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Abstract

Two integrator backstepping designs are presented for digitally controlled continuous-time plants in special form. The controller
designs are based on the Euler approximate discrete-time model of the plant and the obtained control algorithms are novel.
The two control laws yield, respectively, semiglobal-practical stabilization and global asymptotic stabilization of the Euler
model. Both designs achieve semiglobal-practical stabilization (in the sampling period that is regarded as a design parameter)
of the closed loop sampled-data system. A simulation example illustrates that the obtained controllers may sometimes be
superior to backstepping controllers based on the continuous-time plant model that are implemented digitally.
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1 Introduction

Backstepping control techniques have attracted much
attention in the last ten years [1]. While backstepping is
well understood for continuous-time systems, the case
when a continuous-time plant needs to be controlled via
a digital controller is not understood as well. Two dif-
ferent approaches have been suggested in the literature
for this situation:

Approach 1: A continuous-time controller is designed
for the plant ignoring sampling (e.g. using [1]) and then
the controller is discretized and implemented using sam-
ple and hold devices (e.g. using [8]). Since this approach
ignores sampling at the controller design stage, it is
reasonable to expect that other approaches that take
sampling into account would yield much better results.

Approach 2: A discrete-time controller is designed for
the exact discrete-time model of the plant, which is in
strict feedback form (see [2-4,14-16]). In this case, it
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is assumed that the exact discrete-time model of the
plant is known and it has a feedback structure that is
amenable to backstepping. However, both of these as-
sumptions are unrealistic in the case when a continuous-
time plant that has strict feedback structure needs to
be controlled via a digital controller. Indeed, in this
case the exact discrete-time plant model is typically
unknown since we need to solve explicitly a nonlinear
differential equation over one sampling interval. More-
over, even if the exact discrete-time model of the plant
could be found, the model would usually not have the
needed strict feedback structure (sampling destroys the
strict feedback structure).

Recently the authors proposed a framework for digital
controller design based on approximate discrete-time
models of the plant [6]. We note that controller design
was not addressed in [6], which we do in this paper for
a class of strict feedback systems using their Euler ap-
proximate model.

In this paper we present several backstepping designs
based on the Euler approximate discrete-time model of
a continuous-time plant that is in strict feedback form.
Motivation for doing this comes from the following: (i)
The Euler approximate discrete-time model preserves
the strict feedback structure of the continuous-time
plant. Hence, the strict feedback assumption of the
Euler approximate model is justified. (ii) We obtain
completely new control algorithms in this way. (iii)
The backstepping controllers based on the Euler ap-
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proximate plant model may sometimes outperform dis-
cretized continuous-time backstepping controllers (see
the example in the last section). While we could not
prove this fact in general, we observed this in simula-
tions for several examples we considered. (iv) Not every
backstepping controller based on the Euler approximate
plant model stabilizes the sampled-data plant (for a
example see [9]). Note that if backstepping is based on
the exact discrete-time model, then this can not hap-
pen (dead-beat controllers are often used to illustrate
discrete-time backstepping designs [14]).

Our first design achieves semiglobal-practical asymp-
totic (SPA) stabilization of the Euler model whereas
the second design achieves global stabilization of the
Euler model. Both designs achieve SPA stabilization of
the closed-loop sampled-data system via the sampling
period which is assumed to be a design parameter. In
our second design we use results from [7] on change
of supply rates for discrete-time input-to-state stable
(ISS) systems.

The paper is organized as follows. In Section 2 we
present preliminaries. Main results are stated in Section
3 and an example is given in Section 4. Several auxiliary
results are given in the appendix.

2 Preliminaries

The sets of real and natural numbers are denoted R and
N, respectively. We use the standard definitions of class
K, Ks and KL functions [1], and we use |z| := max; |z;].
We consider systems of the form

n=fn)+9m& € = u. (1)

For simplicity, we assume n € R", ¢ € Ru € R,
f(0) = 0 and f, g are differentiable sufficiently many
times. The control will be a piecewise constant signal
u(t) = w(kT) =: u(k),vt € [kT,(k+ 1)T[,k € N where
T > 0 is a sampling period and the state measure-
ments 7(k) := n(kT) and £(k) := &(kT) are available
at sampling instants kT, k € N. The sampling period is
assumed to be a design parameter that can be assigned
arbitrarily. The difference equations corresponding to
the exact plant model and its Euler approximation
respectively are denoted:

