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Abstract

Two integrator backstepping designs are presented for digitally controlled continuous-time plants in special form. The controller
designs are based on the Euler approximate discrete-time model of the plant and the obtained control algorithms are novel.
The two control laws yield, respectively, semiglobal-practical stabilization and global asymptotic stabilization of the Euler
model. Both designs achieve semiglobal-practical stabilization (in the sampling period that is regarded as a design parameter)
of the closed loop sampled-data system. A simulation example illustrates that the obtained controllers may sometimes be
superior to backstepping controllers based on the continuous-time plant model that are implemented digitally.
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1 Introduction

Backstepping control techniques have attracted much
attention in the last ten years [1]. While backstepping is
well understood for continuous-time systems, the case
when a continuous-time plant needs to be controlled via
a digital controller is not understood as well. Two dif-
ferent approaches have been suggested in the literature
for this situation:

Approach 1: A continuous-time controller is designed
for the plant ignoring sampling (e.g. using [1]) and then
the controller is discretized and implemented using sam-
ple and hold devices (e.g. using [8]). Since this approach
ignores sampling at the controller design stage, it is
reasonable to expect that other approaches that take
sampling into account would yield much better results.
Approach 2: A discrete-time controller is designed for

the exact discrete-time model of the plant, which is in
strict feedback form (see [2–4,14–16]). In this case, it
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is assumed that the exact discrete-time model of the
plant is known and it has a feedback structure that is
amenable to backstepping. However, both of these as-
sumptions are unrealistic in the case when a continuous-
time plant that has strict feedback structure needs to
be controlled via a digital controller. Indeed, in this
case the exact discrete-time plant model is typically
unknown since we need to solve explicitly a nonlinear
differential equation over one sampling interval. More-
over, even if the exact discrete-time model of the plant
could be found, the model would usually not have the
needed strict feedback structure (sampling destroys the
strict feedback structure).
Recently the authors proposed a framework for digital

controller design based on approximate discrete-time
models of the plant [6]. We note that controller design
was not addressed in [6], which we do in this paper for
a class of strict feedback systems using their Euler ap-
proximate model.
In this paper we present several backstepping designs

based on the Euler approximate discrete-time model of
a continuous-time plant that is in strict feedback form.
Motivation for doing this comes from the following: (i)
The Euler approximate discrete-time model preserves
the strict feedback structure of the continuous-time
plant. Hence, the strict feedback assumption of the
Euler approximate model is justified. (ii) We obtain
completely new control algorithms in this way. (iii)
The backstepping controllers based on the Euler ap-
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proximate plant model may sometimes outperform dis-
cretized continuous-time backstepping controllers (see
the example in the last section). While we could not
prove this fact in general, we observed this in simula-
tions for several examples we considered. (iv) Not every
backstepping controller based on the Euler approximate
plant model stabilizes the sampled-data plant (for a
example see [9]). Note that if backstepping is based on
the exact discrete-time model, then this can not hap-
pen (dead-beat controllers are often used to illustrate
discrete-time backstepping designs [14]).

Our first design achieves semiglobal-practical asymp-
totic (SPA) stabilization of the Euler model whereas
the second design achieves global stabilization of the
Euler model. Both designs achieve SPA stabilization of
the closed-loop sampled-data system via the sampling
period which is assumed to be a design parameter. In
our second design we use results from [7] on change
of supply rates for discrete-time input-to-state stable
(ISS) systems.

The paper is organized as follows. In Section 2 we
present preliminaries. Main results are stated in Section
3 and an example is given in Section 4. Several auxiliary
results are given in the appendix.

2 Preliminaries

The sets of real and natural numbers are denoted R and
N, respectively. We use the standard definitions of class
K,K∞ andKL functions [1], and we use |x| := maxi |xi|.
We consider systems of the form

η̇ = f(η) + g(η)ξ; ξ̇ = u . (1)

For simplicity, we assume η ∈ Rn, ξ ∈ R, u ∈ R,
f(0) = 0 and f, g are differentiable sufficiently many
times. The control will be a piecewise constant signal
u(t) = u(kT ) =: u(k),∀t ∈ [kT, (k + 1)T [, k ∈ N where
T > 0 is a sampling period and the state measure-
ments η(k) := η(kT ) and ξ(k) := ξ(kT ) are available
at sampling instants kT, k ∈ N. The sampling period is
assumed to be a design parameter that can be assigned
arbitrarily. The difference equations corresponding to
the exact plant model and its Euler approximation
respectively are denoted:

x(k + 1) = F e
T (x(k), u(k)) (2)

x(k + 1) = FEuler
T (x(k), u(k)) , (3)

where we used the notation x :=
(
ηT ξT

)T and

FEuler
T (x, u) :=

(
η + T (f(η) + g(η)ξ)

