€Xs+0oB , z€Zs+0B,ds; €V, }

we have:
1. wg,, is uniformly continuous on X; + 0B,
2. X, + 0B CR,}2
3. wy,, is uniformly continuous on Uy (o),
4. for each ¢ € [0, ¢y,], if wy,0(2) < c+e* then there exists
zc such that wy,(2.) < cand |z — z.| < p,
3Recall that the set Rs comes from Assumption 4 and characterizes

a region where the integral of F is approximately equal to the integral
of eFgy.



5. for all dy € Vi, (xs5,25,ds), (ys, Ys, ws) € Ug(o), |ds —
w8| <er, |e| < SUDg,cv; wav,i(df)a 28S (055*]7

|Fs(msamf,dsadf55)| < eM (53)
|Fov(zs,ds, dg,e)] < M (54)
max {|z; —ys| , [vf —ys|} <& =
|Fs(2s,7f,ds,dy,€) — Fs(ys,ys,ws,dy,e)| < ep  (55)
|zs — ys| <" =
|Ff($5’$f’dsﬂdf’6)_Ff(ys;yfawsﬂdf’oﬂ < (56)

Lz —ysl+p)
|Fav(xs,ds,df,€) - Fav(ysadsadf;€)| < (57)
Llzs —ys| .
Remark V.2: The purpose of item 4 is to guarantee that
if wyro(2) is close to ¢ then z is close to the set where
wro(¢) < ¢ Consider the special case where cs; = 0.
In this case, if it is possible to find n > 0 and a class-K
function a such that, with Ay := {2z : wy(2) = 0},
wro(z) < = allzlay) Swpolz)  (38)
then item 4 is satisfied for any e* < min{n,a(p)}). As
established in Remark IV .4, specifically by (22), the con-
dition (58) is satisfied for our motivational example. W

Remark V.3: For our motivational example, the under-
lying sets restrict our attention to a compact subset of
R? x (R?\ {0}). The right-hand side of our example is lo-
cally Lipschitz and our measuring functions are continuous
on this set. Combining this observation with the previous
remark establishes that our motivational example, in the
appropriate time-scale, satisfies Assumption 9. |

The main result of this section is that, under Assump-
tions 2-5, we can guarantee Assumptions 6 and 7, which are
assumptions about trajectories, by replacing them with As-
sumptions 8 and 9 which are assumptions about functions.

Proposition 2: If Assumptions 2 - 5, 8, and 9 hold then
Assumptions 6 and 7 hold.

Proof. See Section VII-A. [ |

Remark V.4: The uniform (over U;(o)) Lipschitz conti-
nuity of Fy with respect to x ¢, respectively, F,; with respect
to x4, can be relaxed to mere continuity when all of the un-
derlying sets are compact. However, the proof technique
for such results is significantly different than the technique
used here. The alternative approach is based on classical
results on continuity of solutions on compact time intervals
as can be found in, for example, [14, §8], and is used exten-
sively in the work of Artstein [9], [5], [6], [7]. In Sections
VI-B and VI-I we illustrate how, in various situations, con-
tinuity can be converted to Lipschitz continuity without
difficulty. [ ]

VI. APPLICATIONS

We now discuss how our general result applies to several
situations where F; and/or Fy have special structure that
corresponds to classical robustness problems.

A. Motivational example

Following RemarksIV.2,IV.4,1V.6,IV.8,IV.9, V.1, V.2,
and V.3, we find that our motivational example satisfies all
of the assumptions of Proposition 2. It then follows from
the combination of Proposition 2 and Theorem 1 that the
trajectories can be made to converge in finite time from
an arbitrarily large compact subset  of R? x (R? x \ {0})
to an arbitrarily small neighborhood of the set defined in
(13). According to [66, Proposition 4], the reachable set
from this small neighborhood, which is again an arbitrarily
small neighborhood, is asymptotically stable with basin of
attraction containing €.

B. Reduced system is an upper semicontinuous inclusion

As mentioned below (29), the approach in [9], [5] often
produces a reduced system (29) that is a differential inclu-
sion even though the original system (14) has no exogenous
disturbances and its right-hand side is locally Lipschitz, so
that solutions are unique. This is because the steady-state
behavior of the boundary layer system is often different for
different initial conditions. Reduced systems that are dif-
ferential inclusions with compact, convex right-hand sides
can be realized in our framework by taking wg,,; identically
equal to one in Assumption 4 and exploiting e(-) to param-
eterize the set-valued map of the inclusion. However, the
resulting function Fy, does not automatically satisfy (57).
We now show how an inclusion can be converted to a func-
tion depending on e satisfying (57) without significantly
changing the stability property of the reduced system.

