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Abstract

We introduce two definitions of an averaged system for a time-varying ordinary differential equa-
tion with exogenous disturbances (“strong average” and “weak average”). The class of systems for
which the strong average exists is shown to be strictly smaller than the class of systems for which
the weak average exists. It is shown that input-to-state stability (ISS) of the strong average of a
system implies uniform semi-global practical ISS of the actual system. This result generalizes the
result of [18] which states that global asymptotic stability of the averaged system implies uniform
semi-global practical stability of the actual system. On the other hand, we illustrate by an example
that ISS of the weak average of a system does not necessarily imply uniform semi-global practical
ISS of the actual system. However, ISS of the weak average of a system does imply a weaker semi-
global practical ”ISS like” property for the actual system when the disturbances w are absolutely
continuous and w,w € L. ISS of the weak average of a system is shown to be useful in a stability
analysis of time-varying cascaded systems.

1 Introduction

Averaging of ordinary differential equations is an important tool in the stability analysis and synthesis
of time-varying systems. Some classical results on averaging and their applications to adaptive control
can be found in [3, 7, 13, 19] and references therein. In the classical averaging approach one either proves
the closeness of trajectories of the averaged and the actual system on finite time intervals or, under the
assumption of local exponential stability (LES) of the origin of the averaged system, uniform LES of
a small periodic trajectory of the actual system. The main proof technique in the classical approach
is a change of coordinates in which it becomes apparent that the actual system can be regarded as a
small perturbation of the averaged system. Another approach, that is well-suited to stability studies, is
to compare the solutions of averaged and actual systems at sampling instances. A Lyapunov theorem
expressed in terms of solutions at sampling instances was introduced in [1] and used to address global
and semi-global stability for the cases of exponential stability of averaged system in [2] and homogeneous
systems in [12]. A rather general global/semi-global averaging result in the literature was presented in
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[18] where it was proved that global asymptotic stability (GAS) of the averaged system implies uniform
semi-global practical stability for the actual system.

We emphasize that the averaging results in the literature are concerned only with stability analysis
although very often one needs to analyze the performance of the system under the action of the distur-
bances. The recently introduced notion of input-to-state stability (ISS) [14] provides a nice framework
for L stability analysis of nonlinear systems. The ISS property has proved to be very useful in the
analysis and synthesis of nonlinear control systems (see, for instance, [14, 15, 17] and Sections 2.4, 5.2,
5.3,6.1,6.7, 9.1 and 9.8 in [8]) and it appears to be important to investigate it in the context of averaging.

It is the purpose of this paper to introduce two definitions of the averaged system for a time-varying
system with exogenous disturbances (“the strong average” and “the weak average”) and to provide a
connection between the ISS properties of such averaged systems with the corresponding ISS properties
of the actual system. Our first main result states that ISS of the strong average of a system implies
uniform semi-global practical ISS of the actual system, which generalizes the result obtained in [18].
We make use of the proof technique presented in [11] that relates discrete-time and sampled-data ISS
K L-estimates and which can be regarded as a generalization of the stability result in [1] to the ISS case.
The limitation of our first result is that, even for periodic functions, a strong average may not exist in
general. The weak average may exist when strong average does not but it does not allow us to prove
in general that ISS of the weak average of a system implies uniform semi-global practical ISS of the
actual system. For our second main result we require disturbances to be absolutely continuous, with
w,w € Lo, and we prove that ISS of the weak average of a system implies a semi-global practical ”ISS
like” property for the actual system. This property is shown to be useful in the analysis of stability
of time-varying cascaded systems, which motivates the use of weak averages. The result for the weak
average is similar to the ISS result for singularly perturbed systems in [4].

The paper is organized as follows. In Section 2 we present definitions of weak and strong averages and
preliminary results that are needed in the sequel. Several characterizations and relationships between
the strong and weak averages are investigated in Section 3. Our main results are stated in Section 4 and
several applications of the main results to cascaded time-varying systems are given in Section 5. The
proofs are given in Sections 6, 7 and 8. A summary is given in the last section.

2 Preliminaries

A function v : R>g — R>g is of class-G (y € G) if it is continuous, zero at zero and nondecreasing.
It is of class-K if it is of class-G and strictly increasing. It is of class-K if it is of class-K and is
unbounded. A function 8 : R>g X R>o — R>g is of class-KCL if (-, ¢) is of class-K for each ¢t > 0 and
B(s,-) is decreasing to zero for each s > 0. Given a measurable function w(-), we define its infinity
norm ||lwl|, := esssup;sq |w(t)|. If we have [lw||, < oo, then we write w € L. If w(-) is absolutely

continuous, its derivative is defined almost everywhere and we can write w(t) — w(t,) = ftto w(r)dr.
Consider the time-varying system:

a'::f(t,ar,w) (1)
where x € R” is the state and w € R™ is the disturbance. We will use the following;:

Assumption 1 The system (1) is locally Lipschitz in z,w, uniformly in t and there exists ¢ > 0 such
that |£(t,0,0)| < ¢,Vt > 0. O

Hence, we are guaranteed the existence of solutions and can use certain results on continuity of solutions
with respect to initial conditions. The solution of the system (1) at time ¢, starting from an initial
condition z, at initial time ¢, and under the action of disturbance wy, , is denoted as z(t) (since
usually to, o, wy, 4 are clear from the context).

We investigate also the time-varying system that depends on a small parameter € > 0:

izf(é,w,w). @)



We first recall the standard definition of the average for time-varying systems without disturbances (for
instance, see Sections 8.3 and 8.5 in [7]):

Definition 1 (average) A locally Lipschitz function F,,(x) is said to be the average of F(t,z) if there
exist Bay € KL and T* > 0 such that for all T > T* and t > 0 we have that:

1 T
Fou(z) — T/ F(r,2)dr| < Bay(max{|z|,1},T).
t
The system
T = Fyay(x)
is called the average of system & = F(t,x). O

We are not aware of any references in the literature that deal with averaging of systems with exoge-
nous disturbances and we introduce below two different definitions for averaged system with exogenous
disturbances. Motivation for two different definitions comes from the following:

1. We recall that in the disturbance free case one can show that GAS of the averaged system implies
uniform semi-global practical stability of the actual system (see [18]). With the first definition of
average (strong average) we are able to show that ISS of the strong average of a system implies
uniform semi-global practical ISS of the actual system. On the other hand, it is impossible to
prove this result with the second definition (weak average). Hence, the strong average appears to
be an appropriate generalization of the average in Definition 1 to systems with disturbances if we
want to prove the general ISS result.