ξ + Tu

)
. Both models

(2) and (3) are parameterized by T . We emphasize that
F e

T is not known in most cases. Moreover, even when F e
T

is known, it usually does not preserve the strict feedback
structure of (1). On the other hand, FEuler

T preserves

the strict feedback structure like (1). Note that FEuler
T

is defined globally if the functions f and g in (1) are de-
fined globally. In general, F e

T is defined semi-globally in
T since the initial value problem (1) may exhibit finite
escape times. We will use the following definitions:

Definition 1 We say that the family of controllers
uT semiglobally-practically asymptotically (SPA) sta-
bilizes FT if there exists β ∈ KL such that for any
pair of strictly positive real numbers (D, ν) there ex-
ists T ∗ > 0 such that for each T ∈ (0, T ∗) the so-
lutions of x(k + 1) = FT (x(k), uT (x(k))) satisfy:
|x(k, x(0))| ≤ β(|x(0)| , kT ) + ν, for all k ≥ 0, whenever
|x(0)| ≤ D.

Definition 2 Let T̂ > 0 be given and for each T ∈ (0, T̂ )
let functions VT : Rn → R≥0 and uT : Rn → R be
defined. We say that the pair of families (uT , VT ) is
a semiglobally-practically asymptotically (SPA) stabi-
lizing pair for FT if there exist α1, α2, α3 ∈ K∞ such
that for any pair of strictly positive real numbers (∆, δ)
there exists a triple of strictly positive real numbers
(T ∗, L, M), with T ∗ ≤ T̂ , such that for all x, z ∈ Rn

with max{|x|, |z|} ≤ ∆, and T ∈ (0, T ∗):

α1(|x|) ≤ VT (x)≤ α2(|x|) (4)
VT (FT (x, uT (x)))− VT (x)≤−Tα3(|x|) + Tδ (5)

|VT (x)− VT (z)| ≤L|x− z| (6)
|uT (x)| ≤M . (7)

Moreover, if there exists T ∗∗ > 0 such that (4), (5), (6),
(7), with δ = 0, hold for all x ∈ Rn, T ∈ (0, T ∗∗), then
we say that the pair (uT , VT ) is a globally asymptotically
(GA) stabilizing pair for FT .

A direct consequence of Definition 2 is that if (uT , VT )
is a GA stabilizing pair for FT , then (uT , VT ) is a SPA
stabilizing pair for FT . The proofs of the following two
results come directly from [6]:

Theorem 1 If the pair (uT , VT ) is SPA stabilizing for
FEuler

T , then it is uT is SPA stabilizing for F e
T .

Hence, if we can find a family of pairs of (uT , VT ) that
is a GA or SPA stabilizing pair for FEuler

T , then the
controller uT will SPA stabilize the exact model F e

T . This
is done in the next section.

3 Integrator backstepping

Design of SPA and GA control laws for FEuler
T is hard

in general. However, these control laws can be derived
systematically when the system has the form (1) so that
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the Euler model 1 is

η(k + 1) = rT (η(k), ξ(k)) (8)
ξ(k + 1) = ξ(k) + Tu(k) , (9)

where rT (η, ξ) := η + T (f(η) + g(η)ξ). First we design
a SPA stabilizing family of pairs (uT , VT ) (Theorem 2)
and then a GA stabilizing pair (Theorem 3).

Theorem 2 Suppose that there exists T̂ > 0 and a pair
(φT , WT ) that is defined for each T ∈ (0, T̂ ) and that is
a SPA stabilizing pair for the subsystem (8), with ξ ∈ R
regarded as its control. Suppose also that:

1. φT and WT are continuously differentiable for any
T ∈ (0, T̂ );
2. there exists ϕ̃ ∈ K∞ such that |φT (η)| ≤ ϕ̃(|η|) for

all η ∈ Rn, T ∈ (0, T̂ ).
3. for any ∆̃ > 0 there exists a pair of strictly posi-

tive numbers (T̃ , M̃) such that for each T ∈ (0, T̃ ) and
|η| ≤ ∆̃ we have max

{∣∣∣∂WT

∂η

∣∣∣ ,
∣∣∣∂φT

∂η

∣∣∣
}
≤ M̃ .

Then there exists a SPA stabilizing family of pairs
(uT , VT ) for the Euler model (8), (9). In particular, we
can take (with arbitrary c > 0 and rφ

T := η + T (f(η) +
g(η)φT (η))):

uT (x) = −c(ξ − φT (η))− ∆̃W T

T
+

∆φT

T
(10)

∆φT := φT (rT )− φT (η) (11)

∆̃W T =





∆W T
(ξ−φT (η))

, ξ 6= φT (η)

T ∂WT
∂η

(rT )g, ξ = φT (η)
(12)

∆W T := WT (rT )−WT (rφ
T ) (13)

VT (x) = WT (η) +
1

2
(ξ − φT (η))2 . (14)

Remark 1 Since WT is continuously differentiable and
φT is continuous, the control law uT is continuous. Also,
(ξ − φT (η)) · ∆̃WT = ∆WT for all x.

