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Abstract— Short picosecond pulse propagation in semiconduc-
tor optical amplifiers (SOAs) has been widely studied for appli-
cations in optical signal processing and optical communications
areas. Even though it is possible to fully numerically integrate
differential equations describing the dynamics of SOAs, such
implementations may not provide adequate insight into the device
operation. We propose a systematic way to construct analytical
solutions for the gain recovery dynamics of SOAs with excellent
agreement with numerically integrated results. Our approach is
a formalization of an heuristic technique used by researchers in
the past for constructing an approximate analytical solution of
carrier dynamics in a two level system by first treating stimulated
emission process as instantaneous. Just after the stimulated
emission-induced carrier depletion, it is assumed in this approach
that carriers will replenish themselves to the initial steady-state
population through carrier injection, with a carrier-recovery
lifetime. The main contribution of this work is to put this heuristic
approach into a firm theoretical base so that approximate analyti-
cal solutions for carrier recovery dynamics for different variants
of SOA models can be systematically constructed. We derive
analytical solutions for modal signal gain and pulse energy gain
at an arbitrary point of the SOA waveguide. Surpassing previous
work in this area, we also show that it is possible to construct
analytical solutions to described gain recovery dynamics when
waveguide attenuation is not negligible.

Index Terms— Semiconductor Optical Amplifiers, Gain Recov-
ery Dynamics, Approximate Analytical Solution.

I. INTRODUCTION

SEMICONDUCTOR optical amplifiers (SOAs) are increas-
ingly used in optical signal processing applications in all-

optical integrated circuitry [1], [2]. The effectiveness of SOAs
in all-optical integrated circuitry results from their high-gain
coefficient and low saturation power [3], [4]. In addition, SOAs
are widely used for constructing functional devices such as
nonlinear loop mirrors [5], [6], clock-recovery circuits [7],
[8], pulse-delay discriminators [9]–[11] and logic operations
[12], [13]. Device engineering and performance optimization
requires a good quantitative understanding of active SOAs
used in above functional blocks. Also, most of the engineering
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optimization methods require the ability to repeatedly estimate
the operation of a devices when small parametric changes are
made in functional blocks. All this reasoning justifies having
simple but quantitatively accurate models for SOAs with the
ability to capture significant spatial and temporal features.

Pulse amplification in two-level media have been studied
extensively in the past [14], [15]. Frantz and Nodvik [16]
have pioneered the description of pulse amplification based
on the the energy of the pulse and extraction efficiency in
two level systems. They used rate equations to calculate the
amplifier gain using the input pulse energy (i.e. without taking
the specific details about the pulse shape). Their technique
relies on the assumption that the stimulated-emission-induced
carrier depletion due to a short pulse (i.e a pulse whose
full width at half maximum (FWHM) is much smaller than
carrier lifetime) can be considered instantaneous. Just after
the stimulated emission induced carrier depletion, carriers
will replenish themselves to the initial steady-state population
through carrier injection, with a rate equal to the carrier-
recovery lifetime. Siegman [17] showed how these results can
be re-casted using amplified pulse energies (i.e. output pulse
energies) and derived a transcendental equation describing the
input, output pulse energies and the energy supplied to the
two-level medium. Premaratne et al. [10] demonstrated how to
extend the Frantz-Nodvik [16] technique to describe counter-
propagating short pulse trains in SOAs. Their simulations
showed that spatial carrier distribution profile can also be
described accurately during pulse pulse transient period and
beyond. The impact on amplified spontaneous emission (ASE)
noise on gain recovery dynamics in SOA within the Frantz-
Nodvik [16] framework was carried out for polarization-
insensitive and polarization-sensitive SOAs in [11] and [18],
respectively.