2. Average in the sense of the second definition (weak average) may exist when the strong average
does not. On the other hand, existence of the strong average always implies existence of the weak
average. Unfortunately, ISS of the weak average of a systems does not imply uniform semi-global
practical ISS of the actual system but only a weaker “ISS like” property. For this property we
require the disturbances to be absolutely continuous and w,w € L, which is similar to the ISS
result for singularly perturbed systems obtained in [4]. The ISS like property turns out to be useful
for stability analysis of time-varying cascaded systems, which motivates the use of weak averages.

Further motivation for the use of two different definitions is given in the next section.

Definition 2 (strong average) A locally Lipschitz function fs, : R* X R™ — R" is said to be the
strong average of f(t,z,w) if there exist Bop € KL and T* > 0 such that Vt > 0, Yw € L, YT > T* the
following holds:

1

t+T
7] Vel (o) = f(s2,0(:)] ds| < Putmaal, ], 11.7). 3)

The strong average of system (1) is then defined as

& = foo(z,w). (4)

O

Definition 3 (weak average) A locally Lipschitz function fyq : R* X R™ — R™ is said to be the weak
average of f(t,x,w) if there exist Bo, € KL and T* > 0 such that VT > T*,Vt > 0 we have'

1

t+T
fwa(maw) - T/t f(S,."L',’LU)dS < ﬁav(ma‘xﬂxl ’ |w| ’ 1},T)

INote that w in the integral is a constant vector.



The weak average of system (1) is then defined as

i':fwa(waw)' (5)

O

We note here that if there exists the strong (respectively, weak) average of system (1) then there
exists the strong (respectively, weak) average of system (2) for all € > 0 and moreover the averages of
(1) and (2) are the same.

3 Characterizations of strong and weak averages

In order to understand definitions of strong and weak averages better, we present below several results
and examples that illustrate the connections between the two notions and characterize the structure
of some systems that allow for strong averages. Moreover, the results of this section provide further
motivation for the use of two different definitions of average for systems with inputs.

The following result is trivial to prove and the proof is omitted.

Proposition 1 Consider the system (1) where:
f(t,z,w) = F(t,2) + g(z,w) , (6)

and there exists the average for F'(t,x), denoted as Fy,(x), in the sense of Definition 1. Then, fs,(z,w) :=
Fop(z) + g(x,w) satisfies our definition of the strong average for F(t,x) + g(z,w). O

Note that for systems that satisfy (6), computing the strong average is as difficult as computing the
average for a system without disturbances. Actually, in this case strong and weak averages coincide,
which is not always the case as the following example shows. Indeed, the following example illustrates
a system for which the weak average exists whereas the strong average does not.

Example 1 Consider the system:
. 3 t\ 3
T = —cx® + cos (—) z w (7
€
where z,w € R, ¢ € (0,0.5). The weak average of this system is
&= —cx® . ()

We now show that there does not exist a strong average for system (7). Pick an arbitrary & # 0 and
note that, given any function fs,(z,w), we have two possibilities:

1. either fo(%,w) + ci® = 0,Yw, or

2. b such that foo(Z,0) + c3® # 0.

Suppose that f.,(x,w) is the strong average for —cx® + cos(t)zw and the first case holds. Let
w(t) = cos(t). Then it must hold that:

:Z'S t+T
— / cos?(s)ds
¢

T < Bav(max{|Z], [[w]|o, 1}, T)

for some Bqy € KL and for oll T sufficiently large. However, it we take Ty, = kn,k € N, the left hand
side in the above expression is equal to 0.58% # 0 for all k € N and it does not converge to zero as k — oo
(as T, = 00).



Suppose now that fsq(x,w) is the strong average and the second case holds. Pick w(s) = @ and then
it must be the case that

1 t+T
T/ (fsa(Z,W) + ¢ — W& cos(s))ds| < Bay(max{|Z|, |w],1},T)
t

for some Byy € KL and all T sufficiently large. However, for Ty, = 2kmw, k € N we have that the left-hand
side is equal to |cai‘3 + fsa(:fi,u"i)| > 0 for all k € N and it does not converge to zero as k — oo (as
Ty, — oc). Hence, there does not exist a strong average for system (7). O

Note that the system in Example 1 is periodic, it does not have the form (6) given in Proposition
1 and it does not have the strong average. We may ask whether this is always the case for periodic
systems. In other words, we may ask if the structure (6) is a necessary condition for systems periodic
in ¢t to have the strong average. We show next that this is indeed the case. More precisely, we show
now that if f(t,z,w) is periodic in ¢, then the systems of the form (6) are the only systems for which
the strong average exists. This emphasizes the importance of the structure (6) for the existence of the
strong average.

Proposition 2 Suppose that f(t,z,w) is continuous and periodic in t of period Ty > 0. Then there
exists a strong average fsq(x,w) for f(t,z,w) if and only if (6) holds for some continuous functions F'
and g where F(t,x) has a well-defined average in the sense of Definition 1, which is denoted as Fop(x).
Moreover, we have that fs,(z,w) = Fu () + g(z,w). O

Proof: Sufficiency is trivial to prove and is already stated in Proposition 1. The necessity part is
more interesting and is addressed next. Let fs,(x,w) be the strong average for f(¢,z,w) and define
F(t,z,w) := f(t,z,w) — fsa(z,w). By definition there exist 8., € KL and T* > 0 such that for all
t > 0,T > T* we have that:

1

t+T
T/t F(r,2,w(r))dr| < oy (max{|z], [lw]l,, , 1}, T). 9)

A consequence of this is that fs,(z,w) is also the weak average, i.e., for all ¢ > 0,7 > T* we have that:

1 t+T
— / F(r,z,w)dr
t

T < Bav(max{|z|, jw[,1},T). (10)

Note that the bounds (9) and (10) must hold for each entry of the vector-valued function F(t,z,w)
and therefore we assume below without loss of generality that F(t,z,w) is a scalar function (i.e. we
concentrate on one entry only).