Remark 2 A continuous-time counterpart of the con-
trol law (10) can be found, for instance, in Lemma 2.8
in [1]. It takes the following form u(x) = −c(ξ−φ(η))+
∂φ
∂η (η)[f(η) + g(η)ξ]− ∂W

∂η (η)g(η), where φ is the control
law that stabilizes the η subsystem and W is the Lya-
punov function for the η subsystem with the control law
φ. Although (10) and the above control law are similar,
they are in general different. More importantly, we will
show by simulations in the last section that (10) may out-
perform the emulated continuous time control law.

1 Since we only need to stabilize the Euler approximation,
there is no loss of generality in considering ξ̇ = u in (1)

instead of ξ̇ = h(η, ξ) + k(η, ξ)v, where k(η, ξ) 6= 0,∀η, ξ
since pre-compensation can be used to transform the Euler
approximation into (8), (9).

Proof of Theorem 2: Since (φT ,WT ) is a SPA stabi-
lizing pair for η + T (f(η) + g(η)u) and using conditions
in Theorem 2, the following holds:
Property P: There exist T̂ > 0 and ϕ̃ ∈ K∞ such that the
pair (φT ,WT ) is defined for each T ∈ (0, T̂ ) and

η ∈ Rn, T ∈ (0, T̂ ) ⇒ |φT (η)| ≤ ϕ̃(|η|) . (15)

Moreover, there exist functions α̃1, α̃2, α̃3 ∈ K∞ such
that for any pair of strictly positive real numbers (∆̃, δ̃)
there exists a pair of strictly positive real numbers (T̃ , M̃)
such that for all |η| ≤ ∆̃, T ∈ (0, T̃ ):

α̃1(|η|) ≤ WT (η) ≤ α̃2(|η|) (16)

∆WT := WT

(
rφ
T

)
−WT (η) ≤ −T [α̃3(|η|) + δ̃] (17)

max
{∣∣∣∣

∂WT

∂η

∣∣∣∣ ,

∣∣∣∣
∂φT

∂η

∣∣∣∣
}
≤ M̃ . (18)

Let c > 0 come from the control law. We introduce
α1(s) := min

{
α̃1(s), α̃1 ◦ ϕ̃−1

1

(
1
2s

)
, 1

8s2
}
, α2(s) :=

α̃2(s)+s2 + ϕ̃2(s), α3(s) := min
{
α̃3(s), α̃3 ◦ ϕ̃−1

1

(
1
2s

)
,

c
4s2

}
and ϕ̃1(s) := max{s, ϕ̃(s)}. Let (∆, δ) be a

pair of strictly positive real numbers. Let T̂ > 0
come from Property P. Let δ̃ := δ

2 . Define ∆1 :=

sup|x|≤∆,T∈(0,T̂ ) max{|rT | ,
∣∣∣rφ

T

∣∣∣}. The number ∆1

is finite for any ∆ > 0 since f and g are contin-
uous (and hence bounded on compact sets), T̂ is
bounded and (15) holds. Let ∆̃ := max{∆,∆1}. Let
the pair (∆̃, δ̃) generate (T̃ , M̃) using Property P.
Let M̃1 := sup|x|≤∆,T∈(0,T̂ ) max{|ξ − φT (η)| , |g(η)| ,
|f(η) + g(η)ξ|}. The number M̃1 is finite for any ∆ > 0
since f and g are continuous and (15) holds. We de-
fine T ∗ := min

{
T̃ , T̂ , δ

M̃2
1 (c+M̃)2

}
, M := (c + 2M̃)M̃1,

L := M̃ + 2M̃1(1 + M̃). Now we consider arbitrary
x, z ∈ Rn+1, with max{|x| , |z|} ≤ ∆ and T ∈ (0, T ∗)
and show that inequalities (4),(5),(6) and (7) hold for
FEuler

T with the pair (uT , VT ) defined by (10), (14).

The lower bound in (4) follows directly from Proposition
1 in the appendix by letting θ1(s) = s and θ2(s) = 1

2s2.
The upper bound in (4) follows from:

VT (x) = WT (η) +
1
2
(ξ − φT (η))2

≤ α̃2(|x|) + |x|2 + ϕ̃2(|x|) = α2(|x|) . (19)

We now prove (5). Using (10), (14), (13), (11), Remark
1 and the Mean Value Theorem, we obtain:
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∆VT = WT (rT )−WT (η)− 0.5(ξ − φT (η))2