In this paper, we propose a systematic way to conduct a
Frantz-Nodvik type analysis [16] for gain recovery dynamics
in SOAs using multiple-scales techniques [19], [20]. The main
contribution of this work is to put heuristic arguments onto a
firm theoretical base so that approximate analytical solutions
for carrier recovery dynamics for different variants of SOA
models can be systematically constructed. Surpassing previous
work in this area, we also show that it is possible to construct
analytical solutions to describe gain recovery dynamics when
waveguide attenuation is not negligible. In Section II, we de-
rive the integro-differential equation governing gain recovery
dynamics of a SOA when a short optical pulse interacts with
the gain medium. In Section III, we derive an approximate an-
alytical solution for gain recovery dynamics of an SOA when
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Fig. 1. Schematic diagram of the SOA and the coordinate system used in
the analysis.

waveguide loss is negligible. This work is then extended to
lossy waveguides in Section IV. Comparing results generated
using detailed numerical integration, a detailed analysis of the
validity of the proposed method in carried out in Section V.
We conclude this paper in Section VI.

II. INTEGRO-DIFFERENTIAL EQUATION GOVERNING THE
GAIN RECOVERY DYNAMICS OF A SOA

In this section we show that gain recovery dynamics of
an SOA can be described completely using a single integro-
differential equation. In this derivation, we do not discard
the waveguide attenuation but limit our analysis to pulses
with FWHM in the picosecond range. A main implication of
this assumption is that we do not need to take into account
carrier heating and intra-band relaxation processes in our
analysis, considerably simplifying algebraic structure of the
final solution.

Fig. 1 shows a schematic diagram of the optical semi-
conductor amplifier (SOA) studied in this paper. We use a
coordinate axis z along the SOA propagation axis with its
origin at the left facet. We assume that the length of SOA is
given by L and the carrier are injected to SOA medium with
the carrier injection-density ℘(z). Optical pulses enter the SOA
from its left facet and leave SOA from its right facet. We do not
consider any back propagating waves along the SOA either due
to partial reflections or amplified spontaneous emission events.
Even though relaxing them limit the accuracy of the proposed
analysis, decades of research work in SOAs have shown that in
many instances, such assumptions only introduce second order
effects to the analysis presented here [11], [18]. Therefore,
without loss of generality, we limit our analysis to the above
constrained system for clarity and algebraic simplicity.

Suppose ITw(t) is the intensity profile of an optical pulse
with arbitrary shape but with a FWHM of Tw and energy, Eg .
The latter assumption implies

Eg = A

∫ +∞

−∞
ITw(t)dt (1)

where A is the mode area of the SOA active region. Due
to the short pulse assumption, the carrier lifetime, τe, of the
semiconductor medium is much greater than the FWHM of
the optical pulse (i.e. τe À Tw). The dynamic response of the
SOA is given by [3]:

∂

∂z
I(z, t) +

1
vg

∂

∂t
I(z, t) = g(z, t)I(z, t)− αI(z, t) (2)

∂

∂t
N(z, t) = ℘(z)− N(z, t)

τe
− g(z, t)

λI(z, t)
hc

(3)

where t is time, z is distance along the SOA measured from
the left facet, I(z, t) is the intensity of the optical signal along
the SOA, N(z, t) is the carrier density along the SOA, α is
the loss coefficient, Γ is the mode confinement factor, a is
the differential gain coefficient, g(z, t) = Γa (N(z, t)−N0),
℘(z) is the current injection density along the SOA, λ is
the mean operating wavelength, c is the speed of light in
vacuum and h is the Plank’s constant. To make subsequent
analysis easier, we make the coordinate transformations ξ = z
and τ = t− z/vg so that we are in a reference plane that
moves with the forward propagating pulse, giving following
coordinate transformed equations

∂

∂ξ
I(ξ, τ) = g(ξ, τ)I(ξ, τ)− αI(ξ, τ) (4)

∂

∂τ
N(ξ, τ) = ℘(ξ)− N(ξ, τ)

τe
− g(ξ, τ)

λI(ξ, τ)
hc

(5)

Solving (4) as an initial value problem results in

I(ξ, τ) = ITw(τ) exp

(∫ ξ

0

(g(ξ, τ)− α) dξ

)
(6)