The proposition will be established if we can show that F'(¢,z,w) is independent of w. Suppose not.
Then there exist t*, z*,wq,ws with w; 7# wy such that:

F(t*,z*,w) # F(t*, 2%, wy). (11)

Since F'(t,z,w) is continuous in ¢, there exists ¢; € (0,71) (recall f(t,x,w) is periodic with period T})
such that for all ¢ € [t*,t* + c1] we have that either F(¢,2*,w1) — F(t,2*,w2) > 0 or F(t,z*,w1) —
F(t,z*,w2) < 0. Assume, without loss of generality, that the first case holds. Let

ey o TEH T + T + ) :
wi(r) '_{ wy, TE€[*+ T +c,t*+ (G +1)T1), <N

Consider now T}, = kT;. Using (9) we have, for sufficiently large k, that:

1 t*-‘rle
Busmac{la”| ol Jwal 1 KE) 2 | [ Pt ()] (12)




Add and subtract ZJ k=1 f;;ﬁﬁcl F(r,x* wy)dr within the absolute value of the right hand side of

(12) and then we can rewrlte it as:

1 Jj=k—1 t*+jT14+c1 1 t*+ kT,
" /t (Pt )~ Flra® ) + / F(r,o* w)dr|.  (13)
=0 *+3T1

Since we have that y := min, ¢ go4c,](F(7, 2%, w1) — F(7,2*,w2)) > 0 and F is periodic, we can write,
using (10), (12) and (13) that for all k € N:

1 t*+kT1
Buo(max{|a®|, Jun|, |wa| , 1}, kT1) > |EBE 4 / F(r, 2", ws)dr

T kD S,
K
> N — Bov(max{|z*|, |wa|, 1}, kT1). (14)

Taking the limit as k¥ — oo on both sides, we arrive at the contradiction 0 > pc; /Ty > 0. Hence,
F(t,z,w) must not depend on w. Q.E.D.

Note that for periodic systems that satisfy (6), the strong and weak averages coincide and moreover
in this case we can say that the strong average is equivalent to the weak average plus the structure given
in (6). If this was true in general, then the definition of the strong average would be superfluous since
we could use the definition of the weak average plus the structure of the system to obtain the definition
of strong average. Hence, an important question is:

Does there exist a (non-periodic) system which is not of the form (6) for which the strong
average ezists?

We show below that this is true.

Example 2 Consider the system (1), where:
t2

t =—r4+-——
f(axaw) T+ 1+t2w

(15)

Note that this system is not periodic and it does not have the structure (6). We show now that the strong
average for this system exists and is given by:

foa(@w,w) = —z +w . (16)

1 t+T
)

llwll o /t+T ds
T J; 1+s?

[[wl]

< T"O[arctan(t + T) — arctan(?)]

Indeed, we can write:

4T
l/ [fsa(z,w(s)) — f(s,2,w(s))] ds
t

IN

—=d
T 1+ s2 5

IN

il
- T
Hence, if we define fBay(s,t) := min{7,1}s and T* := 7, then we have that the inequality (3) used in the
definition of strong average holds with the given B4, and T™*. a

The above example indicates that it is more difficult to characterize the structure of non-periodic systems
which are such that the strong average follows from the definition of weak average. Instead of trying to
enumerate all of the system structures when this holds, we use two different definitions of average since
they capture the important (but different) properties that the system must have in order to state the
main results in the next section.



4 Main results

In this section we relate the ISS properties of the strong and weak average of a system to the corre-
sponding ISS properties of the actual system. We show that ISS of the strong average of a system
implies uniform semi-global practical ISS of the actual system (Theorem 1). Hence, Theorem 1 is a
generalization of the main result of [18]. On the other hand, ISS of the weak average of a system does
not, in general, imply uniform semi-global practical ISS of the actual system and we illustrate this by
revisiting Example 1. However, if the weak average of a system is ISS and disturbances are absolutely
continuous with w,w € L, then we can prove a semi-global practical “ISS like” property for the actual
system (Theorem 2). Although this ISS like property is weaker than uniform semi-global practical ISS
(it requires w € L), it suffices for semi-global stability results involving interconnections, as shown in
the next section. The proofs of main results are given in Sections 6 and 7.

In order to put our results in a better context, we recall some results on ISS for time-invariant
systems. For the time-invariant system

& = folz,w), (17)
the following definitions follow from those given in [14] and [16]:

Definition 4 Let ¥ € G. The system (17) is said to be Lyapunov-ISS with gain 7 if there exist a C!
function V : R* = Rso, a1, 00,03 € Koo, ¥ € G such that a;t oas oy(s) < F(s) for all s > 0 and, for
all (z,w),

ar(lz]) £ V(z) < ax(|z])

ov
2l 2 y(lwl) = F-falz,w) < —as(|z]) - (18)
The system (17) is said to be Lyapunov-ISS if, for some ¥ € G, it is Lyapunov-ISS with gain 5. O

Remark 1 It has been remarked in the literature (see, for example, [14, p. 440]) that taking as € K
in (18) is equivalent to taking as : R>o — R>o continuous and positive definite. Indeed, as shown in
[14], one can construct ¢ € Koo continuously differentiable so that, with V= g(V) in place of V', (18)
holds with a3 := goay in place of ay, as := goas in place of as, and a3z € K. We note that, regardless
of the particular choice for g € Ko, we have a; Lodyoy = a;l o ap o7y so that this modification does
not change the Lyapunov-ISS gain. |

Definition 5 Let ¥ € G. The system (17) is said to be input-to-state stable (ISS) with gain 7 if there
exists B € KL such that, for each w € Lo, and each z, € R™, the solution x(t) of (17) starting at (z.,t,)
exists for all t > t, and satisfies

|lz(8)] < max{B(|zo,t — to), Y([lwllos)} ,  VE>1.>0. (19)

The system (17) is said to be 1SS if, for some ¥ € G, it is 1SS with gain 5. O
The following comes from [16]:

Fact 1 The system (17) is Lyapunov-ISS if and only if it is ISS. O
The following comes from [14]:

Fact 2 If the system (17) is Lyapunov-ISS with gain 7 then it is ISS with gain 7. O

To our knowledge, the converse of Fact 2 remains an open question; namely, it is still unknown
whether the system (17) being ISS with gain 74 implies that (17) is Lyapunov-ISS with gain 7.