Suppose, like in [9], [5], the reduced system (29) corre-
sponds to a differential inclusion

iy € Fop(zy) (59)

where, for each z,, F,,(z,) is nonempty, compact and con-
vex, and the set-valued map E,, is upper semicontinuous.*
This includes the case where the right-hand side is a con-
tinuous function. Suppose further that the differential in-
clusion (59) has an asymptotically stable attractor A, with
basin of attraction Hs. According to the main results of
[66], Hs is an open set and, letting ws , be any proper indi-
cator function 5 for A, on H,, there exists 8, € XL and for
each § > 0 and each compact subset X, of H, there exists
a set-valued map Fyy ¢ L > 0, 0 > 0 such that F,, ¢(z5) is

nonempty, compact and convex for each z;, ﬁav,g is locally
Lipschitz,

ﬁav(xs) g ﬁav,l(xs) ) (60)

Fav,é(xs) - ﬁav,f(ys) + z|$s - ys|B vms;?}s € X; +oB
(61)

and Assumption 5 is satisfied for

&5 € Fopo(xs) (62)
4A set-valued map F is said to be upper semicontinuous if for each
z and each &€ > 0 there exists 4 > 0 such that |§ —z| < § implies
F(£) C F(z) +eB.
5When A is compact and # D A is open, w : H — Rs is said to
be a proper indicator function for A on H if w(z) = 0 iff z € A and
w(z) — oo as x — OH or |x| — oo if H is unbounded.



with ws o, Bs, Hs, and w, ; = §. Now, according to [10, The-
orem 9.7.2] or [15, Proposition 2.22], there exists a function
(z4,€) = Fyy(x4,€) such that

Fav(ms:B) = Fav,l(xs) (63)

and such that (57) holds with L = 10n,L.

So we see that when F),, is a continuous function or an
upper semicontinuous set-valued map with nonempty, com-
pact, convex values and ws,, is a proper indicator function
for a compact set on the set’s basin of attraction, we can
easily maneuver into the situation where (57) holds.

C. Weakly nonlinear oscillators

Our results can easily be applied to what [52, Chapter
5] refers to as “averaging over spatial variables”. As an
example, we consider systems of the form

ts = eg(zssin(zy), s cos(zy)) cos(zy)

(64)

1
1 —e—g(zssin(zyf),zs cos(zys)) sin(zs)
Ts

Ty
where g is continuous. This type of system arises when
casting into polar coordinates the weakly nonlinear oscil-
lator equation §j +y = eg(y,y). The state z, is associated
with the magnitude of (y,y) while the state z; is associ-
ated with the phase angle. See, for example, [24, Section
V.2], [52, Chapter 5] or [28, Section 8.4].

This system satisfies our Assumptions 2 and 1 since we
have no disturbances and &, vanishes when ¢ = 0. The
boundary layer system associated with this system is

z, = 0

gy o= 1. (6)

For this system we can take H; = R, and wy; and wy,
identically zero so that Assumption 3 is automatically sat-
isfied. For Assumption 4 we take Ky = R, R, to be an
arbitrarily large, bounded interval, and

- % /027r g (zssin(t),zs cos(t)) cos(t)dt . (66)

With these choices, Assumption 4 is satisfied. We now sup-
pose that the average system has an asymptotically stable
equilibrium point z with basin of attraction Hs. In this
case, Assumption 5 holds with ws; equal zero and ws,
equal to any function that is zero at z}, positive otherwise,
blows up at the boundary of H,, and is continuous on H;.
We also take K to be any compact subset of Hs. While it
is not to difficult to see directly that Assumptions 6 and 7
hold, it also follows easily from our definitions for wy,,, wy ;,
Ws,0, Ws,i, Ks and Ky that Assumption 8 holds, and from
the periodicity of g with respect to z; and the continuity
of g that, with the observations of Section VI-B, Assump-
tion 9 can be made to hold. (At this point we fix R to
be large enough so that the second item of Assumption 9
holds.) We then recover from our main results the well-
known fact that the magnitude variable x, for the system
(64) converges to an arbitrarily small neighborhood of z*
from a set arbitrarily close to H, as € becomes arbitrarily
small.

FU/U (ms)

D. Two time-scale averaging in adaptive control

In this section we consider systems of the form

Ts = sﬁs(ws,wlf,aaf) _
?lf = 14($S)xlf +B($37$2f) +EG($SJ$]°) (67)
Io =

f

which cover the class of systems studied in [50], [49], [53,
Chapter 4] and [24, V.3]. Assumptions 2 and 1 are satisfied
since we are not considering disturbances and %, vanishes
when £ = 0. The boundary layer system is

zs = 0
&1, = A(zs)z1, + B(xs,T2,) (68)
T2, = 1.

f

Under suitable assumptions on A(-) and B(,-), like those
in the references mentioned above, there is a uniformly
globally asymptotically stable invariant manifold for the
boundary layer system given by the set of points

Ap = {(zs,21,,32,) 1 1, =v(T5,22,) } . (69)
For the purposes of Assumption 3, we take
wf,o(zer) = |zb1] 4, - (70)

We take H ¢ to be R™ x R"'s x R. This set can be refined if
A(-) and B(-) only have appropriate properties for certain
ranges of ;. We next suppose that ﬁs has an average in
the sense of Assumption 4, which is the same as asking
that the function Fy(zs,v(zs,t),t) have an average in the
classical sense (not requiring periodicity). This can be seen
by noting that the solution of the last component of the
boundary layer has the form z2, +¢, where z2, is an initial
condition which can also be thought of as an initial time,
and then changing the variable of integration in the integral
in Assumption 4 from t to z2, + t. If the average system
has an asymptotically stable attractor .45 having basin of
attraction Hs then Assumption 5 is easily satisfied with
an appropriate choice for w; ,. Finally, under the Lipschitz
and boundedness conditions of Assumptions 9 and with the
help of Proposition 2 and Theorem 1 we get convergence
to an arbitrarily small neighborhood of the set

{(zs,zf) 1 s € Ay, (z5,25) € Ag} (71)

from a sets of the form ; x5 xR where (2 is an arbitrarily
large compact subset of Hs and 5 is an arbitrarily large
compact subset of R™'s .