+ 0.5 (ξ + TuT − φT (η + T (f + gξ)))2

= WT (rφ
T )−WT (η)︸ ︷︷ ︸
∆WT

+ WT (rT )−WT (rφ
T )︸ ︷︷ ︸

(ξ−φT )·∆̃W T

−0.5(ξ − φT )2

+
1

2

(
ξ − φT −∆φT + T

[
c(φT − ξ)− ∆̃W T

T
+

∆φT

T

])2

= ∆WT + (ξ − φT ) · ∆̃W T − 0.5(ξ − φT (η))2

+ 0.5
(
(1− cT )(ξ − φT (η))− ∆̃W T

)2

= ∆WT + (ξ − φT ) · ∆̃W T − 0.5(ξ − φT )2 + 0.5∆̃W
2

T

+ 0.5(1− 2cT + c2T 2)(ξ − φT )2 − (1− cT )(ξ − φT ) · ∆̃W T

= ∆WT − cT (ξ − φT (η))2

+ T 2

{
c2(ξ − φT )2

2
+

c(ξ − φT ) · ∆̃W T

T
+

∆̃W
2

T

2T 2

}

≤ −T α̃3(|η|) + T δ̃ − Tc(ξ − φT (η))2

+
T 2

2

{
c(ξ − φT (η)) +

∆̃W T

T

}2

≤ −T α̃3(|η|)− Tc(ξ − φT (η))2 + T δ̃

+
T 2

2

{
c |ξ − φT (η)|+

∣∣∣∣
∂WT

∂η
(η∗)

∣∣∣∣ · |g(η)|
}2

≤ −T α̃3(|η|)− Tc(ξ − φT (η))2 + T δ̃ +
T 2

2
M̃2

1 (c + M̃)2

≤ −Tα3(|x|) + T

(
δ

2
+

δ

2

)
,

where η∗ = η + T [f + g(θξ + (1− θ)φT )], θ ∈ (0, 1) and
the last step follows from the fact that: α̃3(|η|) + c(ξ −
φT (η))2 ≥ α3(|x|), which follows from Proposition 1 in
the appendix by letting WT (η) = α̃3(|η|), θ1(s) = s and
θ2 = 1

2s2. This proves condition (5).

Denoting x = (ηT
1 ξ1)T , z = (ηT

2 ξ2)T , using the Mean
Value Theorem and the definition L, we have

|VT (x)− VT (z)| ≤ |WT (η1)−WT (η2)|
+

1
2

∣∣(ξ1 − φT (η1))2 − (ξ2 − φT (η2))2
∣∣

≤
∣∣∣∣
∂WT

∂η
(η∗1)

∣∣∣∣ · |η1 − η2|+ |ξ1 + ξ2 − φT (η1)− φT (η2)| ·
{|ξ1 − ξ2|+ |φT (η1)− φT (η2)|}
≤ (M̃ + 2M̃1(1 + M̃)) |x− z| = L |x− z| ,

where η∗1 = θ1η1 +(1− θ1)η2 and η∗2 = θ2η1 +(1− θ2)η2

for some θ1, θ2 ∈ (0, 1). Thus condition (6) is satisfied.

Finally, using the Mean Value Theorem,

|uT (x)| ≤ c |ξ − φT (η)|+
∣∣∣∣
∂WT

∂η
(η∗3)

∣∣∣∣ · |g(η)|

+
∣∣∣∣
∂φT

∂η
(η∗4)

∣∣∣∣ · |f(η) + g(η)ξ|

≤ cM̃1 + 2M̃M̃1 = M ,

where η∗3 =η+T [f+g(θ3ξ+(1−θ3)φT )], η∗4 = η+θ4T (f +
gξ) for some θ3, θ4 ∈ (0, 1). Thus (7) holds.

Before stating Theorem 3 on GA stability we give
Lemma 1 which is instrumental in proving Theorem 3
and that is inspired by the results in [11].

Lemma 1 Consider the system η(k + 1) = η(k) +
T (f(η(k)) + g(η(k))u(k)), where η ∈ Rn, u ∈ R,
f(0) = 0 and f, g are continuous. Suppose that there
exist functions α1, α2, α3, ϕ̃1, ϕ̃2 ∈ K∞, c1 ≥ 0,
T ∗ > 0 and for each T ∈ (0, T ∗) there exist a function
φT : Rn → R and a continuously differentiable func-
tion WT : Rn → R≥0 such that for all η ∈ Rn and all
T ∈ (0, T ∗) we have: (i) WT (rφ

T )−WT (η) ≤ −Tα3(|η|);
(ii) |g(η)φT (η)| ≤ ϕ̃1(|η|); (iii)

∣∣∣∂WT

∂η (η)
∣∣∣ ≤ c1 + ϕ̃2(|η|).

Then there exist γ ∈ K∞, a (smooth) function
ρ : R≥0 → (0, 1] and a family of control laws:
ũT (η, ζ) = φT (η) + ρ(η)ζ such that for all η ∈ Rn, ζ ∈ R
and T ∈ (0, T ∗) we have:

WT (rũ
T )−WT (η)≤−T

2
α3(|η|) + Tγ(|ζ|) , (20)

where rũ
T := η + T (f(η) + g(η)ũT (η, ζ)).

