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Abstract

Finding optimal operating modes for bioprocesses has been, for a long time, a relevant
issue in bioengineering. The problem is of special interest when it implies the simultaneous
optimization of competing objectives. In this paper we address the problem of finding optimal
steady-states that achieve the best trade off between yield and productivity by using non-
model based extremum-seeking control with semi-global practical stability and convergence
properties. A special attention is paid to processes with multiple steady-states and multivalued
cost functions.

1 Introduction

Finding optimal operating modes for bioprocesses has been, for a long time, a relevant issue in
bioengineering. The problem is of special interest when it implies the simultaneous optimization
of competing objectives. This situation arises in particular in many continuous or fed-batch bio-
processes that are characterized by a conflict between the yield and the productivity. Under the
assumption that a kinetic model of the process is known to the user, the problem of finding steady-
states or operating modes that achieve the best trade off between yield and productivity has been
addressed for instance by Modak and Lim [8]-[9], by Shimizu [10] and by Jadot et al. [5].

In this paper we address the issue of optimizing bioreactors by using so-called ”Extremum
Seeking (ES)” techniques. A non-model based approach to extremum seeking for bioreactors was
first intitiated by Wang et al. in [14]. An alternative model-based approach was then pursued in a
series of papers by Guay and several co-workers in e.g. [6], [7], [15].

Here we follow the non-model based approach. We assume that neither the process kinetics nor
the cost function are known to the user. It is just assumed that the numerical value of the cost
is obtained on-line from process measurements. We want to examine how the automatic seeking
of an optimal steady state can be achieved by using non-model based extremum-seeking control,
especially in the case where the cost function is a multivalued function.

Our paper is organized as follows. First in Section 2, we provide a self-content characterization
of the steady-states that achieve an optimal trade-off between yield and productivity maximization
in biochemical processes. Then, in Section 3, we show how this optimization problem can be solved
by using a novel feedback extremum seeking scheme with semi-global stability and convergence
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Catholique de Louvain, 4, avenue G. Lemaitre, 1348 Louvain-la-Neuve, Belgium.
‡The Department of Electrical and Electronics Engineering, University of Melbourne, Melbourne, Vic 3010, Aus-

tralia.

1



properties. This novel ES scheme has been proposed in a recent paper by Tan et al. [11] and
is simpler than the original scheme which was used in [14] (see also the book [1], Chapter 8).
Furthermore, instead of using linearisation about the equilibrium to prove local stability as in
[14], the method of [11] allows to analyse the semi-global stability of the system. Then, our main
contribution is in Sections 4 and 5 where we show how the semi-global stability analysis of [11] can
be exploited to address situations with multiple steady-states and a multivalued cost function by
using generalized singular perturbation results as presented, for example, in [13]. In this analysis,
the Aumann integral [2] is used to define the average of all possible behaviors of the slow system
and as a result the average of the slow system is a differential inclusion. We consider the very
simplest case where the cost is a multivalued function and we demonstrate a new phenomenon
where the system trajectory is stuck in a non-extremum bifurcation point. Then we propose a way
to overcome this difficulty and we provide a theoretical sketch of the analysis of its efficiency. We
believe that viewing the problem in this manner is novel and could lead to solutions of various
other problems not considered in this paper.

For the sake of simplicity and clarity, we limit ourselves to processes where a single monomolec-
ular irreversible reaction takes place. However, even though we deal only with the simplest possible
situation, the issues that emerge from our analysis are relevant for more general situations involving
multi-molecular enzymatic reactions or cell growth reactions as in [14].