Fp(2(k), u(k)) (2)
FRer (x(k), u(k)) , 3)

x(k+1) =

z(k+1)=

where we used the notation z := (nT gT)T and
+T +

FEvter (g ) = (f(m) +9(m)é)
E+Tu

(2) and (3) are parameterized by T'. We emphasize that

F7 is not known in most cases. Moreover, even when F7

is known, it usually does not preserve the strict feedback

structure of (1). On the other hand, FF“e" preserves

) . Both models

the strict feedback structure like (1). Note that FZuler
is defined globally if the functions f and g in (1) are de-
fined globally. In general, F}. is defined semi-globally in
T since the initial value problem (1) may exhibit finite
escape times. We will use the following definitions:

Definition 1 We say that the family of controllers
ur semiglobally-practically asymptotically (SPA) sta-
bilizes Frp if there exists B € KL such that for any
pair of strictly positive real numbers (D,v) there ex-
ists T* > 0 such that for each T € (0,T*) the so-
lutions of z(k + 1) = PFr(a(k),ur(xz(k))) satisfy:
|z(k, (0))| < B(|z(0)|,kT) + v, for all k > 0, whenever
[z(0)] < D.

Definition 2 LetT > 0 be given and for each T € (0, T)
let functions Vp : R™ — R and ur : R — R be
defined. We say that the pair of families (urp,Vr) is
a semiglobally-practically asymptotically (SPA) stabi-
lizing pair for Fp if there exist ay, o, a3 € Ko such
that for any pair of strictly positive real numbers (A, J)
there exists a triple of strictly positive real numbers
(T*,L, M), with T* < T, such that for all z,z € R"
with max{|z|,|z|} < A, and T € (0,T%):

ar(lz]) < Vr(z) < as(|z]) (4)
VT(FT(.’E,'LLT({E))) VT(I')S TO[3(|£L’|)+T5 (5)
[V (z) = Vr(2)] < Llw -2 (6)

ur ()| < M (7)

Moreover, if there exists T** > 0 such that (4), (5), (6),
(7), with § = 0, hold for all x € R™, T € (0,T**), then
we say that the pair (ur, Vr) is a globally asymptotically
(GA) stabilizing pair for Fr.

A direct consequence of Definition 2 is that if (ur, Vr)
is a GA stabilizing pair for Frp, then (up, Vr) is a SPA
stabilizing pair for Fp. The proofs of the following two
results come directly from [6]:

Theorem 1 If the pair (ur, Vr) is SPA stabilizing for
FEuler then it is ur is SPA stabilizing for F5.

Hence, if we can find a family of pairs of (ur, V) that
is a GA or SPA stabilizing pair for FE%°" then the
controller ur will SPA stabilize the exact model F7. This
is done in the next section.

3 Integrator backstepping

Design of SPA and GA control laws for FF“e" is hard
in general. However, these control laws can be derived
systematically when the system has the form (1) so that



the Euler model ! is

n(k +1) =rr(nk),§(k)) (8)
§(k+1) =&(k) + Tu(k) , 9)

where rr(n,€) :=n+ T(f(n) + g(n)f). First we design
a SPA stabilizing family of pairs (ur, V) (Theorem 2)
and then a GA stabilizing pair (Theorem 3).

Theorem 2 Suppose that there exists T>0anda pair

(¢, Wr) that is defined for each T € (0,T) and that is
a SPA stabilizing pair for the subsystem (8), with £ € R
regarded as its control. Suppose also that:

1. ¢ and Wy are continuously differentiable for any

T € (0,T);

2. there exists ¢ € Koo such that |pr(n)| < &(|n]) for
alln e R", T € (0,7).

3. for any A > 0 there exists a pair of strictly posi-
tive numbers (T, M) such that for each T € (0,T) and

|77|§Awehavemax{‘agff %LWT}SJ\Z/.