E. Systems with a slow equilibrium manifold
E.1 ISS manifold

Consider the situation where the boundary layer system
(16) has an equilibrium manifold, given by the set of points

Ap = {(xs,25,ds) : x5 = h(zs,ds)} (72)

that is “input-to-distance to the manifold” stable. By this
we mean that Assumption 3 holds with wy ,(251) = |2n1] 4,



and wy ;(dy) = v(|ds|) for some function v : R>o = R>o
that is continuous, nondecreasing, and zero at zero. For
the special case of v(s) = 0, this is the problem considered
in [13].

We now clarify the meaning of Assumption 4 for the
general problem. We propose as an average the function

Fs(xs:h(xs + el;ds + 62) + 63:5)

Foy(zs,ds,ds,€e) == lim

e—0t

(73)
and restrict our attention to situations where this limit
makes sense and the convergence is uniform over the sets
of interest. (A simple situation is when Fs; = £F; where
Fy is independent of £.) We now check Assumption 4 with
an appropriate choice for wg,, ;. We note that the “steady-
state” solutions of the boundary layer are not restricted
to the equilibrium manifold because of the presence of the
disturbances dy. Nevertheless, we do get to restrict our
attention to solutions ¢p; of the boundary layer that satisfy

|61 (0)]a, < v (|ldslloo)

and hence, by Assumption 3,

b0 ()] 4, < max{Br(y (ldslloo) ,2) , ¥ (lldflloc)} =: b((t) )

75
By definition this means that for each ¢ > 0 there exists
e(t) = (e1(t), e2(t), es(t)) with

(74)

le(t)| < b(t) (76)
such that
b (t) = h(za + e1(t),ds + e2(t) + es(t) . (77)
Indeed, for each ¢ let a(t) = (a1 (t), as(t), as(t)) satisfy
az(t) = h(ai(t),as(t)) (78)
and
|pee(t) — a(t)] < b(2) - (79)

Define e(t) := ¢p;(t) — a(t). Then, since the first and third
components of ¢y (t) are constant and equal to z; and ds,
we can write

b (t) = a2(t) +ex(t)
= hai(t),as(t)) + ex(?)
= h($3+€1(t),ds +€3(t)) +€2(t) .

(80)

It follows that with the choice of F,, in (73) that Assump-
tion 4 is satisfied with

wav,i(df) = max{ ﬂf(7(|df|)a0) > 7(|df|) } .
With a little more work it is possible to reduce wgy,; to
wav,i(dy) = v(Idy])

when Fj, is uniformly bounded and uniformly continuous
on the sets of interest by splitting the interval of integration

(81)

(82)
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into two parts. This goes as follows: Given p > 0,let kK > 0
be such that

|e—E1 <k = |Fav($s;dsadfae)_Fav(ms;dsadf:al < P/4
(83)
Then let T} > 0 be such that

(84)

ﬂf(Cf,i,t) <K vVt > Tl*

where cf,; = supg, ey, ¥(|dy|). Define €(t) to be the pro-
jection of e(t) onto the closed ball of radius ¥(||ds||ec) SO
that

[elloe < Y(lldfloc) - (85)

It follows that for all t > T, |e(t) — €(t)| < k. Now define
T* := 4MTy}/p where

|F5(-'L'5, ¢bl(t)7d57df75) - EFav(xSJdSde7a| S eM (86)

over the sets of interest. Using the uniform convergence
that produced the average, let €* > 0 be such that

|F3($S7 ¢bl(t)7 ds; df75) - EFav($S7 d57 dfa 6(t))| S EP/Q -
(87)
Then, combining (83), (86), (87) and the definition of T*,
we have that, for all T > T,

/0 [F (s, dua (8), o, dy (), €)— (88)

5Fav($sads;df(t)7€(t))] dt
<Tep/2+TieM +Tep/4d<eTp .

Now with the average system in place and the measuring
function wy 4, determined, we impose Assumption 5 for the
average system and the proposed regularity conditions of
Assumptions 8 and 9 to derive the benefits of Theorem 1.
This extends the result of [13] in several ways, e.g., the
slow manifold of the boundary layer is allowed to be ISS
with a nonzero gain, the ISS property for average system
is allowed to be with respect to a set, nonglobal basins of
attractions are explicitly addressed, and the preservation
of ISS gain does not require a Lyapunov formulation.

E.2 Unstable manifold

We now demonstrate, like in [5, Remark 5.1] (see also [9,
Section 7]), that our formulation allows the boundary layer
system to have an unstable equilibrium manifold.

Consider the system

Ty = 6ﬁs(xs,mf,df)
ZI'I]_f = .Z‘%f (.’E]_f — $2f) —|—.’ng (89)
Ii'Qf = $%f($2f—2$1f)

where the fast subsystem comes from the classical ex-
ample by Vinograd [68] of a system with an unstable
equilibrium point that is globally attractive. We will
show that if F(zs,2¢,ds) is bounded on appropriate sets

and ﬁs(ws,-,df) is continuous at the origin, uniformly



in (zs,ds) over the sets of interest, then we can take
Foo(zs,df) = ﬁs(xs,o,df) in Assumption 4. The analy-
sis here readily extents to the case where the equilibrium
point for the fast subsystem is a function of the state of
the slow subsystem.