2 Yield-Productivity tradeoff

The objective of this preliminary section is to give a characterisation of the steady-states that
achieve an optimal trade-off between yield and productivity maximization in biochemical processes.
We present the very simplest case where a conflict between yield and productivity may occur. We
consider a single irreversible enzymatic reaction of the form:

X1 −→ X2

with X1 the substrate (or reactant) and X2 the product. The reaction takes place in the liquid
phase in a continuous stirred tank reactor. The substrate is fed into the reactor with a constant
concentration c at a volumetric flow rate u. The reaction medium is withdrawn at the same
volumetric flow rate u so that the liquid volume V is kept constant. The process dynamics are
described by the following standard mass-balance state space model:

ẋ1 = −r(x1) + (u/V )(c− x1) (1a)
ẋ2 = r(x1)− (u/V )x2 (1b)

where x1 is the substrate concentration, x2 is the product concentration and r(x1) is the reaction
rate (called kinetics). Obviously this system makes physical sense only in the non-negative orthant
x1 > 0, x2 > 0. Moreover the flow rate u (which is the control input) is non-negative by definition
and physically upper-bounded (by the feeding pump capacity):

0 6 u 6 umax. (2)

In this paper we shall investigate two different cases depending on the form of the rate function
r(x1). We begin with Michaelis-Menten kinetics which is the most basic model for enzymatic
reactions (e.g. [3, Chapter 4]) :

r(x1) =
vmx1

Km + x1
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Figure 1: Productivity JP and yield JY for system (3) with c = 3 and Km = 0.1.

with vm the maximal reaction rate and Km the half-saturation constant. To normalise the model
we use vmV and v−1

m as the units of u and time respectively. So the normalised model becomes

ẋ1 = − x1

Km + x1
+ u(c− x1) (3a)

ẋ2 =
x1

Km + x1
− ux2. (3b)

It can be readily verified that, for any positive constant input flow rate ū ∈ (0, umax], there is a
unique steady-state x̄1 = ϕ1(ū), x̄2 = ϕ2(ū) solution of the following equations:

x̄1 + ū(c− x̄1)(Km + x̄1) = 0 (4a)
(c− x̄2)− ūx̄2(Km + c− x̄2) = 0. (4b)

Furthermore each admissible steady-state belongs to the set

Ω = {(x̄1, x̄2) : x̄1 > 0, x̄2 > 0, x̄1 + x̄2 = c}

and is globally asymptotically stable in the non-negative orthant.
The industrial objective of the process is the production of the reaction product. For process

optimization, two steady-state performance criteria are considered : the productivity JP and the
yield JY . The productivity is the amount of product harvested in the outflow per unit of time :

JP = ūx̄2 = ūϕ2(ū)

The yield is the amount of product made per unit of substrate fed to the reactor:

JY =
x̄2

c
=
ϕ2(ū)
c

The sensitivity of JP and JY with respect to ū is illustrated in Fig. 1. A conflict between yield and
productivity is clearly apparent: the productivity JP is an increasing function (from 0 to 100%)
of ū while the yield JY is decreasing (from 100 to 0%). Operating the process at a yield JY close
to 100% can result in a dramatic decrease of the productivity JP (and vice-versa): it does not
really make sense to optimize one of the criteria disregarding the other one. The process must
be operated at a steady-state that achieves a trade-off between yield and productivity. This is
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typically a “multicriteria” optimization problem since the two criteria are antagonistic. A standard
way to address the problem is to define an overall performance index as a convex combination of
JP and JY :

JT (ū) , λJP + (1− λ)JY = ϕ2(ū)
[
λū+

1− λ
c

]
λ ∈ [0, 1]. (5)

This cost function is illustrated in Fig. 2 where it is readily seen that it has a unique global maximum
u∗. The corresponding optimal steady-state is naturally defined as x∗1 = ϕ1(u∗), x∗2 = ϕ2(u∗).
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Figure 2: Overall performance index JT for system (3) with c = 3, Km = 0.1 and λ = 0.5.

3 Extremum seeking control

Our concern is to design a non-model based ES feedback controller able to automatically drive the
process to the optimal operating point (x∗1, x

∗
2) that maximizes JT without any precise knowledge

of u∗. It is assumed that the process is equipped with an on-line sensor that measures the product
concentration x2 in the outflow. We then define a scalar ES scheme of the form proposed in [11]:

y(t) = λu(t)x2(t) + (1− λ)
x2(t)
c

(6a)

d(t) = a sin(ωt) (6b)

θ̇0(t) = kωy(t)d(t) (6c)
θ(t) = θ0(t) + d(t) (6d)
u(t) = α(θ(t)) (6e)

where u = α(θ) is a smooth sigmoid function as depicted in Fig. 3 while (a, k, ω) are positive
tuning parameters. In this feedback control law, the exogenous signal d(t) is a so-called dither that
activates the extremum seeking and can be any periodic function of time. Here we work with a
sinusoidal dither d(t) = a sin(ωt).