It is very clear from the structure of (6) that subsequent
calculations can be simplified by introducing a new variable
h(ξ, τ) with the following definition

h(ξ, τn) =
∫ ξ

0

g(ξ, τ) dξ (7)

where ξ is going to be in the interval [0, L], L is the SOA
length and normalized time, τn is defined using the SOA cavity
transit time, tcav = L/vg as τn = τ/tcav . Substitution of (7)
to (5) gives us a single integro-differential equation describing
the gain recovery dynamics of a SOA

∂

∂τn
h(ξ, τn) = ε (h℘ − h(ξ, τn))

−β(τn) (exp (h(ξ, τn)− αξ)− 1)

−β(τn)

(
α

∫ ξ

0

exp (h(ξ, τn)− αξ) dξ

)
(8)

where ε = tcav/τe, β(τn) = ΓaλITw(tcavτn)tcav/hc and

h℘(ξ) =
∫ ξ

0

(τeΓa℘(ξ)− ΓaN0) dξ (9)

This equation can be numerically integrated very accurately
using well known integro-differential equation techniques [21].
However, such numerical analysis does not provide adequate
insight into device operation because essential dynamical fea-
tures and parameters are not readily observable. Even though
it is not possible to analytically solve (8), we seek an approx-
imate solution capturing the essential variables governing the
dynamics of this gain recovery equation.
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III. ANALYTICAL APPROXIMATION OF GAIN RECOVERY
DYNAMICS WHEN WAVEGUIDE LOSS IS NEGLIGIBLE

When loss is negligible compared with gain, we can substi-
tute α = 0 to (8), leading to the following partial differential
equation

∂

∂τn
h(ξ, τn) = ε (h℘ − h(ξ, τn))

−β(τn) (exp (h(ξ, τn))− 1) (10)

Even though it is not possible to analytically solve this
equation, we could seek a solution in using multiple-scales
analysis technique. The main impetus for such an approach
stems from our observation that stimulated emission and
carrier recovery has two distinct time scales; fast stimulated
transitions associated with the pulse original time T = τn

and slow, carrier recovery time scale associated with slow-
time U = ετn. The underlying idea in the method of multiple
scales is to formulate the original problem in terms of these
two time-scales from the outset and then to treat the original
functional variable as a function of two variables. Even though
T and U are interdependent, we treat them as separate,
independent variables and seek an asymptotic solution in the
two dimensional space of (T ,U). Thus, the obtained solution
is more general than the solution of the original problem but
contains the original solution as a special case. This aspect
can be understood by noting that because such an asymptotic
solution is valid in the two dimensional region, it will also be
valid in any and every path in this region of the (T ,U) space.

Within the multiple-scale description we assume that

h (ξ, τn) ≡ h (ξ, T ,U , ε) (11)

and express the partial differential operator of τn using (T ,U)
variables

∂

∂τn
=

∂

∂T + ε
∂

∂U (12)

Substitution of this new partial differential operator to (10)
including the new functional definition (11) leads to

∂

∂T h (ξ, T ,U , ε) + ε
∂

∂U h (ξ, T ,U , ε) =

ε (h℘ − h (ξ, T ,U , ε))
−β(τn) (exp (h (ξ, T ,U , ε))− 1) (13)

Assuming that ε is a small parameter (i.e. |ε| ¿ 1 ), we seek an
asymptotic solution for the above partial differential equation
as a power series expansion of the parameter ε

h (ξ, T ,U , ε) =
∞∑

n=0

hn (ξ, T ,U) εn (14)

Substitution of (14) to (13) and noting that

exp (h (ξ, T ,U , ε)) ≈
exp (h0 (ξ, T ,U)) (1 + εh1 (ξ, T ,U) + · · · ) (15)

we get a partial differential equation as a power series ex-
pansion of the small variable ε. Because this power series
expansion needs to be identically equal to zero, coefficients

of each higher order term εn : n = 0, 1, 2, · · · must be equal
to zero. Equating the lowest term (i.e. ε0) to zero results in