The main objective of this paper is to determine to what extent Lyapunov-ISS with gain 7 for the
averaged system implies ISS with gain 7 for the actual system. The main result for the strong average
is stated below:



Theorem 1 If Assumption 1 holds and the strong average of (1) exists and is Lyapunov-ISS with gain
5 then there exists B € KL and, given any strictly positive real numbers Q,,$,,,0, there exists €* > 0
such that for all € € (0,€*) the solutions of (2) satisfy:

|lz(8)] < max{B(|z(to)] ;¢ —to), Y([lwlloc)} + 6, VE>1to >0 (20)

whenever |x(to)| < Qa, ||w]|,, < Quw, i.e., the system (2) is semi-globally practically (in the parameter €)
ISS with gain v. O

Proof. See Section 6.

In the next corollary, and in Corollary 2, we will need a precise definition of uniform semi-global
practical asymptotic stability.

Definition 6 The system & = f(t,z,€) is said to be uniformly semi-globally practically asymptotically
stable in € if there exists 8 € KL and, for each pair of strictly positive real numbers §, A, there exists €*
such that for all € € (0,€*), the solutions of & = f(t,x,€) satisfy

lz(t)] < B(lzo|,t —to) +6  VE>1, >0 (21)
whenever |zo| < A. O

A corollary of Theorem 1 is the main result obtained in [18]:

Corollary 1 If the average of system & = F(%, x) is globally asymptotically stable then the actual system
T = F(%, x) is uniformly semi-globally practically asymptotically stable in e. m|

In general, the semi-global practical (in the parameter €) ISS property does not follow from the
Lyapunov-ISS property for the weak average. We again use Example 1 to illustrate this point.

Example 1 (cont’d) The weak average for the system (7) is given in (8). Since ¢ > 0, the weak average

is Lyapunov-ISS with gain 5 = 0. Indeed, we can take V(z) = x2.

We will show that the actual system (7) is not uniformly semi-globally practically ISS. In fact, the
actual system exhibits finite escape times under the action of bounded disturbances.

Consider the actual system (7) with the disturbance we(t) = cos(t). Note that [|wel|, = 1,Ve > 0 and
liell, = L. We recall that f:JrT cos?(s)ds = 0.5T + 0.25(sin(2t + 2T) — sin(2t)). By direct integration

#(t) ¢
Loy = Lo () =]

of (7) with this disturbance:
7 (to)

T 1= 2¢(e t, to) 22 (to)

W(est,te) = (0.5 — &) (t — to) + 0.25¢ (sin (%) _ sin (2i>> .

€

we obtain

z? (t)

where

Fiz now arbitrary to > 0,€ > 0 and let x(t,) = 1. It is easy to see that (since 0.5 — ¢ > 0) there always
exists t* > t, such that V(e t*,t,) = 0.5 and hence there are finite escape times. Hence, the actual
system is not uniformly semi-globally practically ISS. O

We note that the disturbance that we used to show this result is differentiable and it has arbitrarily
large rates. The natural question that one may ask is:

What (strongest) general property can we prove for the solutions of the actual system if the
weak average is Lyapunov-ISS with gain 7?



We note that in the standard definition of average for systems without disturbances (Definition 1) we
take fixed z in the integral and then, assuming GAS of = F,,(x), we can establish semi-global practical
asymptotic stability for & = f(%,z) (see [18]). Note that the solutions x(t) are absolutely continuous and
have bounded rates. The disturbances w in the definition of weak average (Definition 3) are also fixed
and it is reasonable to expect that in order to prove a semi-global result using the weak average it is
sufficient to assume that the disturbances are absolutely continuous and with bounded rates. In fact, a
semi-global practical “ISS like” property of the actual system can be proved if one assumes Lyapunov-ISS
with gain 4 of the weak average of system and that w is absolutely continuous with w,w € L:

Theorem 2 If Assumption 1 holds and the weak average of (1) exists and is Lyapunov-ISS with gain 5
then there exists B € KL and, given any strictly positive real numbers Qg , Qy, Uy, v, there exists € >0
such that, Ye € (0,€*), the solutions of (2) satisfy:

|2(8)] < max{B(|z(to)],t = to), Y([lwll o)} + v, VE> 10 20, (22)

whenever |x(t,)| < Qg, ||w]|, < Qy, w(:) is absolutely continuous and ||w|| , < Q. O

Proof. See Section 6.

Note that the continuation of Example 1 does not contradict Theorem 2 since the disturbance that we
used in the example has |[we||, = L which becomes arbitrarily large for sufficiently small € > 0. Hence,
this disturbance does not satisfy the condition of Theorem 2: [[w||,, < b for some fixed € > 0.