In order to avoid any confusion, it must be stressed here that the ES algorithm (6) is a genuine
non-model based control algorithm. This means that the controller needs no knowledge of the
model (it does not involve any kind of explicit or implicit internal model of the process). From
the controller viewpoint, the plant is a black box whose input can be manipulated and output is
measured. In particular, as we have mentioned in the Introduction, the kinetic rate function r(x1),
the dynamical model (1) and the function JT (ū) are unknown to the user and do not appear in
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Figure 3: Sigmoid function α(θ).

the control scheme (6). More precisely, we can say that the user has decided to maximise the
composite cost JT = λux2 + (1 − λ)c−1x2 but he does not know that JT is a function of ū of the
form (5) shown in Fig.2. The rationale behind the control law is to use on-line measurements of x2

to progressively learn the shape of the cost function and try to climb up to the top by adjusting
the input u.

But, obviously, we may use the model (1) as a benchmark process for testing the feasibility
and the efficiency of the proposed ES algorithm in simulations. In Fig. 4 the operation of the ES
control algorithm (6) is illustrated for appropriately tuned parameters a = 0.02, k = 1, ω = 0.1.
We see that there is a time scale separation between the system itself and the climbing mechanism.
Starting from an initial condition (x1(0), x2(0)), there is first a fast convergence of the state to
the nearest (stable) steady-state which is followed by a slow quasi-static climbing along the cost
function up to the maximum. This behaviour is guaranteed from any initial condition so that we
have the following semi-global convergence property.
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Figure 4: Extremum seeking for system (3) with a = 0.02, k = 1, ω = 0.1.

Property 1. For any initial condition (x1(0) > 0, x2(0) > 0, θ0(0)) and for any ν > 0, there
exist parameters (a, k, ω) such that, for the closed-loop system (3)-(6), x1(t) > 0, x2(t) > 0, θ0(t)
bounded and

lim sup
t→∞

(
|x1(t)− x∗1|+ |x2(t)− x∗2|+ |u(t)− u∗|

)
6 ν.

This property1 obviously implies that lim supt→∞ |y(t) − JT (u∗)| can be made arbitrarily small:
1Actually a stronger property can be shown to hold : For any compact set of initial conditions the parameters (a,
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from any initial condition, the output y(t) can be driven and regulated arbitrarily close to the
optimal performance value y∗ = JT (u∗).

Property 1 is a straightforward consequence of Theorem 1 in [11] which notably involves a
singular perturbation and an averaging Lyapunov stability analysis that can be summarized in the
following way. From (4), for each θ ∈ R, the system (3) with input ū = α(θ) has a single equilibrium
x̄1 = ϕ1(α(θ)), x̄2 = ϕ2(α(θ)) which is globally asymptotically stable. The cost function JT can
then be viewed as a function of θ expressed as

JT = Q(θ) =
[
λα(θ) +

(1− λ)
c

]
ϕ2(α(θ)).

This function is convex and has a unique global maximum at θ∗ = α−1(u∗) with the property that

Q′(θ∗ + ζ)ζ < 0 ∀ζ 6= 0. (7)

The change of variables θ̃ , θ0− θ∗ and the change of time scale σ , ωt are introduced. Then, the
“slow” θ0-dynamics (6c) along the static characteristic x̄1 = ϕ1(α(θ)), x̄2 = ϕ2(α(θ)) are rewritten
as

dθ̃

dσ
= kQ(θ∗ + θ̃ + a sinσ)a sinσ. (8)