Proof of Lemma 1: Suppose conditions of Lemma
1 hold. Since f and g are continuous and f(0) =
0, there exist functions γf , γg ∈ K∞ and c2 ≥
0 such that |f(η)| ≤ γf (|η|) and |g(η)| ≤ c2 +
γg(|η|) for all η ∈ Rn. Define the functions χ(s) :=
c1 + ϕ̃2 (s + T ∗(γf (s) + ϕ̃1(s) + (c2 + γg(s)) · α3(s))),
ϕ̃3(s) := γf ◦α−1

3 (s)+ ϕ̃1 ◦α−1
3 (s)+[c2 +γg ◦α−1

3 (s)] ·s,
γ(s) := s

2 + [c1 + ϕ̃2

(
α−1

3 (s) + T ∗ϕ̃3(s)
)
] · ϕ̃3(s) Note

that γ ∈ K∞. Let ρ : R≥0 → (0, 1] be any non-increasing

smooth function that satisfies ρ(s) ≤ min
{

1
2χ(s) , 1

}

for all s ≥ 0. Such ρ exists since the function χ is non-
negative and bounded for any bounded η. We show now
that (20) holds by considering two cases: α3(|η|) ≤ |ζ|
and α3(|η|) ≥ |ζ|.
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Consider first the case when α3(|η|) ≥ |ζ|.

∆WT = WT

(
rũ
T

)−WT (η)

= WT

(
rφ
T

)
−WT (η) + WT

(
rũ
T

)−WT

(
rφ
T

)

≤−Tα3(|η|) + WT

(
rũ
T

)−WT

(
rφ
T

)

︸ ︷︷ ︸
∆W T

.

Using the Mean Value Theorem, we can write ∆WT =
Tρ∂WT

∂η (η∗)ζ and since η∗ = η+T (f + g(φT + θρζ)) , θ ∈
(0, 1), it follows from definitions of χ and ρ that

∆WT ≤ Tρ(|η|)
∣∣∣∣
∂WT

∂η
(η∗)

∣∣∣∣ · |ζ| ≤ Tρ(|η|)χ(|η|) |ζ|

≤ T
1

2χ(|η|)χ(|η|)α3(|η|) ≤ T

2
α3(|η|) (21)

Using (21) and (21), α3(|η|) ≥ |ζ| implies

∆WT ≤−Tα3(|η|) +
T

2
α3(|η|) = −T

2
α3(|η|)

≤−T

2
α3(|η|) + Tγ(|ζ|) (22)

Consider now |ζ| ≥ α3(|η|). By definition of γ and using
the notation η∗1 = η + Tθ1(f + g(φT + ρζ)), θ1 ∈ (0, 1),
we have that α3(|η|) ≤ |ζ| implies

∆WT +
T

2
α3(|η|) ≤ T

∣∣∣∣
∂WT

∂η
(η∗1)[f + g(φT + ρζ)]

∣∣∣∣ +
T

2
|ζ|

≤ [c1 + ϕ̃2(|η∗|)]ϕ̃3(|ζ|) +
T

2
|ζ|

≤ [c1 + ϕ̃2(α
−1
3 (|ζ|) + T ∗ϕ̃3(|ζ|))]ϕ̃3(|ζ|) +

T

2
|ζ|

= Tγ(|ζ|) .

The proof follows from (22) and (23).

Theorem 3 Consider the Euler approximate model (8),
(9). Suppose that there exists T̂ > 0 and a pair of fam-
ilies (φT ,WT ) that is defined for each T ∈ (0, T̂ ) and
that is GA stabilizing for the subsystem (8), with ξ ∈ R
regarded as its control. Let ρ come from Lemma 1. More-
over, suppose that the pair of families (φT ,WT ) has the
following properties:
(1) φT and WT are continuously differentiable for any

T ∈ (0, T̂ );
(2) There exists ϕ̃ ∈ K∞ such that for all η ∈ Rn and

all T ∈ (0, T̂ ) we have |φT (η)| ≤ ϕ̃(|η|);
(3) For any ∆̃ > 0 there exists a pair of strictly positive

numbers (T̃ , M̃) such that for all T ∈ (0, T̃ ) and |η| ≤ ∆̃
we have max

{∣∣∣∂WT

∂η

∣∣∣ ,
∣∣∣∂φT

∂η

∣∣∣
}
≤ M̃ .

Then, there exists a GA stabilizing pair (uT , VT ) for the
Euler model (8), (9). In particular, the family of control

laws can be taken to be:

uT (x) =
∆φT

T
+

∆ρ

T
ζ − cρ(|η + T (f + gξ)|)ζ , (23)

where c > 0 is arbitrary and ∆φT := φT (η+T (f +gξ))−
φT (η), ∆ρ := ρ(|η + T (f + gξ)|) − ρ(|η|), ζ := ξ−φT (η)

ρ(|η|)
and there exist two smooth functions θ̃1, θ̃2 ∈ K∞ such
that we can take VT (x) = θ̃1(WT (η))+ θ̃2

(
1
2

(ξ−φT (η))2

ρ2(|η|)
)
.