Remark 2 To remove the offset ¢ (respectively, v) in Theorem 1 (respectively, Theorem 2), it is clearly
necessary that f(¢,0,0) = 0. If we also assume local exponential stability for the origin of the average
system with disturbances set to zero, well-known results (see, for example, [7, Theorem 8.4]) provide local
exponential stability of the origin of the actual system with disturbances set to zero for € > 0 sufficiently
small. This property of the actual system and the assumption that f(¢,-,-) is local Lipschitz uniformly
in ¢t implies that the actual system is input-to-state stable for ¢ > 0 sufficiently small (cf. [7, Lemma
5.4]). This type of result can be used in conjunction with the main theorems of this section to remove
the offsets in the conclusions, at the price of perhaps increasing the ISS gain for small disturbances. We
do not pursue this direction further here. a

5 Cascaded time-varying systems

The weak average (with the result of Theorem 2) is very useful for analysis of stability of several classes
of time-varying interconnected systems, where the input of one subsystem is the output of another
subsystem, whose derivatives are bounded on compact subsets of the state space. This includes the case
where the disturbances enter the system through an input-to-state stable filter. In this way, cascaded
systems provide an important motivation for the use of weak averages in analysis of stability properties
of time-varying systems. For example, using Theorem 2 on weak averages and the small gain results in
[6], we can prove the following result:

Proposition 3 Consider the system:

5. = fl(%:é.an)
7:’ = f2(t)€5n7w76)

(23)

where £ € R™ ,np € R™2 ,w € R™ and suppose f1 satisfies Assumption 1. Suppose that the following hold:

1. The weak average of the & subsystem exists and is Lyapunov-ISS with gain v¢ € G,

2. For each r > 0 there exist R > 0 and €5 > 0 such that

l&nw)<r, ec(0,e&] = |fat,{nw e <R, (24)



3. There exist By € KL and v,,7 € G such that for any strictly positive A¢, Ay, Ay, there exists
€* > 0 such that for all € € (0,€*) the solutions of  subsystem satisfy:

In(®)] < max{By(In(te)] ¢ = to), Va(llélloo), Y(llwlloo)} + 0, VE> 10 >0,
whenever |n(to)] < Ag, [l€llee < A W]l < A

4. The small gain condition v, o v¢(s) < s,Vs > 0 holds.

Then, there exists B € KL,y € K such that for any strictly positive Q,,Qy, v, there exists € > 0 such
that for all € € (0,€*) we have that the solutions of (23) satisfy:

lz(t)] < max{B(|z(t.)|,t — to), Y(lwlloo)} + va, VE>1to >0,
whenever |z(t,)| < Qp, |||l < and where z := (€7 nT)T. m]
Sketch of proof. See Section 8.
A direct consequence of the above result is:
Corollary 2 Consider the system:
3
n

fl(%wf;’?)
f2(t77776)

where £ € R" n € R™. Suppose fi satisfies Assumption 1 and for each r > 0 there exist R > 0
and €* > 0 such that |n| < r and € € (0,e*) implies |f2(t,m,€)] < R. If the weak average of the
subsystem exists and is input-to-state stable with respect to n and if the n-subsystem is uniformly semi-
globally practically asymptotically stable in € then the system (25) is uniformly semi-globally practically
asymptotically stable in €. O

(25)

Note that in order to prove uniform semi-global practical asymptotic stability of the cascade, the &
system does not have to be uniformly semi-globally practically ISS with respect to 7, as the following
example shows:

Example 3 Consider the cascade:

¢ = e reon(t) e
7 = —(1-0.5cos(t))n, (26)

where ¢ € (0,0.5). The weak average of the £ system was considered in Example 1 and it was shown to
be ISS with zero gain (GAS). On the other hand, since the n subsystem does not depend on the small
parameter €, we can not apply the averaging results of [18] to show uniform semi-global practical stability
of the cascade. The n system is also uniformly GAS and hence from Corollary 2 we conclude that the
cascade (26) is uniformly semi-globally practically asymptotically stable in e. O

6 Proofs of main results

The proofs of the main results are based on the approach taken in [1, 2, 12, 18]. Namely, we show that,
even though the Lyapunov function associated with the average system is not necessarily monotonically
decreasing along the trajectories of the time-varying system, it is decreasing along the trajectories of
the time-varying system when viewed at certain sampling instances, at least when the size of z is big
relative to the size of w and both are bounded, for € sufficiently small. (See Lemma 2 for Theorem 1 and

10



Lemma 3 for Theorem 2.) We use this observation to construct, for the trajectories of the time-varying
system, a “discrete-time” estimate that resembles the continuous-time estimate in the conclusion of each
theorem (See Lemma 4). Finally, in Lemma 5, we combine the discrete-time estimate with a standard
“inter-sample growth” result (Lemma 1), following the calculations in [11], which allows us to conclude.

Since the proofs of Theorems 1 and 2 are quite similar, most of the details of the proof of Theorem
2 are omitted. We do, however, provide some of the details that establish the decrease of the Lyapunov
function at sampling instances under the assumptions of Theorem 2.

In this section we will state the main technical results that we will need to establish the theorems.
The proofs of the technical results, unless short, are delayed until the next section.

We start with an “inter-sample growth” result that we will need. The proof of this result is standard
(see, for instance, Theorems 2.5 and 2.6 in [7]).

Lemma 1 Under Assumption 1, given any strictly positive real numbers r® and r%, there exists d > 0
and M > 0 such that, for each € > 0, the following property holds:
Property 00: for each to > 0, if |z(to)] < 1P, |lw||, < 7} then the solution z(t) of (2) exists for all
t € [to,to + d] and satisfies
|z(t) —x(to)] < M(t —to) , Vt € [to,to +d] . (27)
O

For notational convenience, we state an obvious corollary:

Corollary 3 Under Assumption 1, given any strictly positive real numbers r® and r} and v, there exists
d > 0 such that for each € > 0 the following property holds:

Property PO: for each to > 0, if |z(t.)| < rb, ||w||, < rb then the solution z(t) of (2) exists for all
t € [to,to + d] and satisfies

lz(t)] < lz(to)| +v1 5 VEE [to, to +d] . (28)
O
Next we state the results on the decrease of the Lyapunov function at sampling instances.