Applying a Taylor series expansion, this equation is rewritten as

dθ̃

dσ
= ka

[
f(σ, θ̃) + a2R

]
whith f(σ, θ̃) , Q(θ∗+ θ̃) sinσ+aQ′(θ∗+ θ̃) sin2 σ and R contains higher order terms in sinσ. The
function f(σ, θ̃) being 2π-periodic in σ, if the parameter a is taken small enough, we can neglect
the higher order terms and we have for the averaged system

dθav
dσ

= ka
1

2π

∫ 2π

0
f(σ, θav)dσ ,

ka2

2
Q′(θ∗ + θav).

This system is globally asymptotically stable as can be seen from the Lyapunov function V =
(1/2)θ2

av, since
dV

dσ
=
ka2

2
Q′(θ∗ + θav)θav < 0 ∀θav 6= 0

because of condition (7).
The case-study that we have presented so far is representative of biochemical processes that

exhibit some yield-productivity decoupling as observed in many practical applications (see e.g. [5]
or [10]). However it must be emphasized that Proposition 1 is restricted to situations where the
two following conditions hold:

C1. For each admissible value of the flow rate ū the system must have a single globally asymp-
totically stable equilibrium.

C2. The performance cost function must be single-valued and “well-shaped” in the sense that,
for the admissible range of flow rate values 0 6 ū 6 umax, it must have a single maximum value
JT (u∗) without any other local extrema.

There are situations where these conditions are not satisfied: the system may have multiple
(stable and unstable) equilibria for some input values ū and the yield or productivity criteria
may be multivalued functions. As we shall discuss in the next section, the problem may happen
even with simple monomolecular reactions when the kinetics are subject to substrate inhibition or
auto-catalytic effects (e.g. [14]).

k, ω) can be selected such that boundedness and convergence holds uniformly on the compact set of initial conditions
(see [11] for details).
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4 Multivalued performance cost function

We consider again the simple model (1) but we now assume that, in addition to the Michaelis-
Menten kinetics, the reaction rate is subject to exponential substrate inhibition. The rate function
is as follows:

r(x1) =
vmx1

Km + x1
e−bx

p
1

where b and p are two positive constant parameters. The dynamical model is written:

ẋ1 = − vmx1

Km + x1
e−bx

p
1 + u(c− x1) (9a)

ẋ2 =
vmx1

Km + x1
e−bx

p
1 − ux2 (9b)

Depending on the value of ū ∈ (0, umax], the system may have one, two or three steady-states
(x̄1, x̄2) with x̄1 solution of:

vmx̄1

Km + x̄1
e−bx̄

p
1 = ū(c− x̄1)

and x̄2 = c− x̄1.
The productvity JP = ūx̄2 is represented in Fig. 5 as a function of ū. In this example, JP is

clearly a multivalued function of ū. However it can be seen that it has a unique global maximum
for ū = u∗. Moreover, the graph of Fig. 5 can also be regarded as a bifurcation diagram with
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Figure 5: Productivity JP for system (9) with c = 3, vm = 2, Km = 1, b = 0.08, p = 3.4.

respect to the parameter ū where the solid branches correspond to stable equilibria and the dashed
branch to unstable equilibria. Hence it can be seen that the maximum point is located on a stable
branch.

Here we assume that the industrial objective is to achieve the maximization of the productivity
JP . Although conditions C1 and C2 are not satisfied in this case, a fully satisfactory operation of
the ES control law (6) (with y(t) = u(t)x2(t)) can nevertheless be observed in Fig. 6 and Fig. 7.

The result of Fig.6 is expected since we are in conditions quite similar to the previous case
of Section 3. The result of Fig. 8 is more informative since here the convergence towards the
maximum of the cost function is operated in two successive stages. In a first stage, there is a fast
convergence to the nearest stable state which is located on the lower stable branch followed by a
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Figure 6: Extremum seeking for system (9) with a = 0.003, k = 10, ω = 0.01.
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Figure 7: Extremum seeking for system (9) with a = 0.003, k = 6, ω = 0.01.

quasi-steady-state progression along that branch. Then, when the state reaches the bifurcation
point, there is a fast jump up to the good upper branch and a final climbing up to the maximum
point. It is very important to emphasize here that, in order to get the result of Fig.7, the amplitude
a of the dither signal must be large enough. Otherwise, the trajectory of the closed loop system
definitely remains stuck on the lower branch at the bifurcation point as shown in Fig.8. On the
other side, too large values of the dither amplitude are also prohibited because they produce cyclic
trajectories as shown in Fig.9. From all these observations, we can conclude that by tuning the
amplitude of the dither signal properly, it is possible to pass through the discontinuities of the
stable branches of the cost function and to converge to the global maximum.