Proof of Theorem 3: Let conditions of Theorem 3
be satisfied. Then the following property P1 holds:
Property P1: There exist T̂ > 0 and ϕ̃ ∈ K∞ such that
the pair of families (φT ,WT ) is defined for all T ∈ (0, T̂ )
and η ∈ Rn, T ∈ (0, T̂ ) imply |φT (η)| ≤ ϕ̃(|η|). More-
over, there exist α̃1, α̃2, α̃3 ∈ K∞ and for each T ∈ (0, T̂ )
and functions WT : Rn → R≥0 and φT : Rn → R such
that for all η ∈ Rn and all T ∈ (0, T̂ ) the following holds:

α̃1(|η|) ≤WT (η) ≤ α̃2(|η|) (24)
WT (rφ

T )−WT (η) ≤ −T α̃3(|η|) (25)

Using the change of coordinates ζ, the control law (23)
and definitions of ∆φT and ∆ρ we can rewrite the system
(8) as follows:

η(k + 1) = η(k) + T (f(η(k)) + g(η(k))ξ(k))
= rũ

T (η(k), ζ(k)) (26)

ζ(k + 1) =
ξ(k + 1)− φT (η(k + 1))

ρ(|η(k + 1)|) = (1− cT )ζ(k) .

From Lemma 1 it follows that the function ρ has the
property that there exists γ̃ ∈ K∞ such that for all η ∈
Rn, ζ ∈ R and T ∈ (0, T̂ ) we have:

WT (rũ
T )−WT (η) ≤ −T

2
α̃3(|η|) + T γ̃(|ζ|) (27)

Moreover, by denoting U(ζ) := 1
2ζ2, we can see that:

∆U = (1− cT 2)ζ2 − ζ2 ≤ −T
c

2
ζ2 , (28)

for all ζ ∈ R and all T ∈ (0, 1
c ). Hence, for all η ∈ Rn,

ζ ∈ R and all T ∈ (0, T ∗) with T ∗ = min{T̂ , 1
c} (27) and

(28) hold. By Corollary 1 of the appendix there exist
θ̃1, θ̃2, α̂1, α̂2 such that for all η, ζ and T ∈ (0, T ∗) we
have with VT (x) = θ̃1(WT ) + θ̃2(U) that the following
holds VT (FEuler

T ) − VT ≤ −T α̂1(|η|) − T
2 α̂2(|ζ|). Note

that ρ(0) > 0 and ρ(|η|) is non increasing in |η|. Now
we prove that there exist α1, α2, α3 ∈ K∞ such that
the inequalities (4) and (5) hold in original coordinates
x = (ηT ξ)T . The first inequality in (4) follows directly
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from:

VT (x) = θ̃1(WT (η)) + θ̃2

(
|ξ − φT (η)|2

2ρ2(|η|)

)

≥ θ̃1(WT (η)) + θ̃2

(
1

2ρ2(0)
|ξ − φT (η)|2

)
≥ α1(|x|)

by applying Proposition 1 in the appendix (we let in
the proposition θ1(s) = θ̃1(s), θ2(s) = θ̃2( 1

2ρ2(0)s
2)),

where α1(s) = min
{

θ̃1 ◦ α̃1(s), θ̃1 ◦ α̃1 ◦ ϕ̃−1
1

(
1
2s

)
,

θ̃2

(
1

8ρ2(0)s
2
)}

and ϕ̃1 is given in Proposition 1. The
second inequality in (4) follows from:

VT (x) = θ̃1(WT (η)) + θ̃2

(
(ξ − φT (η))2

2ρ2(|η|)
)

≤ θ̃1 ◦ α̃2(|η|) + θ̃2

(
2ξ2

ρ2(|η|)
)

+ θ̃2

(
2ϕ̃2(|η|)
ρ2(|η|)

)

≤ α2(|x|) , (29)

where α2(s) = θ̃1 ◦ α̃2(s) + θ̃2

(
2s2

ρ2(s)

)
+ θ̃2

(
2ϕ̃2(s)
ρ2(s)

)
. Fi-

nally, the bound (5) follows from α̂1(|η|)+ 1
2 α̂2

(
|ξ−φT (η)|

ρ(|η|)
)
≥

α̂1(|η|)+ 1
2 α̂2

(
|ξ−φT (η)|

ρ(0)

)
≥ α3(|x|) by using Proposition

1 of the appendix with θ1(s) = s, θ2(s) = 1
2 α̂2( 1

ρ(0)s),

WT (η) = α̂1(|η|), where α3(s) := min
{

α̂1(s), α̂1 ◦ ϕ̃−1
1 (s), 1

2 α̂2

(
s

2ρ(0)