Let Ay denote the (closure of the) set of points reach-
able for the fast subsystem in forward time from the set
|z¢| < 1. Since this set is globally attractive and captures
all trajectories in a finite time that depends only on the
distance from the set, it follows from [66, Proposition 4]
this set is globally asymptotically stable, i.e., Assumption
3 holds with wy(2) = |zf|a, and H; = R™ x R2.

Now to generate the average, we consider trajectories of
the boundary layer that start in the set Ay. It is readily
apparent from the phase portrait of the boundary layer
system (see, for example, [22, Figure 40.3]) that for each
p > 0, the quantity

T
7| Testtape.

where I,(zy) = 1if 2y € pB and is zero otherwise, con-
verges to zero as T — oo uniformly in zy € Ay. (In the
framework of [9], [5], the trajectories of the boundary layer
converge in distribution to the origin and the boundary
layer has a unique invariant measure, namely the Dirac
measure supported at the origin.) It then follows, if Fy is
uniformly bounded over R, x Ay x Vy and continuous in
xy near the origin uniformly in (z,,ds) € Rs x Vy, that
Assumption 4 holds with F,,(zs,df) = F, (%s,0,dy).

F. Regular and slowly varying perturbations
F.1 The generic case

Consider the special case where the fast dynamics don’t
depend on the slow dynamics and we are only interested
in the fast dynamics. In this case we can take F, F,,,
ws,o and wg; all equal to zero so that Assumptions 4 and
5 automatically hold. We will suppose Assumptions 2 - 3
hold, where our boundary layer system is

j;.f = Ff (IL'f, ds’ df (t)7 0) (90)
ds = 0.

For this system’s stability property, given in Assumption
3, we are interested in robustness to regular and slowly
varying perturbations. We impose Assumptions 8 and 9
which mainly become conditions on Ky, wy,,, wy,;, and F}.
In fact, it turns out that item 4 in Assumption 9 can be
dropped for this special case. We extract what remains of
Assumptions 8 and 9:

Assumption 8 (b) The following conditions hold:

1. Ky CHy,

2.
SUP wy,o(2) =:¢fo < 00 (91)
zEKf

3.
sup wy,i(dy) =:cf; < 00 (92)

d; €Vy
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4. there exists p > 0 such that
{z=(25,ds) :ds €V, , wso(2) <cgi+p} CKy. (93)

Assumption 9 (b) There exist L > 0 and ¢ > 0 and for
each p > 0 there exists €* > 0 such that, defining

Zy=A{z: wyrol2) <max{ Bf(cr,0,0) , cri} }

and

(94)

Up(o) :={2 = (zf,ds) :2€ Z +0B, d; € Vs}  (95)
we have

1. wy,, is uniformly continuous on Uy (o),

2. foralldy € Vy, (zy,ds), (yf, ws) € Up(o), |ds —w;| < ¥,
€ € (0,e%],

|Ff($'f,ds,df,6) — Ff(yf,ws,df,0)| <
L(lzy —ysl+p) -

Proposition 3: If Assumptions 2 - 3 hold, Fy, Foy, ws,o
and w, ; are zero, and Assumptions 8(b) and 9(b) hold then
Assumptions 4-7 hold.

Proof. See Section VII-B. |

Remark VI.1: Due to space constraints, we have not
considered the case where the discrepancy in Fy in (96) is
not always small instantaneously but is small on average,
like in the results of Vrko¢ mentioned in the Introduction.
The easiest way to address this is to single out part of the
disturbance vector dsn,,, as belonging to a set of small in
the mean signals and allowing the right-hand side of the
bound in (96) to depend on the norm of dgp,, . [ ]

(96)

F.2 Total stability

A simple situation that should be emphasized is when
there are no disturbances, at least when ¢ = 0 and the
“boundary layer” has an asymptotically stable compact
attractor Ay having basin of attraction ;. (Consider,
for example, the van der Pol equation with asymptotically
stable periodic orbit and basin of attraction R?\ {0}.) A
straightforward consequence of Proposition 3 is that, for
the case where F); is locally Lipschitz, the attractor is
semiglobally (with respect to H) practically asymptoti-
cally stable in the parameter ¢, where ¢ # 0 can intro-
duce arbitrary bounded disturbances scaled by €. This is a
fairly well-known result but certainly more widely appreci-
ated for an asymptotically stable equilibrium which is the
situation covered by classical “total stability” results. The
more general version can also be proved directly, even for
the case where Fy is only continuous, by appealing to con-
verse Lyapunov functions (e.g., see [66]). For the case of
Fy continuous, the approach taken here would need results
like those mentioned in Remark V.4.

F.3 Systems with a slow equilibrium manifold

Many of the classical results on robustness to slowly vary-
ing parameters require the existence of a continuously dif-
ferentiable equilibrium manifold (see, for example, [28, Sec-
tion 5.7]. It is noteworthy that our results, specialized to



equilibrium manifolds, impose no differentiability require-
ments. For example, we address slowly varying results for
the system

(97)

which has a slow equilibrium manifold given by the set of
points satisfying z; = (ds)'/3. Differentiability conditions
are avoided by working with measuring functions like the
distance to the manifold, which is a globally Lipschitz func-
tion regardless of the continuity properties of the function
defining the manifold. This choice is made rather than to
trying to work via a coordinate transformation and evolu-
tion of the error between the fast variable zy and the value
h(ds) where h is the function characterizing the equilib-
rium manifold. Through the distance to the manifold, we
are able to see that slowly varying parameters do not cause
drift far from the manifold, without assuming differentia-
bility of the function defining the manifold.