In the next section, we shall examine how the averaging Lyapunov stability analysis can be
extended to the case of a multivalued (or “set-valued”) cost function, by using the notion of “Integral
of a set-valued function” ([2]). This analysis will explain why, in contrast with the previous case,
it may be required to increase the parameter a for guaranteeing the convergence of the averaged
system.

8



0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

a = 0.003

a = 0.0015

y(t)

t

Figure 8: Output signal y(t) : when a is too small, the trajectory is stuck on the lower branch.
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ū

Figure 9: Extremum seeking for system (9) with a = 0.015, k = 6, ω = 0.01.

5 Averaging stability analysis

In this section, we are concerned with the analysis of a dynamical system

ẋ = f(x, u) (10a)
y = h(x, u) (10b)

under the ES control law (6) whith a set-valued cost function having a form similar to Fig.5 (obvi-
ously we have system (9) in mind). Since only the stable branches of the static characteristic matter,
the set-valued cost function Q(θ) is defined as a set of two continuous single-valued functions:

Q(θ) = {Q1(θ), Q2(θ)}

with the following conditions:

1. Q1 : [θ1,+∞)→ R and Q2 : (−∞, θ2]→ R with θ1 < θ2;

2. For each value of θ ∈ [θ1,+∞), there is a LAS equilibrium x = `1(θ) of system (10) such that
Q1(θ) = h(`1(θ), α(θ));

3. For each value of θ ∈ (−∞, θ2], there is a LAS equilibrium x = `2(θ) of system (10) such that
Q2(θ) = h(`2(θ), α(θ);
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4. ∀θ ∈ [θ1, θ2], Q2(θ) > Q1(θ);

5. ∀θ ∈ [θ1,+∞), Q′1(θ) < 0;

6. The function Q2 has a unique global maximum at θ1 < θ∗ < θ2, i.e. Q′(θ∗ + ζ)ζ < 0, ∀ζ 6= 0
s.t. ζ ∈ (−∞, θ2 − θ∗].

We can then state the following qualitative observations.

(a) Under the above conditions, it is clear that the time scale separation applies as in Section 3 :
if, at some time, the trajectory is not in the vicinity of Q, it will quickly converge to this set. Thus
we can consider, as illustrated by the simulations, that the trajectories are sequences of alternative
fast jumps and quasi-static motions. Furthermore if the parameter a is chosen sufficiently small,
the quasi-static trajectories along Q2 converge to a small neighborhood of the optimal steady-state.

(b) But the simulations also show that, if the parameter a is too small, the trajectories on Q1 may
be stuck at the local maximum corresponding to the bifurcation point. Furthermore, when stuck
on Q1, condition (5) implies that θ0 is automatically prevented to increase (in order to approach
θ∗) since climbing along Q1 is enforced by the ES control algorithm.

(c) Hence, although it is necessary to keep the parameter a rather small, it may also be necessary
to increase a to pass through the bifurcation point and force a jump from Q1 to Q2 as in Fig.7.
But, unfortunately, if a is too large, a cyclic behaviour as in Fig.9 is also possible.

The set-valued averaging analysis presented below gives a technical justification of the fact that
increasing a may lead to passing through the bifurcation point. The definition of the averaged
system makes use of the notion of Aumann integral in order to capture the complex trajectories
that can occur in [θ1, θ2].