∂

∂T h0 (ξ, T ,U) = −β(T ) (exp (h0 (ξ, T ,U))− 1) (16)

and equating the first order term (i.e. ε1) results in

∂

∂T h0 (ξ, T ,U) +
∂

∂U h1 (ξ, T ,U) =

(h℘ − h0 (ξ, T ,U))
−β(T ) exp (h0 (ξ, T ,U)) h1 (ξ, T ,U) (17)

We seek a solution for h0 (ξ, T ,U) in 2-space (T ,U) by
seeking a solution that satisfy (16) and (17), simultaneously.

It is interesting to note that by adding correction terms
of higher orders in ε, we could successively improve the
accuracy of the approximation. However, due to the algebraic
complexity of the resulting terms, a simpler intuitive solution
amenable to clear insightful physical interpretation may not
be possible. Estimating non-strict upper bounds of (14), we
could show that it is possible to achieve arbitrary closeness of
solution between the approximation and exact result. However,
such rigorous proof is beyond the scope of this paper and
will be published elsewhere. Instead, we resort to numerical
simulations to show the matching of results within parameter
ranges applicable to typical commercially available SOAs.

A. Initial Conditions

We assume that the initial conditions for h (ξ, T ,U , ε) is
independent of the small-parameter ε. This is a reasonable
assumption because carrier recovery rate is not going to affect
the initial state of the SOA. Let, hI(ξ) be the initial profile
of h (ξ, T ,U , ε), enabling us to define the initial conditions of
each polynomial coefficient of ε

hn (ξ, 0, 0) =
{

hI(ξ) if n = 0
0 otherwise (18)

B. Analytical Solution of the Equation (16)

Differential equation (16) can be solved by multiplying (16)
by the integrating factor exp (−h0 (ξ, T ,U)) to transform (16)
to following form

∂

∂T exp (−h0 (ξ, T ,U)) =

β(T ) (1− exp (−h0 (ξ, T ,U))) (19)

This equation can be integrated to get

h0 (ξ, T ,U) =

− ln
(

1− (1− exp (−h0 (ξ, 0,U)))
ϕ(U)

Eβ(T )

)
(20)

where ϕ(U) is an arbitrary function depending on the slow-
time scale, U and Eβ(T ) is a variable in which the logarithm
of it is proportional to the energy of the pulse seen by the gain
medium up to the time T

Eβ(T ) = exp

(∫ T

0

β(T ) dT
)

(21)
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C. Analytical Solution of the Equation (17)

If the SOA gain is monitored long time after an optical
pulse has left the amplifying medium, there cannot be any
dependency of the gain overall gain on small-parameter ε.
This condition leads to the result that hn (ξ,∞,∞) = 0 for
n = 1, 2, · · ·. Therefore, using (18), it is possible to show by
substitution that the following expression is a general solution
of (17)

h0 (ξ, T ,U) =
h0 (ξ, T , 0) exp (−U)
+h℘(ξ) (1− exp (−U)) + ϑ(T ) exp (−U) (22)

where ϑ(T ) is an arbitrary function depending on the fast-
time scale, T . However, (22) must satisfy (16). Enforcing of
this constraint enable us to obtain a specific functional form
for ϑ(T ) as demonstrated in the next subsection.

D. Modal Signal Gain of SOA

The expressions (20) and (22) for h0 (ξ, T ,U) need to be
identically equal to each other in the (T ,U) space. Consid-
ering this, we match the results at initial points in the 2-
space. This could be most conveniently done by calculating
exp (h0 (ξ, 0, 0)) for (20)

exp (h0 (ξ, 0, 0)) =
1

1− (1− exp (−hI (ξ)) ϕ(0))
(23)

and (22)

exp (h0 (ξ, 0, 0)) = exp (hI (ξ)) exp (ϑ(0)) (24)

Equations (23) and (24) match if

ϕ(0) = 1 and ϑ(0) = 0 (25)