Then there exists a SPA stabilizing family of pairs
(ur, V) for the Euler model (8), (9). In particular, we

can take (with arbitrary ¢ > 0 and r? =n+T(f(n) +

g(mer(n))):

)

ur(e) = (&~ pr(n) ~ 2oL 4 BT (10)

A¢r = ¢r(rr) — ¢r(n) (11)
— s, & or(n)

AW = { E-or() 12

{ T2 (rr)g, &€ = ¢r(n) -

WT = WT(TT) - WT(TT) (13)

Va(e) = Wen) + 5 (6~ ér(n)* (14)

Remark 1 Since Wy is continuously differentiable and
o1 1s continuous, the control law ur is continuous. Also,

(& —or(n) - AW = AW for all z.

Remark 2 A continuous-time counterpart of the con-
trol law (10) can be found, for instance, in Lemma 2.8
in [1]. It takes the following form u(x) = —c(§ — ¢(n)) +

S2(m)[f () + 9(m)€] = G (n)g(n), where ¢ is the control

law that stabilizes the n subsystem and W is the Lya-
punov function for the n subsystem with the control law
¢. Although (10) and the above control law are similar,
they are in general different. More importantly, we will
show by simulations in the last section that (10) may out-
perform the emulated continuous time control law.

! Since we only need to stabilize the Euler approximation,
there is no loss of generality in considering £ = u in (1)
instead of £ = h(n,&) + k(n,&)v, where k(n,&) # 0,Vn, &
since pre-compensation can be used to transform the Euler
approximation into (8), (9).

Proof of Theorem 2: Since (¢, Wr) is a SPA stabi-
lizing pair for n + T(f(n) + g(n)u) and using conditions
in Theorem 2, the following holds:

Property P: There exist T >0 and @ € Koo such that the

pair (o7, Wr) is defined for each T € (0,T) and
neRY, Te(0,1) = |orn)<anl) . (15)

Moreover, there exist functions aq,Q9,d3 € Koo such
that for any pair of strictly positive real numbers (A, )
there exists a pair of strictly positive real numbers (T M )

such that for all |n] < A, T € (0,T):

ai(inl) < Wr(n) < aa(ln) (16)
AWy i=Wr (1) = Wr(n) < ~Tlas(n) +3)  (17)
max{ aan a;;T } <M. (18)

Let ¢ > 0 come from the control law. We introduce
ai(s) = min{ai(s),ar 0@y (3s), 552}, aa(s) =
ao(s) + 82+ @%(s), az(s) := min {dg(s),dg op! (%S) ,
¢s?} and @y(s) := max{s,$(s)}. Let (A’é) be a
pair of strictly positive real numbers. Let 7" > 0
come from Property P. Let § := %. Define A; :=
SUD |, <A Te(0,7) max{\rﬂ,‘r#’}. The number A,
is finite for any A > 0 since f and g are contin-
uous (and hence bounded on compact sets), T is
bounded and (15) holds. Let A := max{A,A;}. Let
the pair (A,0) generate (I',M) using Property P.
Let My = SupmgA,Te(o,T)}naXﬂf —or(n)|, lgm)l,
|f(n) + g(n)&|}. The number M is finite for any A > 0
since f and g are continuous and (15) holds. We de-
ﬁne ,Iw< = mln {T T,W} M = (C+2M)M1,

L := M + 2M,(1 + M). Now we consider arbitrary
T,z . R with max{|z|,|2|} < A and T € (0,7%)
and show that inequalities (4),(5),(6) and (7) hold for
FEuler with the pair (ur, Vr) defined by (10), (14).

The lower bound in (4) follows directly from Proposition
1 in the appendix by letting 61 (s) = s and 62(s) = 152

The upper bound in (4) follows from:

Vr(z) = S(€~ orn))?

?*(|2]) = aa(la]) - (19)

WT(H) +
< as(|a]) + [ +

We now prove (5). Using (10), (14), (13), (11), Remark
1 and the Mean Value Theorem, we obtain:



AVr = Wr(rr) — Wr(n) — 0.5(¢ — ¢r(n))”
+0.5 (€ + Tur — ¢r(n + T(f + g€)))*
= Wr(r$) — Wr(n) + Wr(rr) — Wr(rg) —0.5(€ — é7)°

AWr (E—¢T)- AW
> 2

c(or — &) — A‘;VT + A:;?T

+;<5—¢T—A¢T+T

— AWr + (£ — ¢7) - AW — 0.5(¢ — 61 (n))>

+05 ((L— D) (e~ br(n) — AWr)”

— AWr + (€ — ¢7) - AWp — 0.5(6 — 1) + 0.5AW
+0.5(1 — 2T + AT (€ — ¢p1)? — (1 — €T) (€ — ¢r) - AW
= AWr — ¢T(€ — ¢r(n))?