Lemma 2 Under the assumptions of Theorem 1, given any strictly positive real numbers A,J, Ay, there
exists d* > 0 and, for any d € (0,d*), there exists €* > 0 such that for all € € (0,€*) the following
property holds:

Property P1.1: Given any t, > 0, if |x(t.)| < A, ||lw||,, < Ay then the solution x(t) of (2) exists for
all t € [to,to + d] and satisfies

[2(te)] > 1(lwll) +6 = Vialto +d)) — V(a(te)) < ~3as(05]a(t.)]). (29)

O
Proof. See Section 7.1.
The corresponding result for Theorem 2 is similar:

Lemma 3 Under the assumptions of Theorem 2, given any strictly positive real numbers A, 6§, Ay, Ao,
there exists d* > 0 and, for any d € (0,d*), there exists €* > 0 such that for all € € (0,€*) the following
property holds:

Property P1.2: Given any t, > 0, if |z(t,)| < A, ||w||, < Ay, ||w|| < Ay then the solution x(t) of (2)
exists for all t € [to,to + d] and satisfies

|lz(to)] 2 Y([lwlle) + = V(z(to +d)) = V(a(to)) < —gas(0-5 |2(to)])- (30)

O

11



Proof. See Section 7.2.
A corollary of Lemmas 1 and 2 is the following.

Corollary 4 Under the assumptions of Theorem 1, given any strictly positive real numbers A, Ay, u, 1,
there exists d* > 0 and for any d € (0,d*) there exists €* > 0 such that for all € € (0,€*) the following
property holds:
Property P2: Given any to > 0, if |z(to)| < A, [|w||, < A1 then the solution x(t) of (2) exists for all
t € [to,to + d] and satisfies V(z(to +d)) < V(z(ts)) + 1 and
d _
V(z(t)) 2 a2 oy(lwlle) +n = V(z{to +d)) = V(z(te)) < ~50a3(0.5a; LV (2(t0)))) -
(31)
O
Proof. Given A, A; and pq, it follows from Lemma 1 and the continuity of V that there exists d* > 0

such that for any d € (0,d*) if |z(t.)| < A,||lw]|,, < A; then the solution z(t) of (2) exists for all
t € [to,to + d] and satisfies V(z(to + d)) < V(z(to)) + pa-

Given A; > 0 and p > 0, let § > 0 be sufficiently small so that

- <u.
sepnax | las(s +0) —as(s)] < p (32)

Such a ¢ exists from the continuity of as(-). Then note that, for |lw|| < Ay,
az o y(llwlly,) + 1 > ez(v(llwll,) +9) - (33)
Using V(z) < ay(|z|) we get
V(z(to)) 2 azor(llwll) +1 = |ao(te)| 2 y(llwll) +6 - (34)
So the rest of Property P2 follows from Property P1.1. Q.E.D.

In preparation for stating the next result, given functions a;, as and ag all in class-K,, we define
Ba(s,t) = ar™ (Bv(az(s), 1)) (35)
where By € KL satisfies
0 < —0.5a3(0.505 * (u)) = u(t) < By (u(0),t), VE>0 . (36)

Such a fy exists from standard comparison results (see, for instance, Lemma 4.4 in [10]). Note that

Ba € KL.

Now we state that Property P2 implies a particular discrete-time input-to-state stability estimate.

Lemma 4 If Property P2 holds, a;(|z]) < V(z) < aa(|z]), and A > a7 (az o y(A1) + p + p1) then
there exist strictly positive real numbers R,r®,r§, ( in particular we can take

o=yl oay(A)
Ti = A]_

—1 1
= - ) 37
sepo, 8% e (s pt ) = (s))) (37)

such that the following property holds:
Property P3: for all t, > 0, |z(to)| < r°,||w||, < r{, the solution of (2) exists for all t > t, and
satisfies

|z (to + kd)| < max{fa(|z(to)], kd), a1 ' 0 az o y(|lw]| )} + R, Yk >0. (38)
where B, was defined by (35)-(36). O

12



Proof. See Section 7.3.

The last result we will need is the following:

b
Lemma 5 If Property PO and P3 hold and R < % then then there exist strictly positive Ay, Ay, v and

B € KL, (in particular we can take

Bls,) = 2 max 27"Ga(s,t — 1)
WE[O’t]
v = R+4+1n
b
A, = min {rs,ﬂol (5)}
A, = min {X(rb),ri’,rf} (39)

b

where By € Koo satisfies Bo(s) > Ba(s,0) for all s > 0 and x(r®) := sup {s cajtoagoq(s) < %}) such
that the following property holds:
Property P4: if |z(t,)| < Az, |lw||,, < Ay then

|z(t)] < max{B(|z(to)] ,t — to), a7 0 an o y(lwll )} +v V2> to > 0. (40)
i

Proof: (The same proof technique was used in [11].) Fix an arbitrary t, > 0 let ¢;, := ¢, + kd, and note
that with the choice A,, A, given in (39) we have that if |z(t,)] < A, |lw||, < A, then |lw|| < 7}
and |z(t)| < r® for all k > 0. Hence the trajectory exists for all ¢ > t, and moreover we can write:

lz(t)| < |z(ty)| + v1,Vt € [tg, trea], VE > 0.
This implies that
|z(t)] < max{Ba(|z(to)|, kd), a7 ' 0oz oy(|Jw|l )} + R+11, Vt>t, >0. (41)

It was shown in [11] that for any 3, € KL, there exists 3 € KL such that 8, (s, kd) < B(s, (k+1)d), Vs, Vk.
Moreover, one possible formula for B(s,t) := 2max,efo, 27 "Bals,t —n). Since t —t, < (k+1)d,Vt €
[tk,tk+1), k > 0 we can write 3(s, (k + 1)d) < B(s,t — to),Vt > to > 0, which completes the proof by
letting v = R+ 14 in (41). Q.E.D.

Proof of Theorem 1. Let a1, as and a3 generate the function 3, € KL according to the definition
in (35)-(36). Let By € Ko satisty Bo(s) > Ba(s,0) for all s > 0. Let Q, Q,, and ¢ be arbitrary strictly
positive real numbers. Define A; := Q,,. Let p and p; be strictly positive real numbers such that

o (a7 (s k) —ar () < 5 (42)
Let A satisfy
A > max{a; 0 az(Q) , a7t (g oy (A1) +p+ ) +1} . (43)
Define v; := &, r} := Q,, and let r® satisfy
r’ > max {260(2), 26} (44)

and be such that x(r?) > Q.