However, from (22) we can write

exp (h0 (ξ, T ,U)) = exp (h0 (ξ, T , 0) exp (−U))
× exp (h℘(ξ) (1− exp (−U)))
× exp (ϑ(T ) exp (−U)) (26)

and use (25) to obtain following expression for h0 (ξ, T , 0)
from (20)

h0 (ξ, T , 0) = − ln
(

1− (1− exp (−hI (ξ)))
Eβ(T )

)
(27)

substitution of this to (26) gives us the following expression
for modal gain along the SOA with both spatial and temporal
variables

exp (h0 (ξ, T ,U)) = exp (h℘(ξ))

×
(

exp (ϑ(T )− h℘(ξ))
1− (1− exp (−hI (ξ))) /Eβ(T )

)exp(−U)

(28)

However, to fully characterize the gain evolution from (28),
we need to find the functional form of ϑ(T ) with respect
the fast time scale, T . As described before, the underlying
idea in the method of multiple scales is to formulate the
original problem in terms of two-space, (T ,U) from the outset
and make the resulting asymptotic solution is valid in a two
dimensional region, enclosing the original domain. Because

of the constraints set in solving the problem in this enclosing
region in the two-space (T ,U), it will also be valid in any
and every path in this region of the (T ,U) space. Therefore,
to calculate the specific functional form of ϑ(T ), we seek a
path in two-space where U is identically zero. In such a path,
we can evaluate the partial derivative of (28) to get

∂

∂T h0 (ξ, T ,U)
∣∣∣∣
U=0

=
d

dT ϑ(T )

−β(T )
(1− exp (−hI (ξ))) /Eβ(T )

1− (1− exp (−hI (ξ))) /Eβ(T )
(29)

Substituting (29) and (28) to (16), we can derive the following
differential equation for the unknown variable ϑ(T )

d

dT ϑ(T ) = β(T )
(1− exp (ϑ(T )))

1− (1− exp (−hI (ξ))) /Eβ(T )
(30)

Multiplying (30) by exp (−ϑ(T )) and noting that

β(T )Eβ(T )
Eβ(T )− (1− exp (−hI (ξ)))

≡ d

dT ln (Eβ(T )− (1− exp (−hI (ξ)))) (31)

we can get the following general solution for (30)

exp (−ϑ(T )) = 1−C × (Eβ(T )− (1− exp (hI(ξ)))) (32)

where C is a constant that need to be determined using the
initial condition (25) of ϑ(0). Substitution of T = 0 to results
in C = 0 and hence the fast-time T dependency of ϑ(T )
becomes

ϑ (T ) = 0 (33)

leading to following expression for the modal signal gain at
time (T ,U) and at distance ξ

exp (h0 (ξ, T ,U)) = exp (h℘(ξ) (1− exp(−U)))

× (1− (1− exp (−hI (ξ))) /Eβ(T ))− exp(−U) (34)

In the next subsection, we use this expression to calculate the
energy gain seen by the pulse as it propagates through the
amplifier.

E. Energy Gain of SOA

One significant result of the analysis so far is that the signal-
gain evolution is not directly related to the pulse shape but to
the energy, EP (T ), which it presents to the gain medium up
to time T

EP (T ) =
hcA

Γaλ
ln (Eβ(T )) (35)

As clearly seen in the signal gain evolution expression (34), the
quantity Eβ(T ) drives the signal gain evolution of the SOA. It
is useful to have an alternative expression for (35) based on the
initial conditions of the material media and pulse (i.e. hI(ξ)
and β(T )). Siegman [17] was the first person to calculate such
expression for the energy for the limiting case T → ∞. We
generalize his results in this section by using a new strategy
to calculate EP (T ) for arbitrary time value T . Our approach
relies on the self-consistent argument that overall gain of an
SOA should be invariant if we introduce a fictitious internal
boundary at an arbitrary point in the SOA medium.
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Fig. 2. Introduction of a fictitious boundary at ξ = L1 to view a SOA as a
gain-block made-up of two cascaded gain blocks SOA1 and SOA2.