+T2{02(5¢T)2 n C(§*¢T)'mT " m;}

2 T 272
< —Tas(|n|) + Td — Te(€ — ¢pr(n))?
- {c@ ~prl) + S }

< —Tas(|n]) — Te(€ — dr(n)® + T4

OWr -Ig(n)|}2

+ T {ete—ern+ |5 )
< ~Tas(|nl) — Te(€ — pr(n)? +T6 + - NIE(c + M)

6 4
S—TO(3(|1‘|)+T(§+§) 5

whete 1* = 5+ T{f + g(6€ + (1 — 0)67)],0 € (0,1) and
the last step follows from the fact that: as(|n|) + c(€ —
é7(n))? > asz(|z|), which follows from Proposition 1 in
the appendix by letting Wr(n) = as(|n]), 61(s) = s and
0> = $s2. This proves condition (5).

Denoting z = (nT &), z = (nd &)7, using the Mean
Value Theorem and the definition L, we have

\Vr(z) = Vr(2)| < [Wr(m) = Wr(nz)]

+ % (& = o7 (m))? = (&2 — o7 (m2))?|
GWT *
an (n7)

{161 = &l + [¢r(m) — dr(n2)|}
< (M +2My (14 M)) |z — 2| =Lz — 2| ,

<

where 07 = 611 + (1 —01)n2 and 13 = Oam1 + (1 — 02)19
for some 61,03 € (0,1). Thus condition (6) is satisfied.

= m2| + 61+ &a — o7 (m) — dr(n2)] -

Finally, using the Mean Value Theorem,

ur(o)] < clé — or(a)| + | 5] - o(o)
| G )| - £+ g

SCMl—f—QMMl:M,

where 3 =1HT[f+g(036+(1 —03)dr)], ni = n+04T(f +
g&) for some 63,04 € (0,1). Thus (7) holds.

Before stating Theorem 3 on GA stability we give
Lemma 1 which is instrumental in proving Theorem 3
and that is inspired by the results in [11].

Lemma 1 Consider the system n(k + 1) = n(k) +
T(f(n(k) + gn(k)u(k)), where n € R'u € R,
f(0) = 0 and f,g are continuous. Suppose that there
erist functions «1,a9,a3,91,02 € Ko, c1 > 0,
T* > 0 and for each T € (0,T*) there exist a function
or : R — R and a continuously differentiable func-
tion Wr : R — Rx¢ such that for alln € R" and all

T € (0,T*) we have: (i) WT(T?) —Wr(n) < =Tas(|n|);

(i6) lg(n)or(n)| < Ga(|nl); (iii) | B2 (n)| < e1+ @a(lnl)-
Then there exist v € Ko, a (smooth) function
p : Rxg — (0,1] and a family of control laws:
ar(n,¢) = or(n) + p(n)C such that for alln € R™, € R
and T € (0,T*) we have:

Wr(r§) — Wr(n) < —gas(nl) + TA(C)) (20)

where r% :=n+ T(f(n) + g(n)ar(n, ).

Proof of Lemma 1: Suppose conditions of Lemma
1 hold. Since f and ¢ are continuous and f(0)
0, there exist functions vy,7y € Ko and c
0 such that [f(n)] < ~¢(jnl) and [g(n)] < ¢
v¢(In]) for all n € R". Define the functions x(s)
e+ G2(s+T7(v5(s) + @1(s) + (c2 + 74(5)) - as(s))
g3(s) == r0az (s)+Proaz (s)+ea+yg0a3(s)]-s,
Y(s) == 5+ [c1 + @2 (a;l(s) + T*(,Z?g(S))] - @3(s) Note
that v € Koo. Let p : R>g — (0, 1] be any non-increasing

smooth function that satisfies p(s) < min{f(s),l}

for all s > 0. Such p exists since the function x is non-
negative and bounded for any bounded . We show now
that (20) holds by considering two cases: as(|n]) < [(]

and az([n]) = |¢].

v

)

~—



Consider first the case when as(|n]) > [¢].