As in Section 3, we introduce the change of coordinates θ̃ = θ0 − θ∗ and the change of time
scale σ = ωt. But here, the θ̃-dynamics become a differential inclusion (see e.g. [4, Chap.3]):

dθ̃

dσ
∈ kQ(θ∗ + θ̃ + a sinσ)a sinσ. (11)

where the right hand side is a set-valued 2π-periodic function. Then the average of system (11) is
defined as the differential inclusion

dθav
dσ
∈ kafav(a, θav) (12)

with fav(σ, θav) being the set-valued function defined as

fav(a, θav) ,
1

2π

∫ 2π

0
Q(θ∗ + θav + a sinσ) sinσdσ

whith an Aumann integral on the right hand side (see [2]). (Given a set-valued map F (.), the
Aumann integral of F is defined as∫

F (s)ds ,

{∫
f(s)ds : f ∈ Φ

}
where Φ is the set of integrals of all measurable selections from F .)
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Let us now define the following single-valued function Q0(θ) which is a selection from Q(θ):

Q0(θ) =
{
Q1(θ) θ2 < θ < +∞
Q2(θ) −∞ < θ 6 θ2

.

Then we can write:
fav(a, θav) = f̂av(a, θav) + g(a, θav)

with

f̂av(a, θav) ,
1

2π

∫ 2π

0
Q0(θ∗ + θav + a sinσ) sinσdσ.

Under conditions (1)-(4), it can be shown that the set g(a, θav) is upper bounded independently of
a:

max
w∈g(a,θav)

|w| 6 M.

Then, a sufficient condition to avoid that the trajectory is stuck on Q1 is obviously that θ1− θ∗ be
not a fixed point of the average system :

0 /∈ f(a, θ1 − θ∗) = f̂av(a, θ1 − θ∗) + g(a, θ1 − θ∗)

We observe that f̂(0, θ) = 0 and therefore, by continuity, that we may have 0 ∈ f(a, θ1 − θ∗) for
small values of a. Hence it appears clearly that a sufficient condition for having 0 /∈ f(a, θ1− θ∗) is
that a be sufficiently large to get |f̂av(a, θ1 − θ∗)| > M . This allows to understand why increasing
the parameter a may prevent the trajectory to remain stuck on the lower equilibrium branch Q1.

The ”global” average behaviour captured by the Aumann integral includes all possible jumps
between Q1 and Q2 branches that includes cyclic behaviours, such as the one given in Fig.9. These
behaviours are observed in simulations for large values of dither amplitude a. However, as soon as
the jump through the bifurcation point on Q1 has occurred and the trajectory has converged to Q2

(e.g. Fig.7), we can apply the classical ”local” reasoning using the single valued average behaviour
on Q2 only that would be valid on a neighbourhood of Q2 as long as the trajectory stays close to
it. If the dither amplitude a is not too large, Q2 will act as an invariant manifold for the average
system and we can conclude using results of Tan et al. [11] that the ES controller will converge to
the global maximum.

6 Conclusion

In conclusion, our analysis shows that global extremum seeking is feasible for systems with multi-
valued discontinuous cost functions, albeit with competing requirements on the value of the dither
amplitude parameter a. In order to avoid getting stuck in bifurcation points of Q1, the dither am-
plitude needs to be sufficiently large and in order to avoid cyclic behaviours of Figure 9, the dither
amplitude needs to be sufficiently small. A possible solution is to have a time varying amplitude of
dither which is initially large and then is adaptively reduced. This solution that is reminiscent of
simulated annealing was used for global ES in presence of local extrema in Tan et al. [12]. However,
it is obvious that the sets Q1, Q2, the initial value of amplitude a(0) and its rate of change will
have to satisfy restrictive conditions in order for this strategy to work.

An alternative is to choose a constant dither amplitude that is large enough to avoid getting
stuck in the bifurcation point (item (b)) but small enough so that Q2 is an invariant manifold for
the (classical) local average (item (c)). Again a set of restrictive conditions will have to hold in
order for this strategy to work and a loss of performance is to be expected as the larger amplitudes
will lead to larger variations of the real trajectories around the desired maximum.
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Obviously, the possible theoretical results that could be proved using the above arguments will
be of limited use since our underlying assumption is that the model and the cost to optimize are
not known to the control designer. Nevertheless, the insights that we obtained suggest that the
practitioners of ES controllers should explore experimenting with the size of dither amplitudes as
the performance gains may be tremendous and may lead to global extremum seeking.
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