Figure 2 shows a SOA subdivided into two sections by
introducing a fictitious boundary at ξ = L1. We name these
two sections as SOA1 and SOA2 in the analysis to follow and
use subscripts 1 and 2 to represent all the relevant material
parameters of SOA1 and SOA2, respectively. Using (34), the
overall gain, G(L1 + L2, T ,U), can be written as

G([0, L2], T ,U) =
G1([0, L1], T ,U)×G2([L1, L2], T ,U) (36)

where G1([0, L1], T ,U) and G2([L1, L2], T ,U) are signal
gains of SOA1 and SOA2, respectively with following def-
initions

G1([0, L1], T ,U) = exp (h℘,1(L1) (1− exp(−U)))

× (1− (1− exp (−hI,1 (L1))) /Eβ,1(T ))− exp(−U) (37)

and

G2([L1, L2], T ,U) = exp (h℘,2(L2) (1− exp(−U)))

× (1− (1− exp (−hI,2 (L2))) /Eβ,2(T ))− exp(−U) (38)

The total gain G(L1 + L2, T ,U), can be written as using the
parameters associated with the two sections as

G1([0, L2], T ,U) = exp (h℘ (1− exp(−U)))

× (1− (1− exp (−h℘)) /Eβ,1(T ))− exp(−U) (39)

where h℘ = h℘,1(L1) + h℘,2(L2). Solving (36), we get
following expression for Eβ,2(T )

Eβ,2(T ) = exp (h℘,1(L1))Eβ,1(T )
− (exp (h℘,1(L1))− 1) (40)

Combining (40) and (35), we can write the following expres-
sion for the Energy Gain, GE(ξ, T ) at time, T and distance ξ
as

GE(ξ, T ) =
ln (exp (h℘(ξ)) Eβ(T )− (exp (h℘(ξ))− 1))

ln (Eβ(T ))
(41)

It is interesting note that this expression is equal to the
both Agrawal and Olsson [3] and Sieman [17] results with
corresponding notation change. However, we arrived at this
results using self-consistency arguments of our approximate
results, deviating from the physical arguments given in the
above papers.

IV. GAIN RECOVERY DYNAMICS WHEN WAVEGUIDE
LOSS CANNOT BE NEGLECTED

When the waveguide loss, α, is not negligible, (16) assumes
the following form by matching the zeroth order terms (i.e. ε0

∂

∂T h0 (ξ, T ,U) =

−β(T ) (exp (h0 (ξ, T ,U)− αξ)− 1)

−αβ(T )
∫ ξ

0

exp (h0 (ξ, T ,U)− αξ) dξ (42)

and (17) assumes the following form by matching the first
order terms (i.e. ε1)

∂

∂T h0 (ξ, T ,U) +
∂

∂U h1 (ξ, T ,U) =

(h℘ − h0 (ξ, T ,U))
−β(T ) exp (h0 (ξ, T ,U)− αξ) h1 (ξ, T ,U)

−αβ(T )
∫ ξ

0

h1 (ξ, T ,U) exp (h0 (ξ, T ,U)− αξ) dξ (43)

It is not possible to solve these equations in the current for
due to nonlinear integral terms. Noting that if the gain is
uniform along the SOA (i.e. h0 (ξ, T ,U) ≡ h̄ (T ,U) ξ) for
some function ḡ (T ,U) independent of spatial coordinate, then
we could write the integral in the (42) as

∫ ξ

0

exp (h0 (ξ, T ,U)− αξ) dξ =

exp (ḡ (T ,U) ξ − αξ)− 1
ḡ (T ,U)− α

(44)

Noting this, we introduce the following approximation for the
above integral when gain distribution is spatially non-uniform

∫ ξ

0

exp (h0 (ξ, T ,U)− αξ) dξ ≈
exp (h0 (ξ, T ,U)− αξ)− 1

g̃ (ξ, T ,U)− α
(45)

where g̃ (ξ, T ,U) is given by

g̃ (ξ, T ,U) =
h℘(ξ)

