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Nowadays, modern controllers are typically implemented digitally and this fact
strongly motivates investigation of sampled–data systems that consist of a contin-
uous time plant controlled by a discrete time (digital) controller. While tools for
analysis and design of linear sampled–data systems are well developed (see, e.g.,
[1], [2]), similar results for nonlinear systems still need development.

In this talk we consider the problem of static state feedback stabilization of the
origin of a finite dimensional control system

ẋ = f(x, u)

with x ∈ Rn and u ∈ U ⊆ Rm, i.e., we are looking for a map u : Rn → U such
that for the closed loop system

(1) ẋ(t) = f(x(t), u(x(t)))

the origin x∗ = 0 is a globally asymptotically stable equilibrium. In order to model
a sampled–data implementation of this problem with a zero order hold device
we consider the corresponding sampled–data system with constant sampling rate
T > 0 given by

(2) ẋ(t) = f(x(t), uT (x(iT ))), t ∈ [iT, (i + 1)T ), i = 0, 1, . . .

and construct a controller uT for this model. Assuming that a suitable controller
u for the continuous time system (1) has been designed, a possible approach for
sampled-data controller design is to first design a continuous-time controller for
the continuous-time plant ignoring sampling and then discretize the obtained con-
troller for digital implementation, i.e., set uT = u, an approach which is often
termed emulation design. This approach was shown in [5] to recover the perfor-
mance of the continuous-time system in a semi-global practical sense. However,
due to hardware limitations on the minimum achievable T there may exists critical
regions, where this approach yields bad performance as in Figure 1, below, where
sampling introduces overshoot, or even instability as in Figure 2, below.

Our goal is hence to design a discrete time controller which improves upon the
performance of the emulated continuous time controller uT = u, using, however,
the available continuous time controller u, i.e., we want to redesign u.

In our first approach, the Lyapunov redesign technique developed in [6], we
consider control affine single input systems, i.e., f(x, u) = f0(x) + g(x)u and as-
sume that there exists a Lyapunov function V corresponding to the continuous
time system (1) for which the KL function β obtained from integrating the Lya-
punov inequality Lf (x, u(x))V (x) ≤ −α(V (x)) yields a good reference estimate
‖x(t, x0)‖ ≤ β(‖x0‖, t) for the trajectories x(t, x0) of (1). On the discrete time
level this estimate is induced by the Lyapunov difference

∆V (x) := V (x(T, x))− V (x).
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Denoting the trajectories of the sampled data system (2) by xT (t, x0, uT ) we can
define the sampled–data Lyapunov difference by

∆VT (x, uT ) := V (xT (T, x, uT ))− V (x).

and design uT in such a way that this difference ∆VT assumes “good” values.
In this context, a “good value” can have several meanings which depend on the
redesign objective. For example, one can perform a model reference type re-
desing by matching the continuous time behavior as close as possible by minimiz-
ing ‖∆V −∆VT ‖. As an alternative, one can increase the convergence speed by
minimizing ∆VT under suitable gain constraints on the controller uT .

In order to design uT in practice we need a computationally feasible approxi-
mation of the sampled–data Lyapunov difference ∆VT . Using the Fliess expansion
and neglecting the higher order terms yields such an approximation.

As an example, consider the Moore–Greitzer jet engine model given by

ẋ1 = −x2 −
3
2
x2

1 −
1
2
x3

1 − 3x3x1 − 3x3

ẋ2 = −u

ẋ3 = −σx3(x3 + 2x1 + x2
1)

We have applied the Lyapunov redesign technique to the simplified 2d version
obtained by setting x3 = 0 using the stabilizing backstepping controller

u(x) = −7x1 + 5x2,

see [4] for details on the model and the controller design.
Using the Lyapunov function V (x) = x2/2 (which is a Lyapunov function out-

side a neighborhood of the origin, cf. [6]), we obtain the results shown in Fig. 1.
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Figure 1. Lyapunov based redesign

In this figure, the unmarked curves show the continuous time system, the curves
marked with circles show the emulated continuous time controller uT = u. The
Lyapunov difference minimizing redesign is marked with squares while the model
reference type redesign is marked with crosses.

In our second approach, the model predictive redesign presented in [3, 7], we
solve an optimal control problem in order to minimize the distance between x
and xT . While the natural optimal control approach to this problem would be
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an infinite horizon optimization criterion, this approach is computationally not
feasible. Instead we chose a model predictive (or receding horizon) approach by
on line solving the finite horizon problem for piecewise constant open loop control
ũT

min
ũT

∫ NT

0

l(xT (t, xi
T , ũT )− x(t, xi), ũT (t))dt + F (xT (NT, xi

T , ũT ), x(NT, xi, u))

at each sampling instance iT with xi
T = xT (iT, x0, uT ), xi = x(iT, x0) and using

the sampled–data feedback uT (xi
T ) := ũT (0). We obtain stability of the closed loop

system under mild conditions on l and F and infinite horizon inverse optimality
under a local Lyapunov function like condition on the terminal cost F .

We illustrate this method by the 3d Moore–Greitzer model with backstepping
stabilizing controller

u = − (c1 − 3x1)
(
−x2 −

3
2
x2

1 −
1
2
x3

1 − 3x1x3 − 3x3

)
+c2

(
x2 − c1x1 +

3
2
x2

1 + 3x3

)
− x1 − 3σx3

(
x3 + 2x1 + x2

1

)
using the parameters σ = 2, c1 = 1 and c2 = 50. The result is shown in Figure 2.
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Figure 2. Model predictive (MPC) redesign
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