AWT = WT (T%) — WT(77)
=Wr (T;{) — Wrp(n) + Wrp (7“7%) — Wr (r?)
< ~Tas(lnl) + Wr (rF) = Wr (r§) .

AW
Usln‘%the Mean Value Theorem, we can write AWT =
TpWz (1y')¢ and since " = 44+ (f + g1 + 6pC)) |
(0, 1) 1t follows from definitions of x and p that

%?ﬂﬁ-KISTMWMUMK

x(as(lnl) < Foas(a) (21

AW <Tp(|n)

1
<To———
2x(|nl)

Using (21) and (21), as(|n|) > |¢] implies

AWy < ~Tay(lnl) + g as(lnl) = ~Fas(in)
< —gas(lal) + Tr(1<) (22)

Consider now |¢| > as(|n|). By definition of y and using
the notation 7’ = 1+ T8 (f - g(6r + p0)). 61 € (0. 1)
we have that a3(|n|) < |¢| implies

AW + Fas(lal) < T | @I + a6r -+ 0] + 5 I

< fex + G2l DG (1Cl) + 5 I

< fer + @a(az (1K) + T @s (1<) (1)) + % 1q
=T([<l) -

The proof follows from (22) and (23).

Theorem 3 Consider the Euler approzimate model (8),
(9). Suppose that there exists T > 0 and a pair of fam-
ilies (¢, Wr) that is defined for each T € (0,T) and
that is GA stabilizing for the subsystem (8), with £ € R
regarded as its control. Let p come from Lemma 1. More-
over, suppose that the pair of families (¢, W) has the
following properties:

(1) 1 and Wy are continuously differentiable for any
T e (0,T);

(2) There exists p € Koo such that for alln € R™ and
all T € (0,T) we have [¢r(n)| < ¢(|n]);

(8) For any A > 0 there exists a pair of strictly positive
numbers (T, M) such that for all T € (0,T) and |n| < A

oW [ol) -
2| |} < ot

Then, there exists a GA stabilizing pair (ur, Vi) for the
Euler model (8), (9). In particular, the family of control

we have max {

laws can be taken to be:

A
ur(e) = S0+ 22C— eplly + (7 +9O)C, (23)
where ¢ > 0 is arbitrary and A¢r = ¢ (n+T(f+9§)) —
or(n), Ap = plln+ T(f + g&)|) — plln]), ¢ = S

and there exist two smooth functions 01,0s € Koo such
that we can take Vip(x) = 6, (Wr(n)) + 65 ( %)

Proof of Theorem 3: Let conditions of Theorem 3
be satisfied. Then the following property P1 holds:

Property P1: There exist T >0 and @ € Koo such that

the pair of families (¢, Wr) is defined for allT € (0, T)
and n € R", T" € (0,T) imply |¢r(n)| < &(|nl). More-
over, there exist &, o, a3 € Koo and for eachT € (0,T)
and functions Wr : R" — R>q and ¢ : R" — R such

that for alln € R™ and all T € (0, T) the following holds:

ay(|nl) <Wr(n) < aa(lnl) (24)
Wr(rp) = Wr(n) < =Téas(n)) (25)

Using the change of coordinates ¢, the control law (23)
and definitions of A¢p and Ap we can rewrite the system
(8) as follows:

n(k +1) =n(k) +T (f(n(k)) + g(n(k))E(k))
=rr(n(k),C(k)) (26)
Gkt D) — otk

From Lemma 1 it follows that the function p has the
property that there exists 4 € Ko, such that for all n €

R”, ¢ e Rand T € (0,T) we have:

Wr(rf) — Wrln) < —gas(u) + T3(C)  (27)

Moreover, by denoting U(¢) := £(?, we can see that:

AU= (1= - < =T3¢, (28)

for all ( € R and all T € (0, 1). Hence, for all n € R",
¢ € RandallT € (0,7*) with T* = min{T’, 2} (27) and
(28) hold. By Corollary 1 of the appendix there exist
01,0, 61, Gy such that for all 1,¢ and T € (0,T*) we
have with Vi (z) = 6,(Wr) + 62(U) that the following
holds VT(FYEMGT) — VT < —T@1(|77|) — 70[2(|<D Note
that p(0) > 0 and p(|n|) is non increasing in |n|. Now
we prove that there exist ay,as,a3 € Ko such that

the inequalities (4) and (5) hold in original coordinates
x = (nT &)T. The first inequality in (4) follows directly



from:

Vr(z) = 0, (Wrp(n)) + 0, (MT()'>

2p(Inl)

> 0, (W) + 0, (2p1(()) - ¢T<n>|2) > ay(|a])

by applying Proposition 1 in the appendix (we let in
the proposition 01(s) = 61(s), b2(s) = 02(2;)%(0)82)),
where «@;(s) = min {51 oai(s), 0, 0y 0 ()51—1 (%3) ,
6, (&%@52)} and @, is given in Proposition 1. The

second inequality in (4) follows from:

Vr(x) = él(WT(n)) + 6 (W)

<01 0 dig(ln]) + b2 ([)25;)) +0 <252(T1|77;))

<ao(lz]), (29)

where aa(s) = 0, o das(s )—1—92 ( ) + 0, (2“522))) Fi-

nally, the bound (5) follows from & (|n|)+ 4 do (%) >

(In
a1 (Inl)+ 32 (%) > as(|z|) by using Proposition
1 of the appendix with 61(s) = s, 02(s) = %&g(ﬁ s),
Wr(n) = éd1(|n|), where az(s) := min {dl(s), dy 07 (
and ¢ is defined in Proposition 1. Now we need to show
that the inequalities (6) and (7) hold in a semiglobal
sense. Let A > 0be given. Let T > 0 come from Property
o ’}
T
and let A = max{A,A;}. Let A generate (using con-
dition 3 of Theorem) a pair of strictly positive real

numbers T, M. Define 7% = min{T,T} and Ml =
Sup\x|<ATe(0T*)maX{|£ orl,|f + gél,

P1. We define Ay = sup, < e (o7 max{|rr|,

E
Ay = SUD|, <A re(o,r+) MAX aﬂA)éM{l , My =
SUPs< A, T€(0, T*){ %(s) , %( )‘} Finally, we define

M = MM, + M} + cM?, L := MM, + M M(1 +
M + 2M3).

Consider arbitrary z = (171 &), 2z = (nf &)T with
max{|z|,|z|]} < A and T € (0,7*). Then we can

wite [Vr (@) = Vr(2)| < |01(Wr(m)) = 8:(Wr ()| +
82 (3¢3) — 0 (303)|,
1, 2. Hence, using the Mean Value Theorem and triangle
inequality we can write:

= (&—or(m:)/p(|nil), i =

do, , . oWr , .
Vete) = Vi (o)l < | D) | Z )| - o = e
% %(’w;) G+ Gl - [G = G

< MMa | —m2| + MY M2 |G — G| (30)

where w}‘ = €1WT(T]1) (1 gl)WT(ng) * =1 [62(12
(1 —£9)C3], mi = £3m + (1 — £3)72 and 51,52,53 €(0,1).

Also, we can write:

B & & ¢r(m) _ or(n2)
6 @‘S‘pumn p(lnzl)’+ o) ~ o)

&1 &2 &2 &
S‘p(lml) (Iml)‘Jr}p(lml) p(\nz\)‘

¢r(n)  ¢r(n2)| | |¢r(n2)  ér(n2)

p(Iml)  p(iml) (Iml) p(|nz1) (31)
1 ¢T
gp(m){ml—&w‘ |m—n2|}

{6l + or(m)} {]am
< (1+M+2M7)M |z — 2|,

Slmo—n2
p (81)

where 15 = Ly + (1 —L4)n2, 57 = L5 |m |+ (1 = £5) [m2]
and 44,05 € (0,1). Combining definition of M, (30), (31)
we obtain that (6) holds.

Consider an arbitrary z with |z] < A and T € (0,T*).
Using the Mean Value Theorem, the triangle inequality
and definition of M we can write:

i adr|, |22,
s), sas (w2l ¥ | =7 ¢ +el¢]
0 . —
< |G| |f+gf|+]—s2 a6 <=0 o
CT SMM1+M1+CM1 SM,

where 735 = n 4 Le(f + g§), s5 = L7 [n+T(f + g€)| +
(1 —47)|n| and g, ¢7 € (0,1). Thus (7) holds.