ξ
(1− exp(−U))

− ln ((1− (1− exp (−hI (ξ))) /Eβ(T )))
ξ

exp(−U) (46)

As we show later using simulations, this is a very good
approximation for the integral in (45). Substitution of (45)
to (42) gives the following modified equation

∂

∂T h0 (ξ, T ,U) =

−β(T )g̃ (ξ, T ,U)
g̃ (ξ, T ,U)− α

(exp (h0 (ξ, T ,U − αξ))− 1)(47)

Noting that in multiple-scales analysis, lower order coefficients
of the expansion h (ξ, T ,U , ε) =

∑∞
n=0 hn (ξ, T ,U) εn affects

higher order but not vice-versa to eliminate secular-terms, we
could split (43) into two simultaneous differential equations

∂

∂T h0 (ξ, T ,U) = h℘ − h0 (ξ, T ,U) (48)
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TABLE I
PARAMETERS USED IN SIMULATIONS

SOA Length (L) 378.0× 10−6 m
Active Region Width (w) 2.5× 10−6 m
Active Region Thickness (d) 0.2× 10−6 m
Waveguide Group Effective Index (ng) 3.7
Loss Coefficient (α) 3000.0 m−1

Carrier Recombination Coefficient (τe) 300.0× 10−12 s
Carrier Injection Rate (℘) 1.177× 1034 s−1m−3

Confinement Factor (Γ) 0.3
Material Gain Coefficient (a) 2.5× 10−20 m2

Transparency Carrier Density (N0) 1.5× 1024 m−3

Linewidth Enhancement Factor (αL) 5.0
Nominal Wavelength (λ) 1552.52× 10−9 m

∂

∂U h1 (ξ, T ,U) =

−β(T ) exp (h0 (ξ, T ,U)− αξ) h1 (ξ, T ,U)

−αβ(T )
∫ ξ

0

h1 (ξ, T ,U) exp (h0 (ξ, T ,U)− αξ) dξ (49)

Following the same procedure as in Section III and solving the
couple equations (47) and (48), the modal gain can be written
as

exp (h0 (ξ, T ,U)− αξ) =
exp ((h℘(ξ)− αξ) (1− exp(−U)))

× (1− (1− exp (−hI (ξ) + αξ)) /Eγ(T ))− exp(−U) (50)

where Eγ(T ) is defined as

Eγ(T ) = exp

(∫ T

0

β(T )g̃ (ξ, T ,U)
g̃ (ξ, T ,U)− α

dT
)

(51)

In the next Section, we show the accuracy of these expres-
sions by comparing them directly with numerically integrated
results.

V. COMPARISON OF ANALYTICAL RESULTS WITH
NUMERICALLY INTEGRATED RESULTS

To demonstrate the accuracy of the results derived so far,
we compare our analytical results with numerical simulations.
Unless specified otherwise, we use parameters given in the
Table I for our calculations. The numerical results were
generated by directly integrating the coupled equations (2) and
(3) in MATLABTM. Throughout our simulations, we use an
intensity profile of an unchirped (transform-limited) Gaussian
pulse, ITW (t) with pulse energy, Ein, and FWHM value of
TFWHM

ITw(t) =
Ein

AT0
√

π
exp

(
− t2

T 2
0

)
(52)

where A is the mode area and T0 ' TFWHM/1.665.
Carrier density, N along the SOA can be calculated by

noting the relationship between N and h as described in (7).
Fig. 3 shows the normalized carrier density, (N − N0)/N0,
against SOA position, z, at elapsed times of: (I) 0.0 ps (II)
100.0 ps and (III) 500 ps, after a Gaussian pulse of 2.0 ps
FWHM and energy: (a) Ein = 50 fJ and (b) Ein = 500 fJ
has passed completely through the SOA. The dashed lines (- -)
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Fig. 3. Normalized carrier density, (N − N0)/N0, against SOA position,
z, at elapsed times of: (I) 0.0 ps (II) 100.0 ps and (III) 500 ps, after a
Gaussian pulse of 2.0 ps FWHM and energy: (a) Ein = 50 fJ and (b)
Ein = 500 fJ has passed completely through the SOA.

show the numerical simulation results and the solid lines (—)
show the carrier density calculated using the analytical solution
of (50). Fig. 3 clearly shows that analytical gain approximation
(50) has the ability to accurately represent the spatial and
temporal gain dynamics for SOAs under different saturation
conditions.