Ty = —JEZ} + dg

G. Classical averaging

We again consider the case where the fast dynamics don’t
depend on the slow dynamics, this time by virtue of the
assumption that z; is a scalar and

Ff(a:s,a:f,ds,df,s)zl . (98)
In this case, the solution to the fast subsystem can be asso-
ciated with time and different initial conditions correspond
to different starting times. In order for the fast subsystem
to satisfy Assumptions 3 and 6 we will take wy; and wy,,
to be identically zero, and Hy and Ky to be R. We impose
Assumptions 2 and 1. In Assumption 4, ¢y, (t) = zy+t. In
the special case where wg,; = 0 Assumption 4 in this set-
ting is, for all practical purposes, the weak/strong average
introduced in [46]. For the average system (29) we impose
the stability condition in Assumption 5 and we are inter-
ested in the degree to which the actual system inherits the
properties of the average system. We impose Assumptions
8 and 9 which mainly become conditions on ws o, ws;, Ks,
F; and F,,. In fact, it turns out that the continuity of F}
with respect to z; in Assumption 9 can be dropped. We
extract what remains of Assumptions 8 and 9:
Assumption 8 (¢) The following conditions hold:

1. Ks CHs,
2.
SUp Ws o(Ts) =: €50 < 00 (99)
zs€Ks
3.
SUp  ws,i(ds,dy) =: ¢ < 00 (100)
ds,dsEVy
4. there exists p > 0 such that
{25 1 ws,o(xs) <csi+p CKs . (101)

Assumption 9 (¢) There exist L >0, M >0 and o > 0
and for each p > 0 there exists €* > 0 such that, defining
Xs = {25 : ws,i(zs) < max{Bs(cs,0,0) , s} } , (102)

we have
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1. wg,, is uniformly continuous on X; + 0B,

2. Xs +0B CR,,

3. foralldy € Vy, x5,ys € Xs+0B, ds,ws € Vs, |ds —ws| <
e*, e € (0,e], t € R, [e] < supg, ey, Wav,i(dy),

|Fs(2s,t,ds,dy,e)] < eM

|Foo(zs,ds,dg,e)] < M
|Foo(@s,ds,df,e) — Fuop(ys,ds,ds,e)| < Llzs —ys

|zs —ys| <" =
|Fs(zs,t,ds,ds,€) — Fs(ys,t,ws,ds,e)] < ep.

Proposition 4: If Assumptions 2 and 1 hold, Fy = 1,
wyo =0, ws; =0, Ky = Hy = R, and Assumption 4, 8(c)
and 9(c) hold then Assumptions 3,5-7 hold.

Proof. See Section VII-C. ]
Remark VI.2: The result of this proposition is similar to
the results presented in [64] and [65]. |

H. Partial averaging

Partial averaging is the label given to the case where the
differential equation depends on a slow time parameter in
addition to a fast time parameter. Early partial averaging
results are obtained in [42] (for finite time intervals), [54],
and [50] (in the context of two time-scale averaging).

Our results address partial averaging by including as
state variables a slow time state and a fast time state, i.e.,

p=c¢ (103)
and

g=1 (104)
where p is a part of z, and g is a part of .

We note that the regularity of Fs and F,, with respect
to p that is needed is less than what is indicated in As-
sumption 9 since the evolution for p, in the transformed
time-scale, is not a function of . Due to space limitations,
we don’t pursue this relaxation here.

1. Pulse-width modulated control systems

In this section we study nonlinear systems controlled by
pulse-width modulation. We consider the model

ts = e[f(zs) +9(xs) [ho(@s) + u(ha(zs) — play))]]
iy = 1
(105)

where u : R = [0,1], u(s) = 1 for s > 0, u(s) = 0 for s < 0,
and p: R — R is measurable, bounded, and periodic, with
period one. (Periods different from one are accommodated
by rescaling time.) The analysis of the system (105) hinges
on the nondecreasing, possibly discontinuous function

v — o(v) := measure {xy € [0,1] : p(zf) <v} , (106)

which takes values in [0,1], and it’s corresponding upper
semicontinuous set-valued map

S(w) := | lim o(q), lim o(q) (107)

q—v— g—vt



The limits used in the definition of S(v) are well-defined,
due to the monotonicity of o(-). Where o(-) is continuous,
S(v) = o(v). A common example of a function p(-), an-
alyzed in [34] for instance, is a periodic ramp with period
one taking values in [0,1] with slope one. In this case o is
continuous and o(v) = v for all v € [0,1]. Another special
case corresponds to sliding mode control and arises when
p(zy) =0 and ho(zs) = —1/2 so that ho(z,) + o(h(zs)) =
ho(zs) + u(h(zs) — p(zy)) = 1/2sgn(h(zs)).