, p, €], |¢T|} Example 1 Consider the continuous-time plant:

=t & E=u. (33)
First we design the continuous-time backstepping con-
troller based on (33). The first subsystem can be stabilized
with the “control” ¢(n) = —n* — n. This is verified using
the Lyapunov function W (n) = in?. Using this informa-
tion and applying controller from Remark 2 with c = 1,
we obtainu®(n, £) = —2n—n?—&—(2n+1)(E+n?). Con-
sider now the Euler approzimate model of (33). Again,
the control law ¢(n) = —n* — n and the Lyapunov func-
tion W(n) = in* are a GA stabilizing pair for the 1-
subsystem of the Euler approximate model. Using (10)
with ¢ = 1 in Theorem 2, we obtained the controller:

uuler (n,€) = ut(n, €)—T[0.57%+0.56—0.50+(E+n?)?].



The term —T[0.51% + 0.5¢ — 0.5n + (£ + n?)?] can be
regarded as a modification of the controller ugt. More-
over, for T = 0 we have that ul™'e"(n, &) = u(n, ). We
have compared the performance of the sampled-data sys-
tems with the two different controllers and have observed
that u%“l” consistently yielded at least 4 times larger
domain of attraction than ut for all tested sampling pe-
riods (T € {0.1,0.2,0.5,1}). In particular, Figures 1
and 2 show respectively trajectories with the u®(n,§)
and uE¥er (n, &) starting from the same initial condition
and with the same sampling period. While the trajectory
with u®(n, ) escapes in finite time, the trajectory with
ukler(n, €) is bounded and it converges to the origin.
Domain of attraction (DOA) estimates with the two con-
trollers for the sampling period T = 0.5 s are given in
Figure 3. Hence, DOA for the system with uE"*" may be
much larger than the estimate given in Figure 3.
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51 4

state y

state x

Fig. 1. Using u®(n, £) from zo = [1.6 0] with T' = 0.5 s.

5 T T T T T T T T

ok

5k

state x

Fig. 2. Using uZ™°"(n, ¢) from zo=[1.6 0]7 with T=0.5 s.
4 Conclusions

We have presented two control algorithms designed via
Euler approximate models for sampled-data systems
whose continuous-time plant is in strict feedback form.
Advantages of our approach are illustrated via an exam-
ple where a larger domain of attraction is achieved using

20 T

TR
& IN
N
N el ¥ N
of a %ﬁ % N 4
a e a
A * ok I
* *
* ox X
A
_ook " 4
N
A A R
>
o
§ A A g
>

—8ol 4

~100 L L L L
-15 -10 -5 0 5 10
state x

Fig. 3. Domain of attraction estimates, "= 0.5 s.

our controller when compared with the emulated classi-
cal backstepping controller. Our method is amenable to
further extensions, such as robust backstepping.
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5 Appendix

The following result is stated without a proof.

Proposition 1 Let 01,605,641, € Koo. If Wr(n) >
ar(|nl) and |pr(n)| < @(|nl), for all n € R™ and
all T € (0,T7), then 6,(Wr(n)) + 02 (I€ — or(n)]) =
ai(|z]), for all x € R T € (0,7%), where
a1(s) := min {91 o0dy(s),010a; 0 gbfl (%s) , 05 (%s)}
and ¢1(s) := max{p(s), s}.

Consider the parameterized family of systems:
z(k +1) = FPr(z(k), u(k)) . (34)

Definition 3 Ifthereis someay, ag,v,a € Koo, T* > 0
and for oll T € (0,T*) a smooth function Vr so that
ar(|7l) < Va(x) < az(lz]) and Ve(Fr(z, u) - Ve(z) <
Tv(|u|) —=Ta(|x]), for allx € R™,u € R™, then the triple
of functions (Vr, v, «) is called a Lyapunov ISS triple for

system (34).

Corollary 1 [7] Let two ISS systems be given with
their corresponding Lyapunov ISS triples (Wrp,v1, aq)
and (Up, 2, az). Then there are Ko smooth functions
01,02,7, a1 and &g such that [0, (Wr), %6@7 a4) is a Lya-
punov ISS triple for the first system and [02(Ur), 7, &2]
is a Lyapunov ISS triple for the second system.
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