With these definitions, apply Corollaries 3 and 4 to generate a d > 0 and an €* such that Property
PO and Property P2 hold for all € € (0,¢*(d)). Next, applying Lemma 4, we get that Property P3 holds
with ° > Q,, r{ = Q, and R < %. Finally, we apply Lemma 5 to get that Property P4 holds with
v<46,A; >Q, and Ay, > Q, i.e., the claim of the theorem is established. Q.E.D.
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7 Proofs of Technical Lemmas

In this section we prove technical lemmas that were stated in the previous section.

7.1 Proof of Lemma 2

Let A, A; and § be given strictly positive real numbers. Let 3,, € KL and T* > 0 be such that (3)
holds for all T'> T*. Let L > 0 be a (uniform) Lipschitz constant for %—Z, (L, 2,w), fsa(2,w) over the
set where |z| < 2A,|w| < Ay. Let T > T* be such that

LABgy(max {A, A1,1},T) < 0.503 (g) . (45)

Define r® := A and 7 := A; and K := 4LA + LA; + ¢. Throughout the rest of the proof we assume
that |z(t.)] < A and |lw||, < A;. Apply Lemma 1 and Corollary 3 to generate di and M such that

Properties P00 and PO hold for any d € (0,d}). Use the continuity of a3 and a3 ' to find d > 0 such
that

2Md5 + 2a; (2KLMd; +az (g)) <9d. (46)

Define d* = min {d{,ds}. Fix d € (0,d*) and define €*(d) := . Let € € (0,¢"). It follows from Property
P00 that

lz(to)| 2 Y(llwlloe) + Md = |z(t)] 2 v([lwlls) , VE € [to, to +d] - (47)
Therefore, it follows from the assumptions of the lemma that

|z(to)| > Y([lwllo) + Md
implies that for all ¢ € [to,t, + d] we have

e (Laww®) < -aao)
-G @t fraalte) w(t) + Gt ( Fa(t)w(v)

~ 5 E) fsa(2(t), w(t)) + 5 (2(te)) fsa(@(te), w(t)) - (48)

Integrate both sides of the inequality (48) along the solution z(t) over the interval [t,, o +d] to obtain

to+d
V(a(te +d) - V(z(ts) < - / a5 (|z(s)])ds

o

il
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Now we turn to bounding each of the terms on the right-hand side of (49).
1 : Using Property P00, we have that

to+d
—/t as(|z(s)[)ds < —das (max {|z(t.)| — Md,0}) (50)

o

and thus

to+d
|z(to)| > 2Md = —/t as(|z(s)])ds < —das (0.5]z(ts)]) - (51)

2 : Since |%—‘;(a¢(to))| < L|z(t,)| £ LA and d = €*T we can over-bound 2 by:

eral[ j°+TE* (Fuaotte) w(s)) — 1 (2ratte), i) ) d (2)

€

Introduce the change of variables 7 = s/e in the above integral and introduce w1 (7) := w(er) (note that

[lwi]l o = llw|ly < A1) and T} := :T > T. Then by the definition of strong average we have:
1 L4m
T ﬁ (fsa(@(to), wi (7)) — f(7,5(to), wr(7))) dr| < Baw(max{|z(to)], [[will, 1}, T1)
< ﬂav(max{Aa Al: 1}7 T) (52)

4

3 and 4 : Using Assumption 1 and the definition for L > 0, for all z,w with max{|z1]|, |2z2|} <
2A, |lw| < Ay we have:

and hence, using (45) and the fact that €I} = d, 2 can be over-bounded by d 0.5a3 (é>

oV oV
S@)f (Zaw) - So(@)f (Smgw)‘ < (4LA+ LAy +0)L|zy — 25| = KL oy — 22| . (53)

The same bound holds if f(,-,-) is replaced by fsa(+,-). Using Property P00 and Property PO, it follows
that we can overbound the sum of terms 3 and 4 by K LMd>.

From the bounds on terms 1-4 on the right-hand side of (49), it follows that

|z(to)| > v(lw|l) + 2Md + 2a3" <2KLMd + a3 (g)) (54)

implies
V(z(to +d)) — V(z(to)) < —ga3(0-5lw(to)l) : (55)

From (46) and the fact that d < d3, the result follows. Q.E.D.

15



7.2 Proof of Lemma 3

Compared to the proof of Lemma 2, the main difference in the proof of Lemma 3 is that the relevant
version of (49) is

V(z(to +d)) — V(a( /t " |)ds (56)

to+d
-, (%—Z () et w(t) = D ot wie) ) s

0 <

to+d
/ (5 O fun (5 0(6) = G (0l00) o) () ) .

/

1
Term 1 is the same as before. Term 2 is in a form such that the definition of the weak average can be
exploited in the same way that the definition of the strong average was exploited in the proof of Lemma

2. Terms 3 and 4 have been modified so that w(t,) replaces w(s) in some places. Nevertheless, these
terms can be over-bounded like in the proof of Lemma 2. The key observations are that

ov ov
S @) f(Cm1,w1) = 5o (02) (5, @2,w2)| < KL (j21 = @] + [wi = wa)

(similarly for fsq(-,-) in place of f(-,-,-)) and, since we are assuming that w is absolutely continuous and
|l < Az, we have

to+d
/t lw(s) — w(ts)|ds < 0.5A,d . (57)

o

Q.E.D.

7.3 Proof of Lemma 4

Introduce the set V := {z : V(z) < a1(A)}. Define r°, r{ and R as in (37). Consider any to,z (o), w(t)
with t, > 0, |z(to)| < r® < A, [jw||, < r{. All the calculations below are given for this (fixed) triple
(to,z(to), w(t)). Define ty, := to, + kd and, for those k such that z(tz) is defined, Vi := V(x(tx)). We will
use the following fact:

Fact 3 If Vo < a1(A), then Vi < a1(A),Vk e N. O

Proof of the fact: Let j > 0 be such that V; exists and V; < aq(A). Either V; > azoy(A1)+p in which
case it follows from the second part of Property P2 that V41 <V; < a1(A), or V; < as 0oy(A;r) + pin
which case it follows from the first part of Property P2 and the assumption that A > a7 (v(A1) +u+ 1)
that Vi11 < (A1) + p+ 1 < aq(A). The proof follows by induction. Q.E.D.