We assume that the functions f, g, ho and h; are con-
tinuous and that the system

i’s € f(xs) + g(ms) [ho(ms) + S(h(ms))] (108)

has a compact set A, that is asymptotically stable with
basin of attraction Hs;. We will apply our main results
to show that the system (105) has the set A, semiglob-
ally (with respect to Hs) practically asymptotically stable.
The key is to establish Assumption 4 for a family of func-
tions F, 5 and Fy, s that satisfy Assumption 9, where each
element F; 5 covers (105) and there are elements of Fg, 4
arbitrarily close to the right-hand side of (108).

We first note that the x; component of the solution to
the boundary layer is given by z; + ¢ and, by definition,
for all zy,

1
| twlh@) = plas + )l = b)) . (109
This fact is the basis for forming an average for the right-
hand side of the system (105), however the problem is that
the right-hand side of (105) and possibly also the aver-
age are discontinuous in x,. The initial step in remedying
this is to convert the function u(-) into its corresponding
upper semicontinuous set-valued map with nonempty com-
pact convex values containing u(-):

U(s) = lim u(a), lim u(q)] (110)
Again by definition
/0 [U(h(zs) — play + O))dt = S(hz.) . (111)

However, if we try to parameterize the set-valued maps
U(-) and S(-) with exogenous disturbances, the resulting
parameterizations will not be continuous. Instead we de-
fine, for each § > 0, a é-inflation of U given by

Us(s) :==U(s +B) + 0B (112)
which is upper semicontinuous and has nonempty, compact
convex values. Then we use [14, §8, Theorem 4] together
with the argument used to prove [14, §8, Corollary 2] and
the periodicity of p(-) to assert that for each K > 0 and
p > 0 there exists §* > 0 such that, for all |z;| < K, all
zy, and all 6 € [0,d*],

| Wsthta.) = ptas + )l € SChiz) + o8 (113
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A parameterization of Us(-) would again not be continuous,
but we can easily construct a globally Lipschitz set-valued
map Us;¢ having nonempty, compact, convex values satis-
fying

U(s) C Us(s) C Us(s) (114)
and, using [10, Theorem 9.7.2] or [15, Proposition 2.22], we
can parameterize U;, with a Lipschitz function, i.e., there
exist a function us,, and a positive number Ls such that

ug ¢(s,B) = Us e(s) (115)
and, for all dy € [-1,1], 51,52 € R,
|u574(51,df) — u(571{(82,df)| < L5|81 — 82| . (116)

We define Dy to be the set of measurable functions taking
values in [—1,1] =: V;. With the definitions

FS,5(xS7$f7df75) = (117)
elf(zs) + g(zs)[ho(xs) + use(h(zs) — p(zs), dy)]]

and
Fou(zs,€) = f(z5) + 9(2s)[ho(2s) + S(h(z;)) + €] (118)

it follows from the above calculations that F 5 covers (105)
for each § > 0 that for each p > 0 and each compact set
Rs there exists § > 0 such that Assumption 4 is satisfied
with m = 1, Fope, and wey,; = p. If f, g, hand o = S
are locally Lipschitz, the result follows by applying our
total stability results to the system & = Fy, (x5, €) having
boundary layer &, = Fy,(z4,0). If any of f, g, h and o are
only continuous, we first follow the outline of Section VI-B
to turn F,, into a parameterized locally Lipschitz function.

VII. TECHNICAL PROOFS
A. Proof of Proposition 2

Claim 1: Let o > 0 come from Assumption 9. For each
6 > 0 and T > 0 there exists £* > 0 such that

zs(t) € X, + %B vt € [0,T]

2(0) — 21 (0)| < &” (119)
Z(O),Z{,l(O) S ]Cf
e € (0,e%]
imply
2(t), zu(t) € Us(0) Vt € [0,T) (120)
nd
’ () - <5 Ve, T].  (121)

Proof. Throughout this proof we will use, without loss of
generality,

|($sa$f7ds)| = max{|ms|7|$f|7|ds|} - (122)

Let T' > 0 and § > 0 be given and without loss of generality
assume that § < o where o comes from Assumption 9. Also
let L >0 and M > 0 come from Assumption 9. Define

. 0

1 = S T (123)



and
1)

7 eI = 1]

For this p let Assumption 9 generate €5 > 0. Then define
p =min{d,e3} and define

(124)

.. P

Also let €} come from the second part of Assumption 2 for
p and T'. Then define

€* := min {6{,63/275;52} :

(126)
Assume the conditions in (119).

Using the definition of €*, the definition of €} and As-
sumption 2, we have for all ¢ € [0,T],

|dy(t) — d(0)] < 7 - (127)
Next, since
25(0) € X, + %B (128)
and
|25(0) — 2, | <e* <el <d/2<0/2, (129)

it follows that z,,, € X + oB.

Then, from the definition of ¢y, and cy; in Assumption
8, the definition of Z; in Assumption 9, Assumption 3,
and 2y (0) € Ky C Hy, it follows that zy(t) € Uy (o) for all
te[0,T].

We define

t:=sup{t€0,T]:|zs(1) — z5,| <é&3,
z2(t) e Up(o) VYT €[0,t] } .

(130)

It follows from e* < €3/2, 2(0) € Ky and z5(0) € X, + §B
that ¢ is well-defined, t > 0, 2y (t) € Uy (o) for all t € [0,),
and if ¢ < T then either |2(f) — 2z (t)| = o or |z5(t) —zs,,| =
£5.