)}

and ϕ̃1 is defined in Proposition 1. Now we need to show
that the inequalities (6) and (7) hold in a semiglobal
sense. Let ∆ > 0 be given. Let T̂ > 0 come from Property
P1. We define ∆1 := sup|x|≤∆,T∈(0,T̂ ) max{|rT | ,

∣∣∣rφ
T

∣∣∣}
and let ∆̃ = max{∆,∆1}. Let ∆̃ generate (using con-
dition 3 of Theorem) a pair of strictly positive real
numbers T̃ , M̃ . Define T ∗ = min{T̂ , T̃} and M̃1 :=
sup|x|≤∆̃,T∈(0,T∗) max

{
|ξ − φT | , |f + gξ| ,

∣∣∣dρ
ds

∣∣∣ , 1
ρ , |ξ| , |φT |

}
,

∆2 := sup|x|≤∆̃,T∈(0,T∗) max
{

α̃2(∆̃), 1
2M̃4

1

}
, M̃2 :=

sups≤∆2,T∈(0,T∗)

{∣∣∣dθ̃1
ds (s)

∣∣∣ ,
∣∣∣dθ̃2

ds (s)
∣∣∣
}

. Finally, we define

M := M̃M̃1 + M̃4
1 + cM̃2

1 , L := M̃M̃2 + M̃3
1 M̃2(1 +

M̃ + 2M̃3
1 ).

Consider arbitrary x = (ηT
1 ξ1)T , z = (ηT

2 ξ2)T with
max{|x| , |z|} ≤ ∆ and T ∈ (0, T ∗). Then we can
write |VT (x)− VT (z)| ≤

∣∣∣θ̃1(WT (η1))− θ̃1(WT (η2))
∣∣∣ +∣∣∣θ̃2

(
1
2ζ2

1

)− θ̃2

(
1
2ζ2

2

)∣∣∣, where ζi := (ξi−φT (ηi))/ρ(|ηi|), i =
1, 2. Hence, using the Mean Value Theorem and triangle
inequality we can write:

|VT (x)− VT (z)| ≤
∣∣∣∣
dθ̃1

ds
(w∗1)

∣∣∣∣ ·
∣∣∣∣
∂WT

∂η
(η∗1)

∣∣∣∣ · |η1 − η2|

+
1

2

∣∣∣∣
dθ̃2

ds
(w∗2)

∣∣∣∣ · |ζ1 + ζ2| · |ζ1 − ζ2|

≤ M̃M̃2 |η1 − η2|+ M̃2
1 M̃2 |ζ1 − ζ2| (30)

where w∗1 = `1WT (η1)+(1− `1)WT (η2), w∗2 = 1
2 [`2ζ2

1 +
(1− `2)ζ2

2 ], η∗1 = `3η1 + (1− `3)η2 and `1, `2, `3 ∈ (0, 1).
Also, we can write:

|ζ1 − ζ2| ≤
∣∣∣∣

ξ1

ρ(|η1|) −
ξ2

ρ(|η2|)

∣∣∣∣ +

∣∣∣∣
φT (η1)

ρ(|η1|) −
φT (η2)

ρ(|η2|)

∣∣∣∣

≤
∣∣∣∣

ξ1

ρ(|η1|) −
ξ2

ρ(|η1|)

∣∣∣∣ +

∣∣∣∣
ξ2

ρ(|η1|) −
ξ2

ρ(|η2|)

∣∣∣∣

+

∣∣∣∣
φT (η1)

ρ(|η1|) −
φT (η2)

ρ(|η1|)

∣∣∣∣ +

∣∣∣∣
φT (η2)

ρ(|η1|) −
φT (η2)

ρ(|η2|)

∣∣∣∣

≤ 1

ρ(η1)

{
|ξ1 − ξ2|+

∣∣∣∣
∂φT

∂η
(η∗2)

∣∣∣∣ · |η1 − η2|
}

+ {|ξ2|+ φT (η2)} ·
{∣∣∣∣

dρ

ds
(s∗1)

∣∣∣∣
1

ρ2(s∗1)
· |η1 − η2|

}

≤ (1 + M̃ + 2M̃3
1 )M̃1 |x− z| ,

(31)

where η∗2 = `4η1 + (1− `4)η2, s∗1 = `5 |η1|+ (1− `5) |η2|
and `4, `5 ∈ (0, 1). Combining definition of M , (30), (31)
we obtain that (6) holds.

Consider an arbitrary x with |x| ≤ ∆ and T ∈ (0, T ∗).
Using the Mean Value Theorem, the triangle inequality
and definition of M we can write:

|uT (x)| ≤
∣∣∣∣
∆φT

T

∣∣∣∣ +

∣∣∣∣
∆ρ

T

∣∣∣∣ · |ζ|+ c |ζ|

≤
∣∣∣∣
∂φT

∂η
(η∗3)

∣∣∣∣ · |f + gξ|+
∣∣∣∣
dρ

ds
(s∗2)

∣∣∣∣ |f + gξ|
∣∣∣∣
ξ − φT

ρ

∣∣∣∣

+ c

∣∣∣∣
ξ − φT

ρ

∣∣∣∣ ≤ M̃M̃1 + M̃4
1 + cM̃2

1 ≤ M ,

(32)

where η∗3 = η + `6(f + gξ), s∗2 = `7 |η + T (f + gξ)| +
(1− `7) |η| and `6, `7 ∈ (0, 1). Thus (7) holds.