Introduce the variable:

uls) == Vi + (2 — k) (Vs — Vi), 5 € [kd, (k + 1)d), k > 0. (58)
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From Fact 3 it follows that u(s) < a1(A),Vs > 0. The function u(s) is a continuous, piecewise linear
function of s and hence it is absolutely continuous. Thus, u(s) is differentiable for almost all s > 0. Note
that we have that

0 < u(s) < max{Vy, Vky1},Vs € [kd, (k+ 1)d), k € N. (59)

Hence using the first part of Property P2 we conclude that whenever |z(t.)| < A, |[w||, < A1 we have
that

w(s) < Vi + 1, Vs € [kd, (k+ 1)d), ke N. (60)
Using (60) and the second part of Property P2, the following implications hold Vs € [kd, (k+1)d), k €
N:
u(s) 2 azoy(lwll,) +p+m = Vi >azoy(lwlly)+p
= Vi —-W < —ga3(o.5a;1(vk)). (61)
Hence, from (58) and (61) we can write Vs € [kd, (k + 1)d), k € N:
u() > s 0y (wll) + i = ou(s) = S(Vewr — Vi) < 05050503 (V). (62)

Finally, since whenever Vi > as o y(||lwl| ) + # we have V11 < Vi and hence u(s) < Vi, s € [kd, (k +
1)d), k € N, then from (62) we have that for almost all s > 0 the following holds:

d _
u(s) 2 az o v([[wllo) +p+pu = —uls) < ~0.5a3(0.5a; H(u(s))) - (63)
Using, for example, [7, Theorem 5.1], we obtain:

|u(s)] < max{Bv (luo|,s), 2 o(llwll o) + o+ m}  Vs>0

where Sy was defined by (36). Since u(kd) = Vi, > a1 (|z(tr)|), uo = Vo < aa(|z(to)|), for s = kd we
obtain:

|z (tr)| < max{fa(|z(to)]), kd), a1 (az o v(|Jwll) + 1+ p1)} (64)
where 3, was defined in (35). Using the definition of R in (37) the result follows. Q.E.D.

8 Sketch of Proof of Proposition 3

Without loss of generality, we will take |z| = max {|¢|, |n|}. Using the first assumption, let 8¢ € KL and
ve € G come from Theorem 2. Let 8, € KL, v, 7 € G come from the third assumption. Let the strictly
positive real numbers Q,, Q,,, v, be given. Define

M := max {ﬂé (Qza 0)5 7§(ﬂn(gza 0))5 ﬁﬂ(Qwa O)a Vn(/BE(Qwa 0))5 %(Qw)} +v; + 1 (65)
and note that M > Q,. Let r > 0 be such that

<M, <M, |lw < = [§Enw)<r. (66)
Let 7, with the second assumption, generate R > 0 and €f > 0. Let 1 > 0 be such that
Tn(ve(s) +m1) +11 < max{s,%} Vs € [0, M] (67)
Ye(ym(s) + 1) + 11 < max {s, %w} Vs € [0, M] (68)
Wms+v1) < W)+ Vseo,M] (69)
Tl +m) < yels)+o Vselo,M] (70)
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Such a v; > 0 exists since v, > 0, v, and 7¢ are continuous, and, with the fourth assumption, since

max s —max {7y ©7¢(s), 7 © 1 (s)}] >0 .
se[4,M]

Define

5;:y;:y1<%. (71)

Define Q¢ := Q,, := Q. Let Q¢,Q,,Q,,d, with the third assumption, generate €5 > 0. Let Q¢,Q,, R, v,
playing the role of Q,,,, Qy, v in Theorem 2, generate €5 > 0. Define
€' := min {e], €3, €3} . (72)

Suppose |z(to)| < Qy, ||w]|loo € Quw, and € € (0,€*). Let T > 0 be such that |z(t)] < M for all
t € [to,to + T]. Such a T > 0 exists since M > Q. Defining

o= te[ggg3<+T]ln(t)l
£ = t
3 it [£@)] ,

and using causality, we have

7 < max{By(In(to)l,0),7 &), F(|[wl|o0) } + 6

< max {8y (In(to)],0), 1 (Be(I€(Eo)[, 0) + v), 74 (ve (M) + v), V(| |wlloo) } + 6 - i
Together with (67), (69), (71) and the observation that, for nonnegative real numbers (a, b, s),
a < s < max{a, b} = s<b, (74)
it follows that
7S max {By(n(to)],0) + 2, (Be((t) 1, 0) + vy v, F (Il o) + 5 } -
< max{f,(In(to)l,0), v (B¢ (1€(to)1,0)), Y(|wlloo) } + va < M .

Similarly, for £ we can obtain

€ < max {B¢(|&(to)],0), v (By(In(to)],0)), F(llwlloo) } + ve < M . (76)
It follows that T can be taken to be arbitrarily large, and so the above relations hold when 7 :=
supy>y, [1(t)| and & := sup;>,, [£(2)]-
Following the same computations as above, we can also show that for each p > 0 and r > 0 there
exists T' > 0 such that

€ttt <7yl <7 = sup max (€O )]} < max {p,F(|wlloe)} + 2 -
B (77)

From here, the construction of 8 € KL and v € K as in the conclusion of the corollary follows a
combination of the ideas in the proofs of [10, Proposition 2.5] and [6, Theorem 2.1].

9 Conclusions

The ISS property of time-varying nonlinear systems was investigated in the context of the averaging
method. We introduced two definitions of the averaged system with disturbances (strong average and
weak average). We showed that ISS of the strong average of a system implies uniform semi-global
practical ISS of the actual system. This result generalizes a recent result on averaging of time-varying
nonlinear systems without disturbances proved in [18]. We also showed that ISS of the weak average of a
system implies uniform semi-global practical “ISS like” property for the actual system that also requires
the disturbances to be absolutely continuous with w,w € L. Weak averages were shown to be useful
in the stability analysis of cascaded time-varying systems.
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