A much deeper insight into the accuracy and validity of our
approximate solution can be obtained by looking at the output
pulse shape and pulse spectrum of an amplified pulse. Fig. 4
shows amplified: (a) pulse shape and (b) pulse spectrum of a
Gaussian pulse of 20 ps FWHM and energy: (I) 50.0 fJ and
(II) 500.0 fJ. The incident frequency is equal to c/λ where c
is the speed of light in vacuum. The dashed lines (- -) show
the numerical simulation results and the solid lines (—) show
the corresponding analytical results. Fig. 4 shows that as the
pulse energy increases, the amplified pulse becomes asym-
metric such that its leading-edge is sharper compared with the
trailing-edge. This is because the leading-edge sees larger gain
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Fig. 4. Amplified: (a) pulse shape and (b) pulse spectrum of a Gaussian
pulse of 20 ps FWHM and energy: (I) 50.0 fJ and (II) 500.0 fJ.

than trailing-edge due to the saturation of the gain medium by
the photons in the leading-edge. Due to this asymmetry and
SPM (self phase modulation) induced frequency chirp on the
pulse, the spectrum of the pulse attains a multipeak structure.
As clearly seen from Fig. 4, the dominant spectral peak shifts
to the low-frequency side (red-shift). The red-shift increases
for both higher amplifier gain and higher pulse energy. The
asymmetry of the pulse-spectrum is due to the asymmetry in
the pulse-shape but the multiple peaks are due to the SPM
related interference of frequencies within the pulse. A good
match between numerical and analytical results re-confirms
the accuracy of the approximate solution.

It is also interesting to investigate how the approximate solu-
tion behaves under different waveguide loss conditions. Fig. 5
shows amplified pulse spectrum of an input Gaussian pulse of
20 ps FWHM and 500.0 fJ of energy when loss coefficient of
SOA is given by (I) α = 3000.0 m−1 and (II) α = 0.0 m−1.
The dashed lines (- -) show the numerical simulation results
and the solid lines (—) show the corresponding analytical
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Fig. 5. Amplified pulse spectrum of an input Gaussian pulse of 20 ps
FWHM and 500.0 fJ of energy when loss coefficient of SOA is given by (I)
α = 3000.0 m−1 and (II) α = 0.0 m−1

results. As clearly seen from Fig. 5, the dominant spectral
peak red-shift in the low loss (i.e high gain) SOA. Again,
a very good match between numerical and analytical results
confirms the wide applicability of the approximate solution.

VI. CONCLUSION

In this paper, we proposed a systematic way to construct
approximate solutions for gain recovery dynamics in SOAs
using multiple-scales techniques. The main contribution of
this work is to put widely used heuristic arguments onto a
firm theoretical base so that approximate analytical solutions
for carrier recovery dynamics for different variants of SOA
models can be systematically constructed. Surpassing previous
work in this area, we showed that it is possible to construct
analytical solutions to describe gain recovery dynamics when
waveguide attenuation is not negligible. By comparing with
directly numerically integrated results, we showed that our
approximate results can accurately describe the carrier density
evolution along the SOA when optical pulses transit through
the SOA gain medium. Also, we compared our analytical
results against numerical results of amplified pulse-shape and
pulse-spectrum for both lossy and lossless SOAs. Very good
agreement between numerical and analytical results confirms
the wide applicability of the carrier recovery dynamics solution
in many practically useful cases.
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