Suppose t < T'. Due to the computations above, and the
last point of Assumption 9, we have for almost all ¢ € [0, ],

65 (8)] < M (131)

and

|27 (t) =4, (0)| < L(lzf () —2p, ()| +p) . (132)

From these two conditions it follows that
|z5(t) — @5, | |:L‘5(lf_) = 5(0)] + [25(0) — @y,
eMt + e*
I min {6,e3} + &*
min {4,e3}

IN AN INIA

(133)
and

*exp(Lt) + p[exp(Lt) — 1]
+8=6<0.

m

|xf(f)_$fbl(f)| <
<

I

(134)
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From these computations it follows that ¢ = T and then
that (120) and (121) hold. [ |
Claim 2: There exists T* > 0 and for each T" > T™* and

& > 0 there exists €* > 0 such that
} (135)

zs(t) € Xy + §B Vte|[0,T]
Zbl(O) = Z(O) S Kf

€ € (0,e*]
imply that
z(t) € Ug (o) Vt €[0,T] (136)
and
lwro(2(t) —wro(zu(t)) <6 VE€[0,T]  (137)
and
z(t) € Ky Vte [T*,T] . (138)

Proof. Let p > 0 come from the last item of Assumption
8. Define p := min {4, p}. Let 0 > 0 from from Assumption
9. Relying on the uniform continuity of ws, and wy , that
is provided in Assumption 9, let 5 > 0 be such that

Ts,Ys € Xs +oB ~
y } 5 W) — ()| < 7 (139)

|-Z's - ys| S g
and
Z,2p € L{f(a) ﬁ
£ — <Z. (14
s | = ene@ el < 6 - (140)
Now let T* > 0 be such that
By(cs.ont) < g Vvt > T . (141)

Let T > T* and for the pair (g, T), let Claim 1 generate
e*. With 2(0) = 2(0) € Ky, we use the result of Claim 1,
(140) and p < §, we get (136) and (137).

Next, using that Ky C H; (which is given by the second
item of Assumption 8), the conclusion of Claim 1, (139),
(140), (141), the last item of Assumption 8, Assumption 3
and Assumption 5, we get (138). |

Claim 8: For each § > 0 there exists £* > 0 such that

zs(t) € Xs+ 5B Vte[0,T]

2(0) € Ky (142)
e € (0,e*]
imply
z(t) € Ug (o) vt € [0,T) (143)
and

wy,o(2(t)) < max{B(wy,o(2(0)),1), |lwy,i(df)llec} +0 (144)

for all t € [0, 7.

Proof. With the result of Claim 2, the proof follows the

same calculations as those in the proof of Theorem 1. B
Claim 4: For each p > 0 there exist T* > 0 and €* > 0

such that for each

T>T*

g € (0,e*]

(xS(O)ads(O)adf) € Xs x Vg x Dy
2(0) = (5(0),2¢(0),ds(0)) € K¢

(145)



if z,(t) € X; + §B for all t € [0,T] then there exists a
measurable function e : R>o — R™ satisfying
llelloo < [lwav,i(ds)lloo (146)

such that

/O [Fs(25(t), 21(t), ds (1), dy (t), €)= (147)

eF, (z5(t),ds(t),ds (), e(t))] dt| < Tpe .

Proof. Let

e M>0,L>0,0>0,X;, Zy come from Assumption 9;
e p > 0 be given and, without loss of generality, assume
that p < o, perhaps by decreasing p;

e g > 0 come from Assumption 9 for p/8;

o T >0 and & > 0 come from Assumption 4 for p/4;

e &3 > 0 come from Claim 1 for 77 and min {&}, & };

e p € (0, p] be such that, for each ¢ € [0, cy], if wy,o(2) <
¢ + p then there exists z. such that wys,(2.) < ¢ and |z, —
z| <e3;

e &5 > 0 come from Claim 3 for p/2;

e T3 > 0 be such that

Bileront) <5 Ve Ty (148)
e [ be an integer such that
2M max {T}, Ty}
<p/4; 149
Te g <ol (149)
o T*: =Ty + kTY.
e c*:=min{e},e},e5,¢e5};
o T > T

e m be the largest integer so that Ty + mTy < T. (Note
that m > k.)
Suppose 2(0) € Ky and z,(t) € X; + B for all t € [0, 7.
Then, using Claim 3,

z(t) € Uz (o)

vt € 0,7 (150)

and

wro(2(t) < llwpildf)lle +p VE€[T3,T] . (151)

We consider the integral in (147) by breaking the interval
of integration into the subintervals
1. [07T2*]7
2 [T+ - T8 Ts + (G- DIY], j = 2,..
3. [Ty + mTy,T).
The length of the first and last interval is bounded by
max {T7,T5} and thus, using Assumption 9, (149), the
definition of T* and the relation T' > T*, the first and
last subinterval are each bounded by

Lam+ 1,

oOMemax {T;, Ty} < (T} + kT)p/4 < eTp/4  (152)