Example 1 Consider the continuous-time plant:

η̇ = η2 + ξ; ξ̇ = u . (33)

First we design the continuous-time backstepping con-
troller based on (33). The first subsystem can be stabilized
with the “control” φ(η) = −η2− η. This is verified using
the Lyapunov function W (η) = 1

2η2. Using this informa-
tion and applying controller from Remark 2 with c = 1,
we obtain uct(η, ξ) = −2η−η2−ξ−(2η+1)(ξ+η2). Con-
sider now the Euler approximate model of (33). Again,
the control law φ(η) = −η2 − η and the Lyapunov func-
tion W (η) = 1

2η2 are a GA stabilizing pair for the η-
subsystem of the Euler approximate model. Using (10)
with c = 1 in Theorem 2, we obtained the controller:
uEuler

T (η, ξ) = uct(η, ξ)−T [0.5η2+0.5ξ−0.5η+(ξ+η2)2].
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The term −T [0.5η2 + 0.5ξ − 0.5η + (ξ + η2)2] can be
regarded as a modification of the controller uct

T . More-
over, for T = 0 we have that uEuler

0 (η, ξ) = uct(η, ξ). We
have compared the performance of the sampled-data sys-
tems with the two different controllers and have observed
that uEuler

T consistently yielded at least 4 times larger
domain of attraction than uct for all tested sampling pe-
riods (T ∈ {0.1, 0.2, 0.5, 1}). In particular, Figures 1
and 2 show respectively trajectories with the uct(η, ξ)
and uEuler

T (η, ξ) starting from the same initial condition
and with the same sampling period. While the trajectory
with uct(η, ξ) escapes in finite time, the trajectory with
uEuler

T (η, ξ) is bounded and it converges to the origin.
Domain of attraction (DOA) estimates with the two con-
trollers for the sampling period T = 0.5 s are given in
Figure 3. Hence, DOA for the system with uEuler

T may be
much larger than the estimate given in Figure 3.
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Fig. 1. Using uct(η, ξ) from x◦ = [1.6 0]T with T = 0.5 s.
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Fig. 2. Using uEuler
T (η, ξ) from x◦=[1.6 0]T with T=0.5 s.

4 Conclusions

We have presented two control algorithms designed via
Euler approximate models for sampled-data systems
whose continuous-time plant is in strict feedback form.
Advantages of our approach are illustrated via an exam-
ple where a larger domain of attraction is achieved using
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Fig. 3. Domain of attraction estimates, T = 0.5 s.

our controller when compared with the emulated classi-
cal backstepping controller. Our method is amenable to
further extensions, such as robust backstepping.
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5 Appendix

The following result is stated without a proof.

Proposition 1 Let θ1, θ2, α̃1, ϕ̃ ∈ K∞. If WT (η) ≥
α̃1(|η|) and |φT (η)| ≤ ϕ̃(|η|), for all η ∈ Rn and
all T ∈ (0, T ∗), then θ1(WT (η)) + θ2 (|ξ − φT (η)|) ≥
α1(|x|), for all x ∈ Rn+1, T ∈ (0, T ∗), where
α1(s) := min

{
θ1 ◦ α̃1(s), θ1 ◦ α̃1 ◦ ϕ̃−1

1

(
1
2s

)
, θ2

(
1
2s

)}
and ϕ̃1(s) := max{ϕ̃(s), s}.

Consider the parameterized family of systems:

x(k + 1) = FT (x(k), u(k)) . (34)

Definition 3 If there is some α1, α2, γ, α ∈ K∞, T ∗ > 0
and for all T ∈ (0, T ∗) a smooth function VT so that
α1(|x|) ≤ VT (x) ≤ α2(|x|) and VT (FT (x, u))−VT (x) ≤
Tγ(|u|)−Tα(|x|), for all x ∈ Rn, u ∈ Rm, then the triple
of functions (VT , γ, α) is called a Lyapunov ISS triple for
system (34).

Corollary 1 [7] Let two ISS systems be given with
their corresponding Lyapunov ISS triples (WT , γ1, α1)
and (UT , γ2, α2). Then there are K∞ smooth functions
θ1, θ2, γ̃, α̃1 and α̃2 such that [θ1(WT ), 1

2 α̃2, α̃1] is a Lya-
punov ISS triple for the first system and [θ2(UT ), γ̃, α̃2]
is a Lyapunov ISS triple for the second system.
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