Now we show that each of the m —1 remaining intervals can
be bounded in norm by £Tp/(2m). This will establish our
desired result. For the jth interval, 7 = 2,...,m + 1, we
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add and subtract F; and € F, evaluated along the solutions
2p1;(-) of the boundary layer system starting at the point
ze where wy o(z.) < ||w(dy)||eo and |z, — z(t;)| < €5 where
t; =Ty + (j — 2)T7. It follows from our construction that
|2(t) — 2, (t)| < min{ej, &} for all ¢ in the interval. In
turn, by construction of gj, we have that the difference
between the F; evaluated along 2y, (t) and F, evaluation
along z(t) can be bounded by p/8, and similarly for Fy,.
Multiplying by the length of the time interval 77" gives the
bound T
Tyep/d < e p/d (153)
for these terms. The remaining terms in the jth interval
are exactly like in Assumption 4 and can be bounded as
" T
T 5p/4§eap/4 . (154)
Adding these bounds together proves the result. |
Claim 5: For each 6 > 0 and T > 0 there exists e* > 0

such that
25(0), 25,40 (0) € K5

0)ek
|zs(0) — a:z 0)| < Ei (155)
e € (0,e*]
imply
|25(t) = Z5,00(t)| <& VEE[0,T/e] . (156)

Proof. Let T > 0 and § > 0 be given and, without loss
of generality, assume that 6 < ¢/2 where o comes from
Assumption 9. Also let L > 0 and M > 0 come from
Assumption 9. Define

) 5

el = Sexp(ZT) (157)

and
1) L

T Yexp(LT) —1L+1°

(158)

For this p > 0 let Assumption 9 generate €5 > 0. Also for
this p let Claim 4 generate T* and e3. Next define

N )
€y 1= AT (159)

Also define T
ef = v - (160)

Also let £} come from Claim 2 for any § > 0 (the only thing
to be used from Claim 2 is (136).) Then define

*

€ = miﬂ{E;,E;,E;,EI,&;,Eé} : (161)

Assume the conditions of (155) hold.

From the definition of ¢;, and c,;; in Assumption 8§,
the definition of X5 in Assumption 9, Assumption 5, and
Zs5,00(0) € Ks C Hs, it follows that z,4,(t) € X, for all
te€[0,T].



We define

£ := sup {t €[0,T/e] : z4() € Xy + gzs Vr e [O,t]} .
(162)
It follows from that fact that z,(0) € K and the definition
of X, that t is well-defined, ¢ > 0, z,(t) € X; + B for all
t € [0,%) and if £ < T/e then |z5(f) — 5,00 (F)] > 0/2. Tt
also follows from Claim 2 that z(t) € Uy (o) for all ¢ € [0, 1).
Suppose t < min {T*,T/e}. Due to the computations
above and the last point of Assumption 9, we have for
almost all ¢ € [0, 1],

1)
.s - 's av < < - 1
|5 (t) — 5,00 (t)] < 2M < ST (163)
From this it follows that for all ¢ € [0, ],
)
Za(t) — Toan(t)| <" 42 < 2. (164)

2 2

It follows that ¢ > min {T'/e,T*} and that the result has
been proved for the case where T'/e < T™*.

Now suppose T* < t < T'/e. Due to the computations
above, the last point of Assumption 9, and the results of
Claims 3 and 4, we have, for all ¢t € [T*,1],

|$S(t) - xs,av(t)| <
¢ L+1
oy / eL (|xs(7) — T (1) + p) dr .
0

It follows from this condition and the definitions (157),
(158) and (161) that, for all t € [T*,¢] C [T*,T /],

|25 (t) — T5,00(t)] < e*exp(eLt) + pLft [exp(eLt) — 1]
< f+8<o)2.

(165)

(166)

It follows that ¢ = T'/¢ and the result is established. |
Claim 6: Assumption 6 holds.

Proof. This result follows from the combination of Claim

2 and Claim 5. |
Claim 7: Assumption 7 holds.

Proof. This proof of this result follows the same lines as

the proof of Claim 2. |

B. Proof of Proposition 3

The proof of Proposition 3 follows the same lines as the
proofs of Claims 1 and 2 in Section VII-A. Indeed, notice
that the conclusion of Claim 2 when there is no x, com-
ponent to the solution is exactly the form of Assumption
6. Moreover, Claims 1 and 2 were proved using only the
assumptions that are made in Proposition 3. |

C. Proof of Proposition 4

The proof of Proposition 4 follows the same lines as the
proofs of Claims 4 and 5 in Section VII-A. Indeed, since
Claims 1-3 of Section VII-A hold by assumption, we can
enter the proof of Proposition 2 at Claim 4 and continue to
establish the result. We note that, in the proof of Claim 4
continuity of F; with respect to zy is not needed because
of the fact that the z; component of the solution to the
boundary layer system is the same as the x4 component of
the actual solution. |
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VIII. CONCLUSION

We have developed a unified framework for studying ro-
bustness of the input-to-state stability (ISS) property and
have presented new results on robustness of ISS to slowly-
varying parameters, to highly oscillatory signals, and to
generalized singular perturbations. The framework as-
sumes a time-scale separation between slow and fast vari-
ables which permits the definition of a boundary layer sys-
tem like in classical singular perturbation theory. To ad-
dress various robustness problems simultaneously, we have
allowed the asymptotic behavior of the boundary layer to
be complex and have required it to generate an average
for the derivative of the slow state variables. Our main
result have shown that if the boundary layer and averaged
systems are ISS then the ISS bounds also hold for the ac-
tual system with an offset that converges to zero with the
parameter that characterizatizes the separation of time-
scales. The ISS notion that we have used permits general
attractors and general measures on disturbances. We have
shown how our general framework connects to many differ-
ent types of robustness established in